Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 737 papers

Tuberous sclerosis complex surveillance and management: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference.

  • Darcy A Krueger‎ et al.
  • Pediatric neurology‎
  • 2013‎

Tuberous sclerosis complex is a genetic disorder affecting every organ system, but disease manifestations vary significantly among affected individuals. The diverse and varied presentations and progression can be life-threatening with significant impact on cost and quality of life. Current surveillance and management practices are highly variable among region and country, reflective of the fact that last consensus recommendations occurred in 1998 and an updated, comprehensive standard is lacking that incorporates the latest scientific evidence and current best clinical practices.


Tuberous sclerosis complex: a complex case.

  • Ryan M Powell‎ et al.
  • Cold Spring Harbor molecular case studies‎
  • 2022‎

Tuberous sclerosis complex (TSC) is an inheritable disorder characterized by the formation of benign yet disorganized tumors in multiple organ systems. Germline mutations in the TSC1 (hamartin) or more frequently TSC2 (tuberin) genes are causative for TSC. The malignant manifestations of TSC, pulmonary lymphangioleiomyomatosis (LAM) and renal angiomyolipoma (AML), may also occur as independent sporadic perivascular epithelial cell tumor (PEComa) characterized by somatic TSC2 mutations. Thus, discerning TSC from the copresentation of sporadic LAM and sporadic AML may be obscured in TSC patients lacking additional features. In this report, we present a case study on a single patient initially reported to have sporadic LAM and a mucinous duodenal adenocarcinoma deficient in DNA mismatch repair proteins. Moreover, the patient had a history of Wilms' tumor, which was reclassified as AML following the LAM diagnosis. Therefore, we investigated the origins and relatedness of these tumors. Using germline whole-genome sequencing, we identified a premature truncation in one of the patient's TSC2 alleles. Using immunohistochemistry, loss of tuberin expression was observed in AML and LAM tissue. However, no evidence of a somatic loss of heterozygosity or DNA methylation epimutations was observed at the TSC2 locus, suggesting alternate mechanisms may contribute to loss of the tumor suppressor protein. In the mucinous duodenal adenocarcinoma, no causative mutations were found in the DNA mismatch repair genes MLH1, MSH2, MSH6, or PMS2 Rather, clonal deconvolution analyses were used to identify mutations contributing to pathogenesis. This report highlights both the utility of using multiple sequencing techniques and the complexity of interpreting the data in a clinical context.


[Tuberous sclerosis complex and cardiac rhabdomyoma].

  • Xueqin Liu‎
  • Zhonghua er ke za zhi = Chinese journal of pediatrics‎
  • 2014‎

No abstract available


The genomic landscape of tuberous sclerosis complex.

  • Katie R Martin‎ et al.
  • Nature communications‎
  • 2017‎

Tuberous sclerosis complex (TSC) is a rare genetic disease causing multisystem growth of benign tumours and other hamartomatous lesions, which leads to diverse and debilitating clinical symptoms. Patients are born with TSC1 or TSC2 mutations, and somatic inactivation of wild-type alleles drives MTOR activation; however, second hits to TSC1/TSC2 are not always observed. Here, we present the genomic landscape of TSC hamartomas. We determine that TSC lesions contain a low somatic mutational burden relative to carcinomas, a subset feature large-scale chromosomal aberrations, and highly conserved molecular signatures for each type exist. Analysis of the molecular signatures coupled with computational approaches reveals unique aspects of cellular heterogeneity and cell origin. Using immune data sets, we identify significant neuroinflammation in TSC-associated brain tumours. Taken together, this molecular catalogue of TSC serves as a resource into the origin of these hamartomas and provides a framework that unifies genomic and transcriptomic dimensions for complex tumours.


Cerebral diffusion tensor imaging in tuberous sclerosis.

  • Changfu Piao‎ et al.
  • European journal of radiology‎
  • 2009‎

The purpose of this study was to investigate the features of the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) in cortical tubers and white-matter lesions in patients with tuberous sclerosis (TS) using diffusion tensor imaging (DTI).


Architecture of the Tuberous Sclerosis Protein Complex.

  • Kailash Ramlaul‎ et al.
  • Journal of molecular biology‎
  • 2021‎

The Tuberous Sclerosis Complex (TSC) protein complex (TSCC), comprising TSC1, TSC2, and TBC1D7, is widely recognised as a key integration hub for cell growth and intracellular stress signals upstream of the mammalian target of rapamycin complex 1 (mTORC1). The TSCC negatively regulates mTORC1 by acting as a GTPase-activating protein (GAP) towards the small GTPase Rheb. Both human TSC1 and TSC2 are important tumour suppressors, and mutations in them underlie the disease tuberous sclerosis. We used single-particle cryo-EM to reveal the organisation and architecture of the complete human TSCC. We show that TSCC forms an elongated scorpion-like structure, consisting of a central "body", with a "pincer" and a "tail" at the respective ends. The "body" is composed of a flexible TSC2 HEAT repeat dimer, along the surface of which runs the TSC1 coiled-coil backbone, breaking the symmetry of the dimer. Each end of the body is structurally distinct, representing the N- and C-termini of TSC1; a "pincer" is formed by the highly flexible N-terminal TSC1 core domains and a barbed "tail" makes up the TSC1 coiled-coil-TBC1D7 junction. The TSC2 GAP domain is found abutting the centre of the body on each side of the dimerisation interface, poised to bind a pair of Rheb molecules at a similar separation to the pair in activated mTORC1. Our architectural dissection reveals the mode of association and topology of the complex, casts light on the recruitment of Rheb to the TSCC, and also hints at functional higher order oligomerisation, which has previously been predicted to be important for Rheb-signalling suppression.


TuberOus SClerosis registry to increAse disease awareness (TOSCA) Post-Authorisation Safety Study of Everolimus in Patients With Tuberous Sclerosis Complex.

  • J Chris Kingswood‎ et al.
  • Frontiers in neurology‎
  • 2021‎

This non-interventional post-authorisation safety study (PASS) assessed the long-term safety of everolimus in patients with tuberous sclerosis complex (TSC) who participated in the TuberOus SClerosis registry to increase disease Awareness (TOSCA) clinical study and received everolimus for the licensed indications in the European Union. The rate of adverse events (AEs), AEs that led to dose adjustments or treatment discontinuation, AEs of potential clinical interest, treatment-related AEs (TRAEs), serious AEs (SAEs), and deaths were documented. One hundred seventy-nine patients were included in the first 5 years of observation; 118 of 179 patients had an AE of any grade, with the most common AEs being stomatitis (7.8%) and headache (7.3%). AEs caused dose adjustments in 56 patients (31.3%) and treatment discontinuation in nine patients (5%). AEs appeared to be more frequent and severe in children. On Tanner staging, all patients displayed signs of age-appropriate sexual maturation. Twenty-two of 106 female (20.8%) patients had menstrual cycle disorders. The most frequent TRAEs were stomatitis (6.7%) and aphthous mouth ulcer (5.6%). SAEs were reported in 54 patients (30.2%); the most frequent SAE was pneumonia (>3% patients; grade 2, 1.1%, and grade 3, 2.8%). Three deaths were reported, all in patients who had discontinued everolimus for more than 28 days, and none were thought to be related to everolimus according to the treating physicians. The PASS sub-study reflects the safety and tolerability of everolimus in the management of TSC in real-world routine clinical practice.


Long-term cognitive outcomes in tuberous sclerosis complex.

  • Charlotte Tye‎ et al.
  • Developmental medicine and child neurology‎
  • 2020‎

To investigate the interdependence between risk factors associated with long-term intellectual development in individuals with tuberous sclerosis complex (TSC).


Glucose deprivation in tuberous sclerosis complex-related tumors.

  • Xiuyun Jiang‎ et al.
  • Cell & bioscience‎
  • 2011‎

Cancer cells possess unique metabolic phenotypes that are determined by their underlying oncogenic pathways. Activation of the PI3K/Akt/mTOR signaling cascade promotes glycolysis and leads to glucose-dependence in tumors. In particular, cells with constitutive mTORC1 activity secondary to the loss of TSC1/TSC2 function are prone to undergo apoptosis upon glucose withdrawal in vitro, but this concept has not been tested in vivo. This study examines the effects of restricting glucose metabolism by pharmacologic and dietary means in a tuberous sclerosis complex (TSC) tumor xenograft model.


Autism and Epilepsy in Patients With Tuberous Sclerosis Complex.

  • Nicola Specchio‎ et al.
  • Frontiers in neurology‎
  • 2020‎

Introduction: Individuals with Tuberous Sclerosis Complex (TSC) are at increased risk of developing both epilepsy and autism spectrum disorder (ASD), but the relationship between these conditions is little understood. We reviewed published reports to elucidate the relationship between ASD, epilepsy, and TSC, and to define the genetic and neurological risk factors. Methods: Articles (January 2004-May 2019) were identified via PubMed, EMBASE, and CENTRAL databases. Article inclusion required report on individuals with TSC-associated ASD and epilepsy with prevalence, odds ratio, or rate report on the comorbidity of ASD in epileptic patients due to TSC. Results: A total of 841 abstracts were identified in the original search. Thirty-six articles were included, which identified study populations, ASD measures used, and study confounders as bias factors. This review included 2,666 TSC patients, with a mean age of 15.9 years (range 1.94-30.3 years). The percentage of TSC patients with epilepsy and autism was 33.7%. Patients with TSC and autism showed more frequent seizures and earlier epilepsy onset than TSC patients without autism. ASD and intractable epilepsy were both predicted by a higher number of areas with dysplastic features revealed in brain MR scans. ASD, the onset of seizures in children <2 years of age, and >3 tubers have all been associated with an increased risk of refractory epilepsy in TSC patients. However, the direction of the relationship is not clear because a history of epilepsy, or infantile spasms in patients with TSC is also associated with an increased likelihood of ASD. Overall, 73.2% of patients carried TSC2 genetic variant and, among patients with TSC and autism, the percentage of TSC2 individuals was 85.6%. Conclusions: The complex interrelationship between TSC, autism, and epilepsy, coupled with limited knowledge on the neurobiological basis for the interrelationship, limits overall understanding and opportunities for management. The results of this review highlight the need for early identification and management to optimize favorable outcomes in the most vulnerable individuals with TSC. Regardless of whether studies are considered individually or collectively, interpretation is made difficult due to the differences between the studies, most notably between methods and diagnostic criteria used to assess intellectual ability.


Tuberous sclerosis complex neuropathology requires glutamate-cysteine ligase.

  • Anna R Malik‎ et al.
  • Acta neuropathologica communications‎
  • 2015‎

Tuberous sclerosis complex (TSC) is a genetic disease resulting from mutation in TSC1 or TSC2 and subsequent hyperactivation of mammalian Target of Rapamycin (mTOR). Common TSC features include brain lesions, such as cortical tubers and subependymal giant cell astrocytomas (SEGAs). However, the current treatment with mTOR inhibitors has critical limitations. We aimed to identify new targets for TSC pharmacotherapy.


TLR7 activation in epilepsy of tuberous sclerosis complex.

  • Alan A Dombkowski‎ et al.
  • Inflammation research : official journal of the European Histamine Research Society ... [et al.]‎
  • 2019‎

Neuroinflammation and toll-like receptors (TLR) of the innate immune system have been implicated in epilepsy. We previously reported high levels of microRNAs miR-142-3p and miR-223-3p in epileptogenic brain tissue resected for the treatment of intractable epilepsy in children with tuberous sclerosis complex (TSC). As miR-142-3p has recently been reported to be a ligand and activator of TLR7, a detector of exogenous and endogenous single-stranded RNA, we evaluated TLR7 expression and downstream IL23A activation in surgically resected TSC brain tissue.


Abnormal parieto-motor connectivity in Tuberous Sclerosis Complex.

  • Luigi D'Argenzio‎ et al.
  • Epilepsy research‎
  • 2009‎

Abnormal connectivity might be involved in the pathophysiology of Tuberous Sclerosis Complex (TSC). We used twin-coil Transcranial Magnetic Stimulation protocol to investigate connectivity between posterior parietal cortex (PPC) and motor cortex (M1) in TSC patients. In comparison with healthy subjects and TSC patients treated with antiepileptic drugs, non-medicated TSC patients exhibited abnormal excitability of PPC-M1 connection. Such altered connectivity might play a role in TSC epileptic phenotype.


Renal neoplasms in tuberous sclerosis mice are neurocristopathies.

  • Uchenna Unachukwu‎ et al.
  • iScience‎
  • 2021‎

Tuberous sclerosis (TS) is a rare disorder exhibiting multi-systemic benign neoplasms. We hypothesized the origin of TS neoplastic cells derived from the neural crest given the heterogeneous ecto-mesenchymal phenotype of the most common TS neoplasms. To test this hypothesis, we employed Cre-loxP lineage tracing of myelin protein zero (Mpz)-expressing neural crest cells (NCCs) in spontaneously developing renal tumors of Tsc2 +/- /Mpz(Cre)/TdT fl/fl reporter mice. In these mice, ectopic renal tumor onset was detected at 4 months of age increasing in volume by 16 months of age with concomitant increase in the subpopulation of tdTomato+ NCCs from 0% to 6.45% of the total number of renal tumor cells. Our results suggest that Tsc2 +/- mouse renal tumors arise from domiciled proliferative progenitor cell populations of neural crest origin that co-opt tumorigenesis due to mutations in Tsc2 loci. Targeting neural crest antigenic determinants will provide a potential alternative therapeutic approach for TS pathogenesis.


Tuberous sclerosis complex exhibits a new renal cystogenic mechanism.

  • John J Bissler‎ et al.
  • Physiological reports‎
  • 2019‎

Tuberous sclerosis complex (TSC) is a tumor predisposition syndrome with significant renal cystic and solid tumor disease. While the most common renal tumor in TSC, the angiomyolipoma, exhibits a loss of heterozygosity associated with disease, we have discovered that the renal cystic epithelium is composed of type A intercalated cells that have an intact Tsc gene that have been induced to exhibit Tsc-mutant disease phenotype. This mechanism appears to be different than that for ADPKD. The murine models described here closely resemble the human disease and both appear to be mTORC1 inhibitor responsive. The induction signaling driving cystogenesis may be mediated by extracellular vesicle trafficking.


Genetically engineered human cortical spheroid models of tuberous sclerosis.

  • John D Blair‎ et al.
  • Nature medicine‎
  • 2018‎

Tuberous sclerosis complex (TSC) is a multisystem developmental disorder caused by mutations in the TSC1 or TSC2 genes, whose protein products are negative regulators of mechanistic target of rapamycin complex 1 signaling. Hallmark pathologies of TSC are cortical tubers-regions of dysmorphic, disorganized neurons and glia in the cortex that are linked to epileptogenesis. To determine the developmental origin of tuber cells, we established human cellular models of TSC by CRISPR-Cas9-mediated gene editing of TSC1 or TSC2 in human pluripotent stem cells (hPSCs). Using heterozygous TSC2 hPSCs with a conditional mutation in the functional allele, we show that mosaic biallelic inactivation during neural progenitor expansion is necessary for the formation of dysplastic cells and increased glia production in three-dimensional cortical spheroids. Our findings provide support for the second-hit model of cortical tuber formation and suggest that variable developmental timing of somatic mutations could contribute to the heterogeneity in the neurological presentation of TSC.


Astroglial calcium signaling and homeostasis in tuberous sclerosis complex.

  • Alessia Romagnolo‎ et al.
  • Acta neuropathologica‎
  • 2024‎

Tuberous Sclerosis Complex (TSC) is a multisystem genetic disorder characterized by the development of benign tumors in various organs, including the brain, and is often accompanied by epilepsy, neurodevelopmental comorbidities including intellectual disability and autism. A key hallmark of TSC is the hyperactivation of the mechanistic target of rapamycin (mTOR) signaling pathway, which induces alterations in cortical development and metabolic processes in astrocytes, among other cellular functions. These changes could modulate seizure susceptibility, contributing to the progression of epilepsy and its associated comorbidities. Epilepsy is characterized by dysregulation of calcium (Ca2+) channels and intracellular Ca2+ dynamics. These factors contribute to hyperexcitability, disrupted synaptogenesis, and altered synchronization of neuronal networks, all of which contribute to seizure activity. This study investigates the intricate interplay between altered Ca2+ dynamics, mTOR pathway dysregulation, and cellular metabolism in astrocytes. The transcriptional profile of TSC patients revealed significant alterations in pathways associated with cellular respiration, ER and mitochondria, and Ca2+ regulation. TSC astrocytes exhibited lack of responsiveness to various stimuli, compromised oxygen consumption rate and reserve respiratory capacity underscoring their reduced capacity to react to environmental changes or cellular stress. Furthermore, our study revealed significant reduction of store operated calcium entry (SOCE) along with strong decrease of basal mitochondrial Ca2+ concentration and Ca2+ influx in TSC astrocytes. In addition, we observed alteration in mitochondrial membrane potential, characterized by increased depolarization in TSC astrocytes. Lastly, we provide initial evidence of structural abnormalities in mitochondria within TSC patient-derived astrocytes, suggesting a potential link between disrupted Ca2+ signaling and mitochondrial dysfunction. Our findings underscore the complexity of the relationship between Ca2+ signaling, mitochondria dynamics, apoptosis, and mTOR hyperactivation. Further exploration is required to shed light on the pathophysiology of TSC and on TSC associated neuropsychiatric disorders offering further potential avenues for therapeutic development.


Phenotypic distinctions between mosaic forms of tuberous sclerosis complex.

  • Alison M Treichel‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2019‎

To determine if mosaic tuberous sclerosis complex (TSC) can be stratified into subtypes that correspond with prognosis and extent of disease.


Arginine depletion attenuates renal cystogenesis in tuberous sclerosis complex model.

  • Athar Amleh‎ et al.
  • Cell reports. Medicine‎
  • 2023‎

Cystic kidney disease is a leading cause of morbidity in patients with tuberous sclerosis complex (TSC). We characterize the misregulated metabolic pathways using cell lines, a TSC mouse model, and human kidney sections. Our study reveals a substantial perturbation in the arginine biosynthesis pathway in TSC models with overexpression of argininosuccinate synthetase 1 (ASS1). The rise in ASS1 expression is dependent on the mechanistic target of rapamycin complex 1 (mTORC1) activity. Arginine depletion prevents mTORC1 hyperactivation and cell cycle progression and averts cystogenic signaling overexpression of c-Myc and P65. Accordingly, an arginine-depleted diet substantially reduces the TSC cystic load in mice, indicating the potential therapeutic effects of arginine deprivation for the treatment of TSC-associated kidney disease.


Progression of Fetal Brain Lesions in Tuberous Sclerosis Complex.

  • Antoinette Bernabe Gelot‎ et al.
  • Frontiers in neuroscience‎
  • 2020‎

Tuberous sclerosis (TSC) is a multisystem autosomal dominant genetic disorder due to loss of function of TSC1/TSC2 resulting in increased mTOR (mammalian target of rapamycin) signaling. In the brain, TSC is characterized by the formation of specific lesions that include subependymal and white matter nodules and cortical tubers. Cells that constitute TSC lesions are mainly Giant cells and dysmorphic neurons and astrocytes, but normal cells also populate the tubers. Although considered as a developmental disorder, the histopathological features of brain lesions have been described in only a limited number of fetal cases, providing little information on how these lesions develop. In this report we characterized the development of TSC lesions in 14 fetal brains ranging from 19 gestational weeks (GW) to term and 2 postnatal cases. The study focused on the telencephalon at the level of the caudothalamic notch. Our data indicate that subcortical lesions, forming within and at the vicinity of germinative zones, are the first alterations (already detected in 19GW brains), characterized by the presence of numerous dysmorphic astrocytes and Giant, balloon-like, cells. Our data show that cortical tuber formation is a long process that initiates with the presence of dysmorphic astrocytes (by 19-21GW), progress with the apparition of Giant cells (by 24GW) and mature with the appearance of dysmorphic neurons by the end of gestation (by 36GW). Furthermore, the typical tuberal aspect of cortical lesions is only reached when bundles of neurofilament positive extensions delineate the bottom of the cortical lesion (by 36GW). In addition, our study reveals the presence of Giant cells and dysmorphic neurons immunopositive for interneuron markers such as calbindin and parvalbumin, suggesting that TSC lesions would be mosaic lesions generated from different classes of progenitors.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: