Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 832 papers

Diagnostic Values of Free Triiodothyronine and Free Thyroxine and the Ratio of Free Triiodothyronine to Free Thyroxine in Thyrotoxicosis.

  • Xinxin Chen‎ et al.
  • International journal of endocrinology‎
  • 2018‎

The results of previous studies on the usefulness of free triiodothyronine (FT3) to free thyroxine (FT4) are controversial. We investigated the usefulness of FT3, FT4, and FT3/FT4 ratio in differentiating Graves' disease (GD) from destructive thyroiditis.


Triiodothyronine stimulates cystatin C production in bone cells.

  • Christoph Schmid‎ et al.
  • Biochemical and biophysical research communications‎
  • 2012‎

Thyroid hormones increase cystatin C levels in vivo. To study whether 3,3',5-triiodo-l-thyronine (T(3)) stimulates the production of cystatin C in vitro, we used a T(3)-responsive osteoblastic cell line (PyMS) which can be kept in serum-free culture. We compared the effects of T(3) on cystatin C mRNA expression (by Northern) and on protein release (by Western and ELISA) with those of dexamethasone (dex). Triiodothyronine increased cystatin C mRNA expression and cystatin C accumulation in culture media in a dose- and time-dependent manner, 1.5-fold at 1 nmol/l after 4d; dex (100 nmol/l) was more potent and increased cystatin C accumulation 3-fold after 4d. Triiodothyronine but not dex stimulated glucose uptake. Our in vitro findings explain in vivo observations. Triiodothyronine-induced increase in the production of cystatin C may be related to an increased cell metabolism and proteolysis control demand.


Triiodothyronine maintains cardiac transverse-tubule structure and function.

  • Nimra Gilani‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2021‎

Subclinical hypothyroidism and low T3 syndrome are commonly associated with an increased risk of cardiovascular disease (CVD) and mortality. We examined effects of T3 on T-tubule (TT) structures, Ca2+ mobilization and contractility, and clustering of dyadic proteins. Thyroid hormone (TH) deficiency was induced in adult female rats by propyl-thiouracil (PTU; 0.025%) treatment for 8 weeks. Rats were then randomized to continued PTU or triiodo-L-thyronine (T3; 10 μg/kg/d) treatment for 2 weeks (PTU + T3). After in vivo echocardiographic and hemodynamic recordings, cardiomyocytes (CM) were isolated to record Ca2+ transients and contractility. TT organization was assessed by confocal microscopy, and STORM images were captured to measure ryanodine receptor (RyR2) cluster number and size, and L-type Ca2+ channel (LTCC, Cav1.2) co-localization. Expressed genes including two integral TT proteins, junctophilin-2 (Jph-2) and bridging integrator-1 (BIN1), were analyzed in left ventricular (LV) tissues and cultured CM using qPCR and RNA sequencing. The T3 dosage used normalized serum T3, and reversed adverse effects of TH deficiency on in vivo measures of cardiac function. Recordings of isolated CM indicated that T3 increased rates of Ca2+ release and re-uptake, resulting in increased velocities of sarcomere shortening and re-lengthening. TT periodicity was significantly decreased, with reduced transverse tubules but increased longitudinal tubules in TH-deficient CMs and LV tissue, and these structures were normalized by T3 treatment. Analysis of STORM data of PTU myocytes showed decreased RyR2 cluster numbers and RyR localizations within each cluster without significant changes in Cav1.2 localizations within RyR clusters. T3 treatment normalized RyR2 cluster size and number. qPCR and RNAseq analyses of LV and cultured CM showed that Jph2 expression was T3-responsive, and its increase with treatment may explain improved TT organization and RyR-LTCC coupling.


High triiodothyronine levels induce myocardial hypertrophy via BAFF overexpression.

  • Guo-Qing Li‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2022‎

Activated B cells contribute to heart diseases, and inhibition of B-cell activating factor (BAFF) expression is an effective therapeutic target for heart diseases. Whether activated B cells participate in the development and progression of hyperthyroid heart disease, and what induces B cells activation in hyperthyroidism are unknown. The present study aimed to determine the roles of BAFF overexpression induced by high concentrations of triiodothyronine (T3) in the pathogenesis of hyperthyroid heart disease. Female C57BL/6J mice were subcutaneously injected with T3 for 6 weeks, and BAFF expression was inhibited using shRNA. Protein and mRNA expression of BAFF in mouse heart tissues evaluated via immunohistochemistry, western blotting and polymerase chain reaction (PCR). Proportions of B cells in mouse cardiac tissue lymphocytes were quantified via flow cytometry. Morphology and left ventricle function were assessed using pathological sections and echocardiography, respectively. Here, we demonstrate that compared with the control group, the proportion of myocardial B cells was larger in the T3 group; immunohistochemistry, western blotting and PCR analyses revealed increased protein and mRNA expression levels of TNF-α and BAFF in heart tissues of the T3 group. Compared with the normal controls group, in the T3 group, the diameter of myocardial cells and some echocardiographic values significantly increased and hypertrophy and structural disorder were noticeable. Our results revealed that elevated levels of circulating T3 can promote the expression of BAFF in myocardial cells and can lead to B-cell activation, an elevated inflammatory response and ventricular remodelling.


Low temperature-induced circulating triiodothyronine accelerates seasonal testicular regression.

  • Keisuke Ikegami‎ et al.
  • Endocrinology‎
  • 2015‎

In temperate zones, animals restrict breeding to specific seasons to maximize the survival of their offspring. Birds have evolved highly sophisticated mechanisms of seasonal regulation, and their testicular mass can change 100-fold within a few weeks. Recent studies on Japanese quail revealed that seasonal gonadal development is regulated by central thyroid hormone activation within the hypothalamus, depending on the photoperiodic changes. By contrast, the mechanisms underlying seasonal testicular regression remain unclear. Here we show the effects of short day and low temperature on testicular regression in quail. Low temperature stimulus accelerated short day-induced testicular regression by shutting down the hypothalamus-pituitary-gonadal axis and inducing meiotic arrest and germ cell apoptosis. Induction of T3 coincided with the climax of testicular regression. Temporal gene expression analysis over the course of apoptosis revealed the suppression of LH response genes and activation of T3 response genes involved in amphibian metamorphosis within the testis. Daily ip administration of T3 mimicked the effects of low temperature stimulus on germ cell apoptosis and testicular mass. Although type 2 deiodinase, a thyroid hormone-activating enzyme, in the brown adipose tissue generates circulating T3 under low-temperature conditions in mammals, there is no distinct brown adipose tissue in birds. In birds, type 2 deiodinase is induced by low temperature exclusively in the liver, which appears to be caused by increased food consumption. We conclude that birds use low temperature-induced circulating T3 not only for adaptive thermoregulation but also to trigger apoptosis to accelerate seasonal testicular regression.


Free triiodothyronine/free thyroxine ratio in children with congenital hypothyroidism.

  • Carmen Sydlik‎ et al.
  • Endocrine connections‎
  • 2022‎

Thyroid-stimulating hormone is generally regarded as a standard parameter for the evaluation of thyroid function. However, relying on this hormone alone can be misleading. Therefore, thyroxine/free-thyroxine levels are used in patients with levothyroxine substitution for the adjustment of therapy. Even with normal values for free thyroxine, decreased values for the free-triiodothyronine/free-thyroxine ratio have already been described in adults. In this study, the free-triiodothyronine/free-thyroxine ratio of 25 children with congenital hypothyroidism was compared with 470 healthy children seen for other reasons and then for thyroid dysfunction. Mean free thyroxine in congenital hypothyroidism was just below the upper limit of normal and significantly higher than in control group. Mean values for free triiodothyronine showed no significant difference between the two groups. The mean value for the free triiodothyronine/free-thyroxine ratio in control group was 3.23. Significantly lower ratios were found in the congenital hypothyroidism group with a mean value of 2.5, due to higher values for free thyroxine compared to free triiodothyronine. Furthermore, an increased free triiodothyronine/free-thyroxine ratio was found at higher thyroid-stimulating hormone values due to lower values for free thyroxine. In this study, we demonstrate that the free triiodothyronine/free-thyroxine ratio was significantly lower in children with congenital hypothyroidism compared to the control group. This is most likely due to the higher values for free thyroxine in this group compared to similar values for free triiodothyronine in both groups. Further studies with differentiated thyroid hormone therapy are needed in order to understand the role of peripheral euthyroidism.


Rewiring of liver diurnal transcriptome rhythms by triiodothyronine (T3) supplementation.

  • Leonardo Vinicius Monteiro de Assis‎ et al.
  • eLife‎
  • 2022‎

Diurnal (i.e., 24 hr) physiological rhythms depend on transcriptional programs controlled by a set of circadian clock genes/proteins. Systemic factors like humoral and neuronal signals, oscillations in body temperature, and food intake align physiological circadian rhythms with external time. Thyroid hormones (THs) are major regulators of circadian clock target processes such as energy metabolism, but little is known about how fluctuations in TH levels affect the circadian coordination of tissue physiology. In this study, a high triiodothyronine (T3) state was induced in mice by supplementing T3 in the drinking water, which affected body temperature, and oxygen consumption in a time-of-day-dependent manner. A 24-hr transcriptome profiling of liver tissue identified 37 robustly and time independently T3-associated transcripts as potential TH state markers in the liver. Such genes participated in xenobiotic transport, lipid and xenobiotic metabolism. We also identified 10-15% of the liver transcriptome as rhythmic in control and T3 groups, but only 4% of the liver transcriptome (1033 genes) were rhythmic across both conditions - amongst these, several core clock genes. In-depth rhythm analyses showed that most changes in transcript rhythms were related to mesor (50%), followed by amplitude (10%), and phase (10%). Gene set enrichment analysis revealed TH state-dependent reorganization of metabolic processes such as lipid and glucose metabolism. At high T3 levels, we observed weakening or loss of rhythmicity for transcripts associated with glucose and fatty acid metabolism, suggesting increased hepatic energy turnover. In summary, we provide evidence that tonic changes in T3 levels restructure the diurnal liver metabolic transcriptome independent of local molecular circadian clocks.


Regulation of Intracellular Triiodothyronine Is Essential for Optimal Macrophage Function.

  • Anne H van der Spek‎ et al.
  • Endocrinology‎
  • 2018‎

Innate immune cells, including macrophages, have recently been identified as target cells for thyroid hormone. We hypothesized that optimal intracellular concentrations of the active thyroid hormone triiodothyronine (T3) are essential for proinflammatory macrophage function. T3 is generated intracellularly by type 2 deiodinase (D2) and acts via the nuclear thyroid hormone receptor (TR). In zebrafish embryos, D2 knockdown increased mortality during pneumococcal meningitis. Primary murine D2 knockout macrophages exhibited impaired phagocytosis and partially reduced cytokine response to stimulation with bacterial endotoxin. These effects are presumably due to reduced intracellular T3 availability. Knockdown of the main TR in macrophages, TRα, impaired polarization into proinflammatory macrophages and amplified polarization into immunomodulatory macrophages. Intracellular T3 availability and action appear to play a crucial role in macrophage function. Our data suggest that low intracellular T3 action has an anti-inflammatory effect, possibly due to an effect on macrophage polarization mediated via the TRα. This study provides important insights into the link between the endocrine and innate immune system.


The correlation between triiodothyronine and the severity of liver fibrosis.

  • Weiwei He‎ et al.
  • BMC endocrine disorders‎
  • 2022‎

The severity of liver fibrosis is an important predictor of death in patients with non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM). However, there is still no definite conclusion on the relationship between triiodothyronine (T3) and the severity of liver fibrosis. Thus, the aim of this study was to analyze the correlation between T3 level and the severity of liver fibrosis.


3,5,3'-Triiodothyronine-Loaded Liposomes Inhibit Hepatocarcinogenesis Via Inflammation-Associated Macrophages.

  • Gangqi Sun‎ et al.
  • Frontiers in oncology‎
  • 2022‎

Hepatocellular carcinoma (HCC) is inflammation-related cancer. Persistent inflammatory injury of the liver is an important factor mediating the occurrence and development of liver cancer. Hepatic macrophages play an important role in the inflammatory microenvironment, which mediates tumor immune escape, tumor growth, and metastasis. Previous studies have suggested that L-3,5,3-triiodothyronine (T3) can regulate inflammation; however, its use is associated with serious cardiac side effects, and its role in hepatocarcinogenesis remains unclear. In this study, we aimed to develop an effective T3 delivery system with reduced cardiac toxicity and to explore its effects on HCC occurrence.


Prognostic value of free triiodothyronine in patients with dilated cardiomyopathy.

  • Hong-Yan Zhao‎ et al.
  • Chinese medical journal‎
  • 2020‎

The association between free triiodothyronine (FT3) and long-term prognosis in dilated cardiomyopathy (DCM) patients has not been evaluated. The purpose of this study was to determine whether the level of FT3 could provide prognostic value in patients with DCM.


Engineering triiodothyronine (T3) nanoparticle for use in ischemic brain stroke.

  • Alexander Mdzinarishvili‎ et al.
  • Drug delivery and translational research‎
  • 2013‎

A potential means of pharmacological management of ischemic stroke is rapid intervention using potent neuroprotective agents. Thyroid hormone (T3) has been shown to protect against ischemic damage in middle cerebral artery occlusion (MCAO) model of ischemic brain stroke. While thyroid hormone is permeable across the blood-brain barrier, we hypothesized that efficacy of thyroid hormone in ischemic brain stroke can be enhanced by encapsulation in nanoparticulate delivery vehicles. We tested our hypothesis by generating poly-(lactide-co-glycolide)-polyethyleneglycol (PLGA-b-PEG) nanoparticles that are either coated with glutathione or are not coated. We have previously reported that glutathione coating of PLGA-PEG nanoparticles is an efficient means of brain targeted drug delivery. Encapsulation of T3 in PLGA-PEG delivery vehicle resulted in particles that were in the nano range and exhibited a zeta potential of -6.51 mV (uncoated) or -1.70 mV (coated). We observed that both glutathione-coated and uncoated nanoparticles are taken up in cells wherein they stimulated the expression of thyroid hormone response element driven reporter robustly. In MCAO model of ischemic stroke, significant benefit of administering T3 in nanoparticulate form was observed over injection of a T3 solution. A 34 % decrease in tissue infarction and a 59 % decrease in brain edema were seen upon administration of T3 solution in MCAO stroke model. Corresponding measurements for uncoated T3 nanoparticles were 51 % and 68 %, whereas for the glutathione coated were 58 % and 75 %. Our study demonstrates that using nanoparticle formulations can significantly improve the efficacy of neuroprotective drugs in ischemic brain stroke.


Anti-triiodothyronine auto-antibody interference in recent free thyroid hormone assays.

  • R Sapin‎ et al.
  • Clinical biochemistry‎
  • 1996‎

No abstract available


Triiodothyronine modulates neuronal plasticity mechanisms to enhance functional outcome after stroke.

  • Daniela Talhada‎ et al.
  • Acta neuropathologica communications‎
  • 2019‎

The development of new therapeutic approaches for stroke patients requires a detailed understanding of the mechanisms that enhance recovery of lost neurological functions. The efficacy to enhance homeostatic mechanisms during the first weeks after stroke will influence functional outcome. Thyroid hormones (TH) are essential regulators of neuronal plasticity, however, their role in recovery related mechanisms of neuronal plasticity after stroke remains unknown. This study addresses important findings of 3,5,3'-triiodo-L-thyronine (T3) in the regulation of homeostatic mechanisms that adjust excitability - inhibition ratio in the post-ischemic brain. This is valid during the first 2 weeks after experimental stroke induced by photothrombosis (PT) and in cultured neurons subjected to an in vitro model of acute cerebral ischemia. In the human post-stroke brain, we assessed the expression pattern of TH receptors (TR) protein levels, important for mediating T3 actions.Our results show that T3 modulates several plasticity mechanisms that may operate on different temporal and spatial scales as compensatory mechanisms to assure appropriate synaptic neurotransmission. We have shown in vivo that long-term administration of T3 after PT significantly (1) enhances lost sensorimotor function; (2) increases levels of synaptotagmin 1&2 and levels of the post-synaptic GluR2 subunit in AMPA receptors in the peri-infarct area; (3) increases dendritic spine density in the peri-infarct and contralateral region and (4) decreases tonic GABAergic signaling in the peri-infarct area by a reduced number of parvalbumin+ / c-fos+ neurons and glutamic acid decarboxylase 65/67 levels. In addition, we have shown that T3 modulates in vitro neuron membrane properties with the balance of inward glutamate ligand-gated channels currents and decreases synaptotagmin levels in conditions of deprived oxygen and glucose. Interestingly, we found increased levels of TRβ1 in the infarct core of post-mortem human stroke patients, which mediate T3 actions. Summarizing, our data identify T3 as a potential key therapeutic agent to enhance recovery of lost neurological functions after ischemic stroke.


Triiodothyronine activated extranuclear pathways upregulate adiponectin and leptin in murine adipocytes.

  • Lucas Solla Mathias‎ et al.
  • Molecular and cellular endocrinology‎
  • 2020‎

Adiponectin and leptin, important for metabolic regulation, are synthesized and secreted by adipose tissue and are influenced by triiodothyronine (T3) that activates the MAPK/ERK and integrin αVβ3 pathways, modulating gene expression. Adipocytes were treated with T3 (10 nM), for 1 h, in the absence or presence of PD98059 (PD) and tetraiodothyroacetic acid (Tetrac), which are pathways inhibitors. The cells were incubated with Adipo Red/Oil Red O reagents, and intracellular lipid accumulation [glycerol and triacylglycerol (TAG)], MTT, 8-hydroxideoxyguanosine (8-OH-dG), and mRNA and protein expression were assessed. T3 increased leptin mRNA and protein expression, and, in contrast, there was a decrease in the Tetrac + T3 group. Adiponectin mRNA expression was not altered by T3, though it had increased its protein expression, which was terminated by inhibitors PD + T3 and Tetrac + T3. However, T3 did not alter PPARγ protein expression, lipid accumulation, TAG, glycerol, and DNA damage, but PD + T3 and Tetrac + T3 reduced these parameters. T3 activated the MAPK/ERK pathway on adipocytes to modulate the adiponectin protein expression and integrin αvβ3 to alter the leptin gene expression.


Triiodothyronine lowers the potential of colorectal cancer stem cells in vitro.

  • Olga Rostkowska‎ et al.
  • Oncology reports‎
  • 2023‎

Cancer stem cells (CSCs) play a key role in the development and progression of colorectal cancer (CRC), but the influence of triiodothyronine (T3) on the biological regulation of CSCs remains unclear. In the present study, it was reported that T3 exerts significant impact on CSCs of two CRC cell lines cultured in the form of colonospheres. It was observed that the incubation of colonospheres with T3 decreased the viability, proliferative and spherogenic potential of cancer cells (P<0.05). In addition, increased apoptotic rate of CRC cells treated with T3 was revealed. Furthermore, T3‑treated colonospheres were more likely to move into silenced pool in G0/G1 phase of the cell cycle. The smaller sizes of colonospheres observed after the treatment with T3 confirmed this conclusion. T3 could lower the proportion of primitive cells which supply the pool of proliferating cells within spheres. Thyroid receptors THRα1 and THRβ1 and two deiodinases (DIO2 and DIO3) were affected by T3 in manner depended on clinical stage of cancer and CRC cell line used for analysis. In summary, the present study uncovered a novel function of thyroid hormones signaling in the regulation of the CSCs of CRC, and these findings may be useful for developing novel therapies by targeting thyroid hormone functions in CRC cells.


L-3,3',5-triiodothyronine and pregnenolone sulfate inhibit Torpedo nicotinic acetylcholine receptors.

  • Steven X Moffett‎ et al.
  • PloS one‎
  • 2019‎

The nicotinic acetylcholine receptor (nAChR) is an excitatory pentameric ligand-gated ion channel (pLGIC), homologous to the inhibitory γ-aminobutyric acid (GABA) type A receptor targeted by pharmaceuticals and endogenous sedatives. Activation of the GABAA receptor by the neurosteroid allopregnanolone can be inhibited competitively by thyroid hormone (L-3,3',5-triiodothyronine, or T3), but modulation of nAChR by T3 or neurosteroids has not been investigated. Here we show that allopregnanolone inhibits the nAChR from Torpedo californica at micromolar concentrations, as do T3 and the anionic neurosteroid pregnenolone sulfate (PS). We test for the role of protein and ligand charge in mediated receptor inhibition by varying pH in a narrow range around physiological pH. We find that both T3 and PS become less potent with increasing pH, with remarkably similar trends in IC50 when T3 is neutral at pH < 7.3. After deprotonation of T3 (but no additional deprotonation of PS) at pH 7.3, T3 loses potency more slowly with increasing pH than PS. We interpret this result as indicating the negative charge is not required for inhibition but does increase activity. Finally, we show that both T3 and PS affect nAChR channel desensitization, which may implicate a binding site homologous to one that was recently indicated for accelerated desensitization of the GABAA receptor by PS.


Triiodothyronine reduces toxic effects of diazinon in Persian sturgeon (Acipenser persicus) embryos.

  • Samaneh Nazeri‎ et al.
  • Comparative biochemistry and physiology. Toxicology & pharmacology : CBP‎
  • 2019‎

Thyroid hormones (THs) play an important role in early stages development of fish species. Manual elevation of THs in the embryos improves viability and hatching success. However, the impacts of endocrine disrupting chemicals on THs-treated embryos are unclear. This study investigated the effect of triiodothyronine (T3) to mitigate toxic effects of diazinon in the endangered Persian sturgeon (Acipenser persicus) eggs and embryos. Fertilized eggs were exposed to nominal concentrations of 0, 2, 4, 6, and 8 mg/L diazinon and the 96 h LC50 value was calculated at 3.5 mg/L. Eggs were then treated with exogenous T3 (1 ng/mL: LT3, and 10 ng/mL: HT3) and exposed to 3.5 mg/L diazinon (DLT3 and DHT3). Total THs concentrations, levels of cortisol, and expression of the igf-II gene were measured during embryogenesis. All the measured endpoints were significantly different between treatments or stages of incubation. Generally, despite insignificance in some cases, higher levels of T3 and Thyroxin (T4) were observed in T3-treated embryos regardless of the presence of diazinon. Cortisol was high in unfertilized eggs which reduced after fertilization. The igf-II gene up-regulated quickly after fertilization; was higher in T3-treated embryos. Exposure of eggs to diazinon reduced the levels of T3, T4, and igf-II gene expression, which corresponded to the lowest hatching. We concluded that exogenous T3 improves embryos development in A. persicus, which is a promising application for conservation strategies. Our study suggests that treating embryos with 10 ng/L T3 is a suitable way to overcome problems of incubation in diazinon-polluted water sources.


Sonic Hedgehog and Triiodothyronine Pathway Interact in Mouse Embryonic Neural Stem Cells.

  • Pavel Ostasov‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Neural stem cells are fundamental to development of the central nervous system (CNS)-as well as its plasticity and regeneration-and represent a potential tool for neuro transplantation therapy and research. This study is focused on examination of the proliferation dynamic and fate of embryonic neural stem cells (eNSCs) under differentiating conditions. In this work, we analyzed eNSCs differentiating alone and in the presence of sonic hedgehog (SHH) or triiodothyronine (T3) which play an important role in the development of the CNS. We found that inhibition of the SHH pathway and activation of the T3 pathway increased cellular health and survival of differentiating eNSCs. In addition, T3 was able to increase the expression of the gene for the receptor smoothened (Smo), which is part of the SHH signaling cascade, while SHH increased the expression of the T3 receptor beta gene (Thrb). This might be the reason why the combination of SHH and T3 increased the expression of the thyroxine 5-deiodinase type III gene (Dio3), which inhibits T3 activity, which in turn affects cellular health and proliferation activity of eNSCs.


A U-shaped association between serum albumin with total triiodothyronine in adults.

  • Ya Zhang‎ et al.
  • Journal of clinical laboratory analysis‎
  • 2022‎

Thyroid dysfunction is a common thyroid disorder in our life and its symptoms are non-specific, therefore the diagnosis of thyroid dysfunction is important for patients. Albumin (ALB) can carry thyroid hormones to their sites of action as a way to achieve rapid delivery of thyroid hormones to the tissues. The purpose of this study was to investigate the relationship between serum ALB levels and total triiodothyronine (TT3) in adults.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: