Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 461 papers

Repeated Doses of Ketamine Affect the Infant Rat Urogenital System.

  • Hulya Kasıkara‎ et al.
  • Drug design, development and therapy‎
  • 2021‎

Long-term ketamine use is known to create an interstitial cystitis-like problem in the bladder. It is known that long-term intermittent ketamine is applied to the children receiving radiotherapy for sedation. This study was planned to investigate whether this effect seen in the bladder causes similar changes in the kidneys, testicles, epididymis and ductus deferens.


Development of the urogenital system is regulated via the 3'UTR of GDNF.

  • Hao Li‎ et al.
  • Scientific reports‎
  • 2019‎

Mechanisms controlling ureter lenght and the position of the kidney are poorly understood. Glial cell-line derived neurotrophic factor (GDNF) induced RET signaling is critical for ureteric bud outgrowth, but the function of endogenous GDNF in further renal differentiation and urogenital system development remains discursive. Here we analyzed mice where 3' untranslated region (UTR) of GDNF is replaced with sequence less responsive to microRNA-mediated regulation, leading to increased GDNF expression specifically in cells naturally transcribing Gdnf. We demonstrate that increased Gdnf leads to short ureters in kidneys located in an abnormally caudal position thus resembling human pelvic kidneys. High GDNF levels expand collecting ductal progenitors at the expense of ureteric trunk elongation and result in expanded tip and short trunk phenotype due to changes in cell cycle length and progenitor motility. MEK-inhibition rescues these defects suggesting that MAPK-activity mediates GDNF's effects on progenitors. Moreover, Gdnf   hyper mice are infertile likely due to effects of excess GDNF on distal ureter remodeling. Our findings suggest that dysregulation of GDNF levels, for example via alterations in 3'UTR, may account for a subset of congenital anomalies of the kidney and urinary tract (CAKUT) and/or congenital infertility cases in humans and pave way to future studies.


Estrogenic environmental chemicals and drugs: mechanisms for effects on the developing male urogenital system.

  • Julia A Taylor‎ et al.
  • The Journal of steroid biochemistry and molecular biology‎
  • 2011‎

Development and differentiation of the prostate from the fetal urogenital sinus (UGS) is dependent on androgen action via androgen receptors (AR) in the UGS mesenchyme. Estrogens are not required for prostate differentiation but do act to modulate androgen action. In mice exposure to exogenous estrogen during development results in permanent effects on adult prostate size and function, which is mediated through mesenchymal estrogen receptor (ER) alpha. For many years estrogens were thought to inhibit prostate growth because estrogenic drugs studied were administered at very high concentrations that interfered with normal prostate development. There is now extensive evidence that exposure to estrogen at very low concentrations during the early stages of prostate differentiation can stimulate fetal/neonatal prostate growth and lead to prostate disease in adulthood. Bisphenol A (BPA) is an environmental endocrine disrupting chemical that binds to both ER receptor subtypes as well as to AR. Interest in BPA has increased because of its prevalence in the environment and its detection in over 90% of people in the USA. In tissue culture of fetal mouse UGS mesenchymal cells, BPA and estradiol stimulated changes in the expression of several genes. We discuss here the potential involvement of estrogen in regulating signaling pathways affecting cellular functions relevant to steroid hormone signaling and metabolism and to inter- and intra-cellular communications that promote cell growth. The findings presented here provide additional evidence that BPA and the estrogenic drug ethinylestradiol disrupt prostate development in male mice at administered doses relevant to human exposures.


Association of neural tube defects with congenital abnormalities of the urogenital system in a Chinese cohort.

  • Zhi-Hua Hong‎ et al.
  • BMC pediatrics‎
  • 2021‎

This study aimed to retrospectively analyze the correlation between congenital abnormality of the urogenital system and various factors in children with neural tube defects (NTDs).


Screening on urogenital Chlamydia trachomatis.

  • Helena de Carvalho Gomes‎ et al.
  • GMS health technology assessment‎
  • 2005‎

Around 92 million urogenital infections are caused yearly by Chlamydia trachomatis worldwide [1].The overall incidence of sexually transmitted diseases is increasing, as shown by the increases in the number of reported cases of syphilis and gonorrhea [2]. Chlamydia trachomatis infections are associated with various serious diseases in women, men and newborns, which could be, at least partially, avoided by means of early diagnosis and therapy. The Federal Joint Committee - responsible for decision-making concerning the benefit package of the German Social Health Insurance - has publicly announced the starting of deliberations on the issue of screening for Chlamydia trachomatis.


A Microfiltration Device for Urogenital Schistosomiasis Diagnostics.

  • Yuan Xiao‎ et al.
  • PloS one‎
  • 2016‎

Schistosomiasis is a parasitic disease affecting over 200 million people worldwide. This study reports the design and development of a microfiltration device for isolating schistosome eggs in urine for rapid diagnostics of urogenital schistosomiasis. The design of the device comprises a linear array of microfluidic traps to immobilize and separate schistosome eggs. Sequential loading of individual eggs is achieved autonomously by flow resistance, which facilitates observation and enumeration of samples with low-abundance targets. Computational fluid dynamics modeling and experimental characterization are performed to optimize the trapping performance. By optimizing the capture strategy, the trapping efficiency could be achieved at 100% with 300 μl/min and 83% with 3000 μl/min, and the filtration procedure could be finished within 10 min. The trapped eggs can be either recovered for downstream analysis or preserved in situ for whole-mount staining. On-chip phenotyping using confocal laser fluorescence microscopy identifies the microstructure of the trapped schistosome eggs. The device provides a novel microfluidic approach for trapping, counting and on-chip fluorescence characterization of urinal Schistosoma haematobium eggs for clinical and investigative application.


Eight Days of Water-Only Fasting Promotes Favorable Changes in the Functioning of the Urogenital System of Middle-Aged Healthy Men.

  • Sławomir Letkiewicz‎ et al.
  • Nutrients‎
  • 2020‎

The aim of this study was to determine whether, after 8 days of water-only fasting, there are changes in the efficiency of the lower urinary tract, the concentration of sex hormones, and the symptoms of prostate diseases in a group of middle-aged men (n = 14). For this purpose, before and after 8 days of water-only fasting (subjects drank ad libitum moderately mineralized water), and the following somatic and blood concentration measurements were made: total prostate specific antigen (PSA-T), free prostate specific antigen (PSA-F), follicle stimulating hormone (FSH), luteotropic hormone (LH), prolactin (Pr), total testosterone (T-T), free testosterone (T-F), dehydroepiandrosterone (DHEA), sex hormone globulin binding (SHGB), total cholesterol (Ch-T), β-hydroxybutyrate (β-HB). In addition, prostate volume (PV), volume of each testis (TV), total volume of both testes (TTV), maximal urinary flow rate (Qmax), and International Prostate Symptom Score (IPSS) values were determined. The results showed that after 8 days of water-only fasting, Qmax and IPSS improved but PV and TTV decreased significantly. There was also a decrease in blood levels of PSA-T, FSH, P, T-T, T-F, and DHEA, but SHGB concentration increased significantly. These results indicate that 8 days of water-only fasting improved lower urinary tract functions without negative health effects.


Molecular cloning of rat Wilms' tumor complementary DNA and a study of messenger RNA expression in the urogenital system and the brain.

  • P M Sharma‎ et al.
  • Cancer research‎
  • 1992‎

In an effort to study the molecular basis of kidney development and carcinogenesis, we isolated complementary DNA clones of the rat homologue of the human Wilms' tumor gene, WT-1. When compared to the predicted sequence of the human WT-1 polypeptide, the rat WT-1 amino acid sequence is highly conserved (> 97%), except for the loss of one amino acid. In situ mRNA hybridization experiments localized WT-1 expression to the glomerular cells in the kidney during embryogenesis and the Sertoli cells of the testis. Similar to expression in humans and mice, WT-1 mRNA expression in the rat kidney and testis is developmentally regulated. In addition, two novel sites of specific high level WT-1 mRNA expression were seen. One is an area in the spinal cord where high level expression occurs throughout embryonic development. The second is the area postrema in the brain where localized expression continues through adulthood, suggesting a functional role for WT-1 in rat brain.


Symptoms and signs of urogenital cancer in primary care.

  • Knut Holtedahl‎ et al.
  • BMC primary care‎
  • 2023‎

Urogenital cancers are common, accounting for approximately 20% of cancer incidence globally. Cancers belonging to the same organ system often present with similar symptoms, making initial management challenging. In this study, 511 cases of cancer were recorded after the date of consultation among 61,802 randomly selected patients presenting in primary care in six European countries: a subgroup analysis of urogenital cancers was carried out in order to study variation in symptom presentation.


Tbx18 expression demarcates multipotent precursor populations in the developing urogenital system but is exclusively required within the ureteric mesenchymal lineage to suppress a renal stromal fate.

  • Tobias Bohnenpoll‎ et al.
  • Developmental biology‎
  • 2013‎

The mammalian urogenital system derives from multipotent progenitor cells of different germinal tissues. The contribution of individual sub-populations to specific components of the mature system, and the spatiotemporal restriction of the respective lineages have remained poorly characterized. Here, we use comparative expression analysis to delineate sub-regions within the developing urogenital system that express the T-box transcription factor gene Tbx18. We show that Tbx18 is transiently expressed in the epithelial lining and the subjacent mesenchyme of the urogenital ridge. At the onset of metanephric development Tbx18 expression occurs in a band of mesenchyme in between the metanephros and the Wolffian duct but is subsequently restricted to the mesenchyme surrounding the distal ureter stalk. Genetic lineage tracing reveals that former Tbx18(+) cells of the urogenital ridge and the metanephric field contribute substantially to the adrenal glands and gonads, to the kidney stroma, the ureteric and the bladder mesenchyme. Loss of Tbx18 does not affect differentiation of the adrenal gland, the gonad, the bladder and the kidney. However, ureter differentiation is severely disturbed as the mesenchymal lineage adopts a stromal rather than a ureteric smooth muscle fate. DiI labeling and tissue recombination experiments show that the restriction of Tbx18 expression to the prospective ureteric mesenchyme does not reflect an active condensation process but is due to a specific loss of Tbx18 expression in the mesenchyme out of range of signals from the ureteric epithelium. These cells either contribute to the renal stroma or undergo apoptosis aiding in severing the ureter from its surrounding tissues. We show that Tbx18-deficient cells do not respond to epithelial signals suggesting that Tbx18 is required to prepattern the ureteric mesenchyme. Our study provides new insights into the molecular diversity of urogenital progenitor cells and helps to understand the specification of the ureteric mesenchymal sub-lineage.


An illustrated anatomical ontology of the developing mouse lower urogenital tract.

  • Kylie M Georgas‎ et al.
  • Development (Cambridge, England)‎
  • 2015‎

Malformation of the urogenital tract represents a considerable paediatric burden, with many defects affecting the lower urinary tract (LUT), genital tubercle and associated structures. Understanding the molecular basis of such defects frequently draws on murine models. However, human anatomical terms do not always superimpose on the mouse, and the lack of accurate and standardised nomenclature is hampering the utility of such animal models. We previously developed an anatomical ontology for the murine urogenital system. Here, we present a comprehensive update of this ontology pertaining to mouse LUT, genital tubercle and associated reproductive structures (E10.5 to adult). Ontology changes were based on recently published insights into the cellular and gross anatomy of these structures, and on new analyses of epithelial cell types present in the pelvic urethra and regions of the bladder. Ontology changes include new structures, tissue layers and cell types within the LUT, external genitalia and lower reproductive structures. Representative illustrations, detailed text descriptions and molecular markers that selectively label muscle, nerves/ganglia and epithelia of the lower urogenital system are also presented. The revised ontology will be an important tool for researchers studying urogenital development/malformation in mouse models and will improve our capacity to appropriately interpret these with respect to the human situation.


Culturing of female bladder bacteria reveals an interconnected urogenital microbiota.

  • Krystal Thomas-White‎ et al.
  • Nature communications‎
  • 2018‎

Metagenomic analyses have indicated that the female bladder harbors an indigenous microbiota. However, there are few cultured reference strains with sequenced genomes available for functional and experimental analyses. Here we isolate and genome-sequence 149 bacterial strains from catheterized urine of 77 women. This culture collection spans 78 species, representing approximately two thirds of the bacterial diversity within the sampled bladders, including Proteobacteria, Actinobacteria, and Firmicutes. Detailed genomic and functional comparison of the bladder microbiota to the gastrointestinal and vaginal microbiotas demonstrates similar vaginal and bladder microbiota, with functional capacities that are distinct from those observed in the gastrointestinal microbiota. Whole-genome phylogenetic analysis of bacterial strains isolated from the vagina and bladder in the same women identifies highly similar Escherichia coli, Streptococcus anginosus, Lactobacillus iners, and Lactobacillus crispatus, suggesting an interlinked female urogenital microbiota that is not only limited to pathogens but is also characteristic of health-associated commensals.


A high-resolution molecular atlas of the fetal mouse lower urogenital tract.

  • Lisa L Abler‎ et al.
  • Developmental dynamics : an official publication of the American Association of Anatomists‎
  • 2011‎

Epithelial-stromal interactions in the lower urogenital tract (LUT) are integral to prostatic and seminal vesicle development in males, vaginal and uterine development in females, and urethral development in both sexes. Gene expression profiling of isolated LUT stroma and epithelium has unraveled mechanisms of LUT development, but such studies are confounded by heterogeneous and ill-defined cell sub-populations contained within each tissue compartment. We used in situ hybridization to synthesize a high-resolution molecular atlas of 17-day post-coitus fetal mouse LUT. We identified mRNAs that mark selective cell populations of the seminal vesicle, ejaculatory duct, prostate, urethra, and vagina, subdividing these tissues into 16 stromal and 8 epithelial sub-compartments. These results provide a powerful tool for mapping LUT gene expression patterns and also reveal previously uncharacterized sub-compartments that may play mechanistic roles in LUT development of which we were previously unaware.


Urogenital schistosomiasis is associated with signatures of microbiome dysbiosis in Nigerian adolescents.

  • Olumide Ajibola‎ et al.
  • Scientific reports‎
  • 2019‎

Urogenital schistosomiasis is a neglected tropical disease caused by the parasite Schistosoma haematobium, which resides in the vasculature surrounding the urogenital system. Previous work has suggested that helminthic infections can affect the intestinal microbiome, and we hypothesized that S. haematobium infection could result in an alteration of immune system-microbiota homeostasis and impact the composition of the gut microbiota. To address this question, we compared the fecal microbiomes of infected and uninfected schoolchildren from the Argungu Local Government Area of Kebbi State, Nigeria, detecting significant differences in community composition between the two groups. Most remarkably, we observed a decreased abundance of Firmicutes and increased abundance of Proteobacteria - a shift in community structure which has been previously associated with dysbiosis. More specifically, we detected a number of changes in lower taxa reminiscent of inflammation-associated dysbiosis, including decreases in Clostridiales and increases in Moraxellaceae, Veillonellaceae, Pasteurellaceae, and Desulfovibrionaceae. Functional potential analysis also revealed an enrichment in orthologs of urease, which has been linked to dysbiosis and inflammation. Overall, our analysis indicates that S. haematobium infection is associated with perturbations in the gut microbiota and may point to microbiome disruption as an additional consequence of schistosome infection.


Molecular detection of urogenital mollicutes in patients with invasive malignant prostate tumor.

  • Osama Mohammed Saed Abdul-Wahab‎ et al.
  • Infectious agents and cancer‎
  • 2021‎

The etiology of prostate cancer (PCa) is multiple and complex. Among the causes recently cited are chronic infections engendered by microorganisms that often go unnoticed. A typical illustration of such a case is infection due to mollicutes bacteria. Generally known by their lurking nature, urogenital mollicutes are the most incriminated in PCa. This study was thus carried out in an attempt to establish the presence of these mollicutes by PCR in biopsies of confirmed PCa patients and to evaluate their prevalence.


Development of a Biosensor-Based Rapid Urine Test for Detection of Urogenital Schistosomiasis.

  • Kathleen E Mach‎ et al.
  • PLoS neglected tropical diseases‎
  • 2015‎

No abstract available


Migration pathways of sacral neural crest during development of lower urogenital tract innervation.

  • Carrie B Wiese‎ et al.
  • Developmental biology‎
  • 2017‎

The migration and fate of cranial and vagal neural crest-derived progenitor cells (NCPCs) have been extensively studied; however, much less is known about sacral NCPCs particularly in regard to their distribution in the urogenital system. To construct a spatiotemporal map of NCPC migration pathways into the developing lower urinary tract, we utilized the Sox10-H2BVenus transgene to visualize NCPCs expressing Sox10. Our aim was to define the relationship of Sox10-expressing NCPCs relative to bladder innervation, smooth muscle differentiation, and vascularization through fetal development into adulthood. Sacral NCPC migration is a highly regimented, specifically timed process, with several potential regulatory mileposts. Neuronal differentiation occurs concomitantly with sacral NCPC migration, and neuronal cell bodies are present even before the pelvic ganglia coalesce. Sacral NCPCs reside within the pelvic ganglia anlagen through 13.5 days post coitum (dpc), after which they begin streaming into the bladder body in progressive waves. Smooth muscle differentiation and vascularization of the bladder initiate prior to innervation and appear to be independent processes. In adult bladder, the majority of Sox10+ cells express the glial marker S100β, consistent with Sox10 being a glial marker in other tissues. However, rare Sox10+ NCPCs are seen in close proximity to blood vessels and not all are S100β+, suggesting either glial heterogeneity or a potential nonglial role for Sox10+ cells along vasculature. Taken together, the developmental atlas of Sox10+ NCPC migration and distribution profile of these cells in adult bladder provided here will serve as a roadmap for future investigation in mouse models of lower urinary tract dysfunction.


Atlas of Wnt and R-spondin gene expression in the developing male mouse lower urogenital tract.

  • Vatsal Mehta‎ et al.
  • Developmental dynamics : an official publication of the American Association of Anatomists‎
  • 2011‎

Prostate development is influenced by β-catenin signaling, but it is unclear which β-catenin activators are involved, where they are synthesized, and whether their mRNA abundance is influenced by androgens. We identified WNT/β-catenin-responsive β-galactosidase activity in the lower urogenital tract (LUT) of transgenic reporter mice, but β-galactosidase activity differed among the four mouse strains we examined. We used in situ hybridization to compare patterns of Wnts, r-spondins (Rspos, co-activators of β-catenin signaling), β-catenin-responsive mRNAs, and an androgen receptor-responsive mRNA in wild type fetal male, fetal female, and neonatal male LUT. Most Wnt and Rspo mRNAs were present in LUT during prostate development. Sexually dimorphic expression patterns were observed for WNT/β-catenin-responsive genes, and for Wnt2b, Wnt4, Wnt7a, Wnt9b, Wnt10b, Wnt11, Wnt16, and Rspo3 mRNAs. These results reveal sexual differences in WNT/β-catenin signaling in fetal LUT, supporting the idea that this pathway may be directly or indirectly responsive to androgens during prostate ductal development.


Chlamydia trachomatis serovars in urogenital and ocular samples collected 2014-2017 from Austrian patients.

  • Iwona Lesiak-Markowicz‎ et al.
  • Scientific reports‎
  • 2019‎

Infection of humans with Chlamydia trachomatis, a bacterial pathogen with a unique intracellular replication cycle, may cause a variety of clinical manifestations. These are linked to various serovars of the pathogen; trachoma to serovars A-C, oculogenital infections to serovars D-K, and lymphogranuloma venereum to serovars L1-L3. Nineteen serovars are known as human pathogens. The aim of the study was to determine the serovars of 401 C. trachomatis DNA positive extracts from original clinical specimens of patients in Austria including cervical and urethral swabs, urine, genital secretions and conjunctival swabs - collected from 2014 to 2017. Sequence analysis of the omp1 gene, encoding major outer-membrane protein was performed on each sample. In 50.1% of samples serovar E was identified and serovars F, D/Da and G/Ga were found in 16.2%, 9.7% and 9.0%, respectively. Remaining serovars were J (6.0%), K (4.7%), H (2.7%), B/Ba (1.0%), and I/Ia (0.5%). In 19 patients follow up samples could be tested. The majority of C. trachomatis serovars were associated with urogenital tract infections (D-K), however, one of them - serovar B/Ba - is linked to both, ocular and genital tract infection.


Primary cilia function regulates the length of the embryonic trunk axis and urogenital field in mice.

  • Elanor N Wainwright‎ et al.
  • Developmental biology‎
  • 2014‎

The issues of whether and how some organs coordinate their size and shape with the blueprint of the embryo axis, while others appear to regulate their morphogenesis autonomously, remain poorly understood. Mutations in Ift144, encoding a component of the trafficking machinery of primary cilia assembly, result in a range of embryo patterning defects, affecting the limbs, skeleton and neural system. Here, we show that embryos of the mouse mutant Ift144(twt) develop gonads that are larger than wild-type. Investigation of the early patterning of the urogenital ridge revealed that the anterior-posterior domain of the gonad/mesonephros was extended at 10.5 dpc, with no change in the length of the metanephros. In XY embryos, this extension resulted in an increase in testis cord number. Moreover, we observed a concomitant extension of the trunk axis in both sexes, with no change in the length of the tail domain or somite number. Our findings support a model in which: (1) primary cilia regulate embryonic trunk elongation; (2) the length of the trunk axis determines the size of the urogenital ridges; and (3) the gonad domain is partitioned into a number of testis cords that depends on the available space, rather than being divided a predetermined number of times to generate a specific number of cords.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: