Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 44 papers

Association of neural tube defects with congenital abnormalities of the urogenital system in a Chinese cohort.

  • Zhi-Hua Hong‎ et al.
  • BMC pediatrics‎
  • 2021‎

This study aimed to retrospectively analyze the correlation between congenital abnormality of the urogenital system and various factors in children with neural tube defects (NTDs).


The broader phenotypic spectrum of congenital caudal abnormalities associated with mutations in the caudal type homeobox 2 gene.

  • Servi J C Stevens‎ et al.
  • Clinical genetics‎
  • 2022‎

The caudal type homeobox 2 (CDX2) gene encodes a developmental regulator involved in caudal body patterning. Only three pathogenic variants in human CDX2 have been described, in patients with persistent cloaca, sirenomelia and/or renal and anogenital malformations. We identified five patients with de novo or inherited pathogenic variants in CDX2 with clinical phenotypes that partially overlap with previous cases, that is, imperforate anus and renal, urogenital and limb abnormalities. However, additional clinical features were seen including vertebral agenesis and we describe considerable phenotypic variability, even in unrelated patients with the same recurrent p.(Arg237His) variant. We propose CDX2 variants as rare genetic cause for a multiple congenital anomaly syndrome that can include features of caudal regression syndrome and VACTERL. A causative role is further substantiated by the relationship between CDX2 and other proteins encoded by genes that were previously linked to caudal abnormalities in humans, for example, TBXT (sacral agenesis and other vertebral segmentation defects) and CDX1 (anorectal malformations). Our findings confirm the essential role of CDX2 in caudal morphogenesis and formation of cloacal derivatives in humans, which to date has only been well characterized in animals.


A novel splice site mutation in the UBE2A gene leads to aberrant mRNA splicing in a Chinese patient with X-linked intellectual disability type Nascimento.

  • Dingyuan Ma‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2019‎

X-linked intellectual disability type Nascimento (XIDTN), caused by mutations in ubiquitin-conjugating enzyme E2A (UBE2A) gene, is characterized by moderate to severe intellectual disability, impaired speech, urogenital anomalies, skin abnormalities, and dysmorphic facial features.


ASPP2 deficiency causes features of 1q41q42 microdeletion syndrome.

  • J Zak‎ et al.
  • Cell death and differentiation‎
  • 2016‎

Chromosomal abnormalities are implicated in a substantial number of human developmental syndromes, but for many such disorders little is known about the causative genes. The recently described 1q41q42 microdeletion syndrome is characterized by characteristic dysmorphic features, intellectual disability and brain morphological abnormalities, but the precise genetic basis for these abnormalities remains unknown. Here, our detailed analysis of the genetic abnormalities of 1q41q42 microdeletion cases identified TP53BP2, which encodes apoptosis-stimulating protein of p53 2 (ASPP2), as a candidate gene for brain abnormalities. Consistent with this, Trp53bp2-deficient mice show dilation of lateral ventricles resembling the phenotype of 1q41q42 microdeletion patients. Trp53bp2 deficiency causes 100% neonatal lethality in the C57BL/6 background associated with a high incidence of neural tube defects and a range of developmental abnormalities such as congenital heart defects, coloboma, microphthalmia, urogenital and craniofacial abnormalities. Interestingly, abnormalities show a high degree of overlap with 1q41q42 microdeletion-associated abnormalities. These findings identify TP53BP2 as a strong candidate causative gene for central nervous system (CNS) defects in 1q41q42 microdeletion syndrome, and open new avenues for investigation of the mechanisms underlying CNS abnormalities.


GLI3 resides at the intersection of hedgehog and androgen action to promote male sex differentiation.

  • Anbarasi Kothandapani‎ et al.
  • PLoS genetics‎
  • 2020‎

Urogenital tract abnormalities are among the most common congenital defects in humans. Male urogenital development requires Hedgehog-GLI signaling and testicular hormones, but how these pathways interact is unclear. We found that Gli3XtJ mutant mice exhibit cryptorchidism and hypospadias due to local effects of GLI3 loss and systemic effects of testicular hormone deficiency. Fetal Leydig cells, the sole source of these hormones in developing testis, were reduced in numbers in Gli3XtJ testes, and their functional identity diminished over time. Androgen supplementation partially rescued testicular descent but not hypospadias in Gli3XtJ mutants, decoupling local effects of GLI3 loss from systemic effects of androgen insufficiency. Reintroduction of GLI3 activator (GLI3A) into Gli3XtJ testes restored expression of Hedgehog pathway and steroidogenic genes. Together, our results show a novel function for the activated form of GLI3 that translates Hedgehog signals to reinforce fetal Leydig cell identity and stimulate timely INSL3 and testosterone synthesis in the developing testis. In turn, exquisite timing and concentrations of testosterone are required to work alongside local GLI3 activity to control development of a functionally integrated male urogenital tract.


EVC gene polymorphisms and risks of isolated hypospadias - a preliminary study.

  • Andrzej Kowal‎ et al.
  • Central European journal of urology‎
  • 2015‎

Hypospadias has a complex etiology with both genetic and environmental factors contributing to the condition. Urogenital abnormalities including hypospadias, are found in 22% of cases with Ellis van Creveld syndrome (EvC). Mutations in the EVC gene can cause major and minor anomalies, which form phenotypes that partially overlap with those present in EvC. The aim of this study was to evaluate the association between nucleotide variants of the EVC gene and the risk of hypospadias.


Antimicrobial Activity of Gepotidacin Tested against Escherichia coli and Staphylococcus saprophyticus Isolates Causing Urinary Tract Infections in Medical Centers Worldwide (2019 to 2020).

  • S J Ryan Arends‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2023‎

The in vitro activities of gepotidacin and comparator agents against 3,560 Escherichia coli and 344 Staphylococcus saprophyticus collected from female (81.1%) and male (18.9%) patients with urinary tract infections (UTIs) in a global prospective surveillance program in 2019 to 2020 were determined. Isolates collected from 92 medical centers in 25 countries, including the United States, Europe, Latin America, and Japan, were tested for susceptibility by reference methods in a central monitoring laboratory. Gepotidacin inhibited 98.0% (3,488/3,560 isolates) of E. coli and 100% (344/344 isolates) of S. saprophyticus at gepotidacin concentrations of ≤4 μg/mL and ≤0.25 μg/mL, respectively. This activity was largely unaffected with isolates that demonstrated resistance phenotypes to other oral standard-of-care antibiotics, including amoxicillin-clavulanic acid, cephalosporins, fluoroquinolones, fosfomycin, nitrofurantoin, and trimethoprim-sulfamethoxazole. Gepotidacin also inhibited 94.3% (581/616 isolates) of E. coli isolates with an extended-spectrum β-lactamase-producing phenotype, 97.2% (1,085/1,129 isolates) of E. coli isolates resistant to ciprofloxacin, 96.1% (874/899) of E. coli isolates resistant to trimethoprim-sulfamethoxazole, and 96.3% (235/244 isolates) of multidrug-resistant E. coli isolates at gepotidacin concentrations of ≤4 μg/mL. In summary, gepotidacin demonstrated potent activity against a large collection of contemporary UTI E. coli and S. saprophyticus strains collected from patients worldwide. These data support the further clinical development of gepotidacin as a potential treatment option for patients with uncomplicated UTIs.


Clinical report and genetic analysis of a neonate with genitourinary and/or brain malformation syndrome caused by a non-coding sequence variant of PPP1R12A.

  • Yanxia Diao‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2023‎

Genitourinary and/or brain malformation syndrome (GUBS) is a recently discovered syndrome involving abnormalities of the neurological or urogenital system. PPP1R12A may be the pathological gene causing this syndrome. Currently, to our knowledge, there is only one study related to GUBS in the world. Here, we report a clinical case of a Chinese newborn with congenital micropenis caused by a non-coding sequence pathogenic variant of PPP1R12A, providing additional evidence on genetic causes of genital malformation.


Adult Gli2+/-;Gli3Δ699/+ Male and Female Mice Display a Spectrum of Genital Malformation.

  • Fei He‎ et al.
  • PloS one‎
  • 2016‎

Disorders of sexual development (DSD) encompass a broad spectrum of urogenital malformations and are amongst the most common congenital birth defects. Although key genetic factors such as the hedgehog (Hh) family have been identified, a unifying postnatally viable model displaying the spectrum of male and female urogenital malformations has not yet been reported. Since human cases are diagnosed and treated at various stages postnatally, equivalent mouse models enabling analysis at similar stages are of significant interest. Additionally, all non-Hh based genetic models investigating DSD display normal females, leaving female urogenital development largely unknown. Here, we generated compound mutant mice, Gli2+/-;Gli3Δ699/+, which exhibit a spectrum of urogenital malformations in both males and females upon birth, and also carried them well into adulthood. Analysis of embryonic day (E)18.5 and adult mice revealed shortened anogenital distance (AGD), open ventral urethral groove, incomplete fusion of scrotal sac, abnormal penile size and structure, and incomplete testicular descent with hypoplasia in male mice, whereas female mutant mice displayed reduced AGD, urinary incontinence, and a number of uterine anomalies such as vaginal duplication. Male and female fertility was also investigated via breeding cages, and it was identified that male mice were infertile while females were unable to deliver despite becoming impregnated. We propose that Gli2+/-;Gli3Δ699/+ mice can serve as a genetic mouse model for common DSD such as cryptorchidism, hypospadias, and incomplete fusion of the scrotal sac in males, and a spectrum of uterine and vaginal abnormalities along with urinary incontinence in females, which could prove essential in revealing new insights into their equivalent diseases in humans.


Genetic analysis of Hedgehog signaling in ventral body wall development and the onset of omphalocele formation.

  • Daisuke Matsumaru‎ et al.
  • PloS one‎
  • 2011‎

An omphalocele is one of the major ventral body wall malformations and is characterized by abnormally herniated viscera from the body trunk. It has been frequently found to be associated with other structural malformations, such as genitourinary malformations and digit abnormalities. In spite of its clinical importance, the etiology of omphalocele formation is still controversial. Hedgehog (Hh) signaling is one of the essential growth factor signaling pathways involved in the formation of the limbs and urogenital system. However, the relationship between Hh signaling and ventral body wall formation remains unclear.


Decreased expression of GRAF1/OPHN-1-L in the X-linked alpha thalassemia mental retardation syndrome.

  • Vincenza Barresi‎ et al.
  • BMC medical genomics‎
  • 2010‎

ATRX is a severe X-linked disorder characterized by mental retardation, facial dysmorphism, urogenital abnormalities and alpha-thalassemia. The disease is caused by mutations in ATRX gene, which encodes a protein belonging to the SWI/SNF DNA helicase family, a group of proteins involved in the regulation of gene transcription at the chromatin level. In order to identify specific genes involved in the pathogenesis of the disease, we compared, by cDNA microarray, the expression levels of approximately 8500 transcripts between ATRX and normal males of comparable age.


Cytological and Wet Mount Microscopic Observations Made in Urine of Schistosoma haematobium-Infected Children: Hint of the Implication in Bladder Cancer.

  • Patience B Tetteh-Quarcoo‎ et al.
  • The Canadian journal of infectious diseases & medical microbiology = Journal canadien des maladies infectieuses et de la microbiologie medicale‎
  • 2019‎

Schistosomiasis is the second major human parasitic disease next to malaria, in terms of socioeconomic and public health consequences, especially in sub-Saharan Africa. Schistosoma haematobium (S. haematobium) is a trematode and one of the species of Schistosoma that cause urogenital schistosomiasis (urinary schistosomiasis). Although the knowledge of this disease has improved over the years, there are still endemic areas, with most of the reported cases in Africa, including Ghana. Not much has been done in Ghana to investigate cytological abnormalities in individuals within endemic communities, although there are epidemiologic evidences linking S. haematobium infection with carcinoma of the bladder.


Pathogenesis of Anorectal Malformations in Retinoic Acid Receptor Knockout Mice Studied by HREM.

  • Manuel Mark‎ et al.
  • Biomedicines‎
  • 2021‎

Anorectal malformations (ARMs) are relatively common congenital abnormalities, but their pathogenesis is poorly understood. Previous gene knockout studies indicated that the signalling pathway mediated by the retinoic acid receptors (RAR) is instrumental to the formation of the anorectal canal and of various urogenital structures. Here, we show that simultaneous ablation of the three RARs in the mouse embryo results in a spectrum of malformations of the pelvic organs in which anorectal and urinary bladder ageneses are consistently associated. We found that these ageneses could be accounted for by defects in the processes of growth and migration of the cloaca, the embryonic structure from which the anorectal canal and urinary bladder originate. We further show that these defects are preceded by a failure of the lateral shift of the umbilical arteries and propose vascular abnormalities as a possible cause of ARM. Through the comparisons of these phenotypes with those of other mutant mice and of human patients, we would like to suggest that morphological data may provide a solid base to test molecular as well as clinical hypotheses.


Mycoplasma DnaK increases DNA copy number variants in vivo.

  • Francesca Benedetti‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

The human microbiota affects critical cellular functions, although the responsible mechanism(s) is still poorly understood. In this regard, we previously showed that Mycoplasma fermentans DnaK, an HSP70 chaperone protein, hampers the activity of important cellular proteins responsible for DNA integrity. Here, we describe a novel DnaK knock-in mouse model generated in our laboratory to study the effect of M. fermentans DnaK expression in vivo. By using an array-based comparative genomic hybridization assay, we demonstrate that exposure to DnaK was associated with a higher number of DNA copy number variants (CNVs) indicative of unbalanced chromosomal alterations, together with reduced fertility and a high rate of fetal abnormalities. Consistent with their implication in genetic disorders, one of these CNVs caused a homozygous Grid2 deletion, resulting in an aberrant ataxic phenotype that recapitulates the extensive biallelic deletion in the Grid2 gene classified in humans as autosomal recessive spinocerebellar ataxia 18. Our data highlight a connection between components of the human urogenital tract microbiota, namely Mycoplasmas, and genetic abnormalities in the form of DNA CNVs, with obvious relevant medical, diagnostic, and therapeutic implications.


FOXP1 syndrome: a review of the literature and practice parameters for medical assessment and monitoring.

  • Reymundo Lozano‎ et al.
  • Journal of neurodevelopmental disorders‎
  • 2021‎

FOXP1 syndrome is a neurodevelopmental disorder caused by mutations or deletions that disrupt the forkhead box protein 1 (FOXP1) gene, which encodes a transcription factor important for the early development of many organ systems, including the brain. Numerous clinical studies have elucidated the role of FOXP1 in neurodevelopment and have characterized a phenotype. FOXP1 syndrome is associated with intellectual disability, language deficits, autism spectrum disorder, hypotonia, and congenital anomalies, including mild dysmorphic features, and brain, cardiac, and urogenital abnormalities. Here, we present a review of human studies summarizing the clinical features of individuals with FOXP1 syndrome and enlist a multidisciplinary group of clinicians (pediatrics, genetics, psychiatry, neurology, cardiology, endocrinology, nephrology, and psychology) to provide recommendations for the assessment of FOXP1 syndrome.


Identification of de novo copy number variants associated with human disorders of sexual development.

  • Mounia Tannour-Louet‎ et al.
  • PloS one‎
  • 2010‎

Disorders of sexual development (DSD), ranging in severity from genital abnormalities to complete sex reversal, are among the most common human birth defects with incidence rates reaching almost 3%. Although causative alterations in key genes controlling gonad development have been identified, the majority of DSD cases remain unexplained. To improve the diagnosis, we screened 116 children born with idiopathic DSD using a clinically validated array-based comparative genomic hybridization platform. 8951 controls without urogenital defects were used to compare with our cohort of affected patients. Clinically relevant imbalances were found in 21.5% of the analyzed patients. Most anomalies (74.2%) evaded detection by the routinely ordered karyotype and were scattered across the genome in gene-enriched subtelomeric loci. Among these defects, confirmed de novo duplication and deletion events were noted on 1p36.33, 9p24.3 and 19q12-q13.11 for ambiguous genitalia, 10p14 and Xq28 for cryptorchidism and 12p13 and 16p11.2 for hypospadias. These variants were significantly associated with genitourinary defects (P = 6.08×10(-12)). The causality of defects observed in 5p15.3, 9p24.3, 22q12.1 and Xq28 was supported by the presence of overlapping chromosomal rearrangements in several unrelated patients. In addition to known gonad determining genes including SRY and DMRT1, novel candidate genes such as FGFR2, KANK1, ADCY2 and ZEB2 were encompassed. The identification of risk germline rearrangements for urogenital birth defects may impact diagnosis and genetic counseling and contribute to the elucidation of the molecular mechanisms underlying the pathogenesis of human sexual development.


Identification of novel mutations in Mexican patients with Aarskog-Scott syndrome.

  • Mariana Pérez-Coria‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2015‎

Aarskog-Scott syndrome (AAS), also known as faciogenital dysplasia (FGD, OMIM # 305400), is an X-linked disorder of recessive inheritance, characterized by short stature and facial, skeletal, and urogenital abnormalities. AAS is caused by mutations in the FGD1 gene (Xp11.22), with over 56 different mutations identified to date. We present the clinical and molecular analysis of four unrelated families of Mexican origin with an AAS phenotype, in whom FGD1 sequencing was performed. This analysis identified two stop mutations not previously reported in the literature: p.Gln664* and p.Glu380*. Phenotypically, every male patient met the clinical criteria of the syndrome, whereas discrepancies were found between phenotypes in female patients. Our results identify two novel mutations in FGD1, broadening the spectrum of reported mutations; and provide further delineation of the phenotypic variability previously described in AAS.


Clinical Peculiarities in a Cohort of Patients with Wolfram Syndrome 1.

  • Giuseppina Salzano‎ et al.
  • International journal of environmental research and public health‎
  • 2022‎

Wolfram syndrome 1 is a rare, autosomal recessive, neurodegenerative, progressive disorder. Insulin-dependent, non-autoimmune diabetes mellitus and bilateral progressive optic atrophy are both sensitive and specific criteria for clinical diagnosis. The leading cause of death is central respiratory failure resulting from brainstem atrophy. We describe the clinical features of fourteen patients from seven different families followed in our Diabetes Center. The mean age at Wolfram syndrome 1 diagnosis was 12.4 years. Diabetes mellitus was the first clinical manifestation, in all patients. Sensorineural hearing impairment and central diabetes insipidus were present in 85.7% of patients. Other endocrine findings included hypogonadotropic hypogonadism (7.1%), hypergonadotropic hypogonadism (7.1%), and Hashimoto's thyroiditis (21.4%). Neuropsychiatric disorders were detected in 35.7% of patients, and urogenital tract abnormalities were present in 21.4%. Finally, heart diseases were found in 14.2% of patients. Eight patients (57.1%) died at the mean age of 27.3 years. The most common cause of death was respiratory failure which occurred in six patients. The remaining two died due to end-stage renal failure and myocardial infarction. Our data are superimposable with those reported in the literature in terms of mean age of onset, the clinical course of the disease, and causes of death. The frequency of deafness and diabetes insipidus was higher in our patients. The incidence of urogenital diseases was lower although it led to the death of one patient. Long-term follow-up studies including large patient cohorts are necessary to establish potential genotype-phenotype correlation in order to personalize the most suitable clinical approach for each patient.


Mutations in NCAPG2 Cause a Severe Neurodevelopmental Syndrome that Expands the Phenotypic Spectrum of Condensinopathies.

  • Tahir N Khan‎ et al.
  • American journal of human genetics‎
  • 2019‎

The use of whole-exome and whole-genome sequencing has been a catalyst for a genotype-first approach to diagnostics. Under this paradigm, we have implemented systematic sequencing of neonates and young children with a suspected genetic disorder. Here, we report on two families with recessive mutations in NCAPG2 and overlapping clinical phenotypes that include severe neurodevelopmental defects, failure to thrive, ocular abnormalities, and defects in urogenital and limb morphogenesis. NCAPG2 encodes a member of the condensin II complex, necessary for the condensation of chromosomes prior to cell division. Consistent with a causal role for NCAPG2, we found abnormal chromosome condensation, augmented anaphase chromatin-bridge formation, and micronuclei in daughter cells of proband skin fibroblasts. To test the functional relevance of the discovered variants, we generated an ncapg2 zebrafish model. Morphants displayed clinically relevant phenotypes, such as renal anomalies, microcephaly, and concomitant increases in apoptosis and altered mitotic progression. These could be rescued by wild-type but not mutant human NCAPG2 mRNA and were recapitulated in CRISPR-Cas9 F0 mutants. Finally, we noted that the individual with a complex urogenital defect also harbored a heterozygous NPHP1 deletion, a common contributor to nephronophthisis. To test whether sensitization at the NPHP1 locus might contribute to a more severe renal phenotype, we co-suppressed nphp1 and ncapg2, which resulted in significantly more dysplastic renal tubules in zebrafish larvae. Together, our data suggest that impaired function of NCAPG2 results in a severe condensinopathy, and they highlight the potential utility of examining candidate pathogenic lesions beyond the primary disease locus.


Tbx18 Regulates the Differentiation of Periductal Smooth Muscle Stroma and the Maintenance of Epithelial Integrity in the Prostate.

  • C Chase Bolt‎ et al.
  • PloS one‎
  • 2016‎

The T-box transcription factor TBX18 is essential to mesenchymal cell differentiation in several tissues and Tbx18 loss-of-function results in dramatic organ malformations and perinatal lethality. Here we demonstrate for the first time that Tbx18 is required for the normal development of periductal smooth muscle stromal cells in prostate, particularly in the anterior lobe, with a clear impact on prostate health in adult mice. Prostate abnormalities are only subtly apparent in Tbx18 mutants at birth; to examine postnatal prostate development we utilized a relatively long-lived hypomorphic mutant and a novel conditional Tbx18 allele. Similar to the ureter, cells that fail to express Tbx18 do not condense normally into smooth muscle cells of the periductal prostatic stroma. However, in contrast to ureter, the periductal stromal cells in mutant prostate assume a hypertrophic, myofibroblastic state and the adjacent epithelium becomes grossly disorganized. To identify molecular events preceding the onset of this pathology, we compared gene expression in the urogenital sinus (UGS), from which the prostate develops, in Tbx18-null and wild type littermates at two embryonic stages. Genes that regulate cell proliferation, smooth muscle differentiation, prostate epithelium development, and inflammatory response were significantly dysregulated in the mutant urogenital sinus around the time that Tbx18 is first expressed in the wild type UGS, suggesting a direct role in regulating those genes. Together, these results argue that Tbx18 is essential to the differentiation and maintenance of the prostate periurethral mesenchyme and that it indirectly regulates epithelial differentiation through control of stromal-epithelial signaling.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: