Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 54 papers

Reciprocal expression of trefoil factor-1 and thyroid transcription factor-1 in lung adenocarcinomas.

  • Daisuke Matsubara‎ et al.
  • Cancer science‎
  • 2020‎

Molecular targeted therapies against EGFR and ALK have improved the quality of life of lung adenocarcinoma patients. However, targetable driver mutations are mainly found in thyroid transcription factor-1 (TTF-1)/NK2 homeobox 1 (NKX2-1)-positive terminal respiratory unit (TRU) types and rarely in non-TRU types. To elucidate the molecular characteristics of the major subtypes of non-TRU-type adenocarcinomas, we analyzed 19 lung adenocarcinoma cell lines (11 TRU types and 8 non-TRU types). A characteristic of non-TRU-type cell lines was the strong expression of TFF-1 (trefoil factor-1), a gastric mucosal protective factor. An immunohistochemical analysis of 238 primary lung adenocarcinomas resected at Jichi Medical University Hospital revealed that TFF-1 was positive in 31 cases (13%). Expression of TFF-1 was frequently detected in invasive mucinous (14/15, 93%), enteric (2/2, 100%), and colloid (1/1, 100%) adenocarcinomas, less frequent in acinar (5/24, 21%), papillary (7/120, 6%), and solid (2/43, 5%) adenocarcinomas, and negative in micropapillary (0/1, 0%), lepidic (0/23, 0%), and microinvasive adenocarcinomas or adenocarcinoma in situ (0/9, 0%). Expression of TFF-1 correlated with the expression of HNF4-α and MUC5AC (P < .0001, P < .0001, respectively) and inversely correlated with that of TTF-1/NKX2-1 (P < .0001). These results indicate that TFF-1 is characteristically expressed in non-TRU-type adenocarcinomas with gastrointestinal features. The TFF-1-positive cases harbored KRAS mutations at a high frequency, but no EGFR or ALK mutations. Expression of TFF-1 correlated with tumor spread through air spaces, and a poor prognosis in advanced stages. Moreover, the knockdown of TFF-1 inhibited cell proliferation and soft-agar colony formation and induced apoptosis in a TFF-1-high and KRAS-mutated lung adenocarcinoma cell line. These results indicate that TFF-1 is not only a biomarker, but also a potential molecular target for non-TRU-type lung adenocarcinomas.


Trefoil Factor 1 is involved in gastric cell copper homeostasis.

  • Roberta Esposito‎ et al.
  • The international journal of biochemistry & cell biology‎
  • 2015‎

Trefoil Factor 1 belongs to a group of small secreted proteins (the Trefoil Factor Family proteins), that are localized within the mucous granules and are expressed and secreted by epithelial cells that line mucous membranes. Trefoil factors are mainly expressed in the gastrointestinal tract, where they normally contribute to maintain the integrity of the mucosa. We recently demonstrated a selective binding ability of Trefoil Factor 1 for copper ions, through its carboxy-terminal tail, and we also observed that copper levels influence the equilibrium between the monomeric and homodimeric forms of Trefoil Factor 1, thus modulating its biological activity. Here we report that transcriptional regulation of Trefoil Factor 1 is also affected by copper levels, through the modulated binding of the copper-sensing transcription factor Sp1 onto the responsive elements present in the regulatory region of the gene. In addition we demonstrate that copper overload causes an accumulation of the trefoil protein in the Trans-Golgi Network and that Trefoil Factor 1 levels can influence copper excretion and copper related toxicity. These findings suggest that the protein might play a role in the overall complex mechanisms of copper homeostasis in the gastrointestinal tissues.


Hypoxia-inducible factor 1-dependent induction of intestinal trefoil factor protects barrier function during hypoxia.

  • G T Furuta‎ et al.
  • The Journal of experimental medicine‎
  • 2001‎

Mucosal organs such as the intestine are supported by a rich and complex underlying vasculature. For this reason, the intestine, and particularly barrier-protective epithelial cells, are susceptible to damage related to diminished blood flow and concomitant tissue hypoxia. We sought to identify compensatory mechanisms that protect epithelial barrier during episodes of intestinal hypoxia. Initial studies examining T84 colonic epithelial cells revealed that barrier function is uniquely resistant to changes elicited by hypoxia. A search for intestinal-specific, barrier-protective factors revealed that the human intestinal trefoil factor (ITF) gene promoter bears a previously unappreciated binding site for hypoxia-inducible factor (HIF)-1. Hypoxia resulted in parallel induction of ITF mRNA and protein. Electrophoretic mobility shift assay analysis using ITF-specific, HIF-1 consensus motifs resulted in a hypoxia-inducible DNA binding activity, and loading cells with antisense oligonucleotides directed against the alpha chain of HIF-1 resulted in a loss of ITF hypoxia inducibility. Moreover, addition of anti-ITF antibody resulted in a loss of barrier function in epithelial cells exposed to hypoxia, and the addition of recombinant human ITF to vascular endothelial cells partially protected endothelial cells from hypoxia-elicited barrier disruption. Extensions of these studies in vivo revealed prominent hypoxia-elicited increases in intestinal permeability in ITF null mice. HIF-1-dependent induction of ITF may provide an adaptive link for maintenance of barrier function during hypoxia.


Trefoil Factor 1 Excretion Is Increased in Early Stages of Chronic Kidney Disease.

  • Diana Lebherz-Eichinger‎ et al.
  • PloS one‎
  • 2015‎

Chronic kidney disease (CKD) is associated with high morbidity and mortality. In many patients CKD is diagnosed late during disease progression. Therefore, the implementation of potential biomarkers may facilitate the early identification of individuals at risk. Trefoil factor family (TFF) peptides promote restitution processes of mucous epithelia and are abundant in the urinary tract. We therefore sought to investigate the TFF peptide levels in patients suffering from CKD and their potential as biomarkers for CKD. We analysed TFF1 and TFF3 in serum and urine of 115 patients with CKD stages 1-5 without dialysis by ELISA. 20 healthy volunteers served as controls. Our results showed, that urinary TFF1 levels were significantly increased with the onset of CKD in stages 1-4 as compared to controls and declined during disease progression (p = 0.003, < 0.001, 0.005, and 0.007. median concentrations: 3.5 pg/mL in controls vs 165.2, 61.1, 17.2, and 15.8 pg/mL in CKD 1-4). TFF1 and TFF3 serum levels were significantly elevated in stages 3-5 as compared to controls (TFF1: p < 0.01; median concentrations: 12.1, 39.7, and 34.5 pg/mL in CKD 3-5. TFF3: p < 0.001; median concentrations: 7.1 ng/mL in controls vs 26.1, 52.8, and 78.8 ng/mL in CKD 3-5). TFF3 excretion was increased in stages 4 and 5 (p < 0.001; median urinary levels: 65.2 ng/mL in controls vs 231.5 and 382.6 ng/mL in CKD 4/5; fractional TFF3 excretion: 6.4 in controls vs 19.6 and 44.1 in CKD 4/5). ROC curve analyses showed, that monitoring TFF peptide levels can predict various CKD stages (AUC urinary/serum TFF > 0.8). In conclusion our results show increased levels of TFF1 and TFF3 in CKD patients with a pronounced elevation of urinary TFF1 in lower CKD stages. Furthermore, TFF1 and TFF3 seems to be differently regulated and show potential to predict various CKD stages, as shown by ROC curve analysis.


Immunoexpression of Trefoil Factor 1 in Non-Neoplastic and Neoplastic Canine Gastric Tissues.

  • Ana R Flores‎ et al.
  • Animals : an open access journal from MDPI‎
  • 2021‎

TFF1 expression is markedly reduced in human GCs, suggesting that TFF1 is a tumor suppressor for human gastric cancer. The present study evaluated the expression and distribution pattern of TFF1 in paraffin-embedded canine gastric tissue samples, including normal mucosa (n = 3), polyps (n = 8), carcinomas (n = 31) and their adjacent non-neoplastic mucosa (n = 30), neoplastic emboli (n = 14), and metastatic lesions (n = 9), by immunohistochemistry (IHC). All normal gastric tissues expressed TFF1 in the superficial foveolar epithelium and mucopeptic cells of the neck region. Most gastric polyps (GPs) displayed immunoreactivity for TFF1 in >75% of the epithelial component. In GCs, the expression of TFF1 was found reduced in 74.2% of the cases. The level of TFF1 expression had a decreased tendency from normal gastric mucosa to GPs and GCs (p < 0.05). No significant differences in the expression of TFF1 were found in GCs, according to age, sex, histological type based on World Health Organization (WHO) and Lauren classification, tumor location, depth of tumor invasion, presence of neoplastic emboli or metastatic lesions. The median survival time of GC patients with preserved and reduced TFF1 immunoexpression were 30 and 12 days, respectively. Kaplan-Meier analysis revealed no significant survival differences between the two groups (p > 0.05). These findings suggest that TFF1 protein may play a role in canine gastric carcinogenesis, and further studies are necessary to define its usefulness as a prognostic indicator in canine gastric carcinoma.


Mitogen- and stress-activated protein kinases 1 and 2 are required for maximal trefoil factor 1 induction.

  • Protiti Khan‎ et al.
  • PloS one‎
  • 2013‎

Mitogen- and stress-activated protein kinases 1 and 2 (MSK1 and MSK2), activated downstream of the ERK- and p38-mitogen-activated protein kinase pathways are involved in cell survival, proliferation and differentiation. Following mitogenic or stress stimuli, they mediate the nucleosomal response, which includes phosphorylation of histone H3 at serine 10 (H3S10ph) coupled with transcriptional activation of immediate-early genes. While MSK1 and MSK2 are closely related, their relative roles may vary with cellular context and/or stimuli. However, our knowledge of MSK2 recruitment to immediate-early genes is limited, as research has primarily focused on MSK1. Here, we demonstrate that both MSK1 and MSK2, regulate the phorbol ester 12-O-tetradecanoylphorbol-13-acetate induced expression of the breast cancer marker gene, trefoil factor 1 (TFF1), by phosphorylating H3S10 at its 5' regulatory regions. The MSK-mediated phosphorylation of H3S10 promotes the recruitment of 14-3-3 isoforms and BRG1, the ATPase subunit of the BAF/PBAF remodeling complex, to the enhancer and upstream promoter elements of TFF1. The recruited chromatin remodeling activity leads to the RNA polymerase II carboxy-terminal domain phosphorylation at the TFF1 promoter, initiating TFF1 expression in MCF-7 breast cancer cells. Moreover, we show that MSK1 or MSK2 is recruited to TFF1 regulatory regions, but as components of different multiprotein complexes.


Expression of trefoil factor 1 in the developing and adult rat ventral mesencephalon.

  • Pia Jensen‎ et al.
  • PloS one‎
  • 2013‎

Trefoil factor 1 (TFF1) belongs to a family of secreted peptides with a characteristic tree-looped trefoil structure. TFFs are mainly expressed in the gastrointestinal tract where they play a critical role in the function of the mucosal barrier. TFF1 has been suggested as a neuropeptide, but not much is known about its expression and function in the central nervous system. We investigated the expression of TFF1 in the developing and adult rat midbrain. In the adult ventral mesencephalon, TFF1-immunoreactive (-ir) cells were predominantly found in the substantia nigra pars compacta (SNc), the ventral tegmental area (VTA) and in periaqueductal areas. While around 90% of the TFF1-ir cells in the SNc co-expressed tyrosine hydroxylase (TH), only a subpopulation of the TH-ir neurons expressed TFF1. Some TFF1-ir cells in the SNc co-expressed the calcium-binding proteins calbindin or calretinin and nearly all were NeuN-ir confirming a neuronal phenotype, which was supported by lack of co-localization with the astroglial marker glial fibrillary acidic protein (GFAP). Interestingly, at postnatal (P) day 7 and P14, a significantly higher proportion of TH-ir neurons in the SNc co-expressed TFF1 as compared to P21. In contrast, the proportion of TFF1-ir cells expressing TH remained unchanged during postnatal development. Furthermore, significantly more TH-ir neurons expressed TFF1 in the SNc, compared to the VTA at all four time-points investigated. Injection of the tracer fluorogold into the striatum of adult rats resulted in retrograde labeling of several TFF1 expressing cells in the SNc showing that a significant fraction of the TFF1-ir cells were projection neurons. This was also reflected by unilateral loss of TFF1-ir cells in SNc of 6-hydroxylase-lesioned hemiparkinsonian rats. In conclusion, we show for the first time that distinct subpopulations of midbrain dopaminergic neurons express TFF1, and that this expression pattern is altered in a rat model of Parkinson's disease.


Effects of Forskolin on Trefoil factor 1 expression in cultured ventral mesencephalic dopaminergic neurons.

  • P Jensen‎ et al.
  • Neuroscience‎
  • 2015‎

Trefoil factor 1 (TFF1) belongs to a family of secreted peptides that are mainly expressed in the gastrointestinal tract. Notably, TFF1 has been suggested to operate as a neuropeptide, however, its specific cellular expression, regulation and function remain largely unknown. We have previously shown that TFF1 is expressed in developing and adult rat ventral mesencephalic tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons. Here, we investigated the expression of TFF1 in rat ventral mesencephalic dopaminergic neurons (embryonic day 14) grown in culture for 5, 7 or 10 days in the absence (controls) or presence of either glial cell line-derived neurotrophic factor (GDNF), Forskolin or the combination. No TFF1-ir cells were identified at day 5 and only a few at day 7, whereas TH was markedly expressed at both time points. At day 10, several TFF1-ir cells were detected, and their numbers were significantly increased after the addition of GDNF (2.2-fold) or Forskolin (4.1-fold) compared to controls. Furthermore, the combination of GDNF and Forskolin had an additive effect and increased the number of TFF1-ir cells by 5.6-fold compared to controls. TFF1 expression was restricted to neuronal cells, and the percentage of TH/TFF1 co-expressing cells was increased to the same extent in GDNF and Forskolin-treated cultures (4-fold) as compared to controls. Interestingly, the combination of GDNF and Forskolin resulted in a significantly increased co-expression (8-fold) of TH/TFF1, which could indicate that GDNF and Forskolin targeted different subpopulations of TH/TFF1 neurons. Short-term treatment with Forskolin resulted in an increased number of TFF1-ir cells, and this effect was significantly reduced by the MEK1 inhibitor PD98059 or the protein kinase A (PKA) inhibitor H89, suggesting that Forskolin induced TFF1 expression through diverse signaling pathways. In conclusion, distinct populations of cultured dopaminergic neurons express TFF1, and their numbers can be increased by factors known to influence survival and differentiation of dopaminergic cells.


Trefoil factor-1 upregulation in estrogen-receptor positive breast cancer correlates with an increased risk of bone metastasis.

  • Chiara Spadazzi‎ et al.
  • Bone‎
  • 2021‎

Bone is one of the most preferred sites of metastatic spread from different cancer types, including breast cancer. However, different breast cancer subtypes exhibit distinct metastatic behavior in terms of kinetics and anatomic sites of relapse. Despite advances in the diagnosis, the identification of patients at high-risk of bone recurrence is still an unmet clinical need. We conducted a retrospective analysis, by gene expression and immunohistochemical assays, on 90 surgically resected breast cancer samples collected from patients who experienced no evidence of distant metastasis, bone or visceral metastasis in order to identify a primary tumor-derived marker of bone recurrence. We identified trefoil factor-1 (pS2 or TFF1) as strictly correlated to bone metastasis from ER+ breast cancer. In silico analysis was carried out to confirm this observation, linking gene expression data with clinical characteristics available from public clinical datasets. Then, we investigated TFF1 function in ER+ breast cancer tumorigenesis and bone metastasis through xenograft in vivo models of MCF 7 breast cancer with gain and loss of function of TFF1. As a response to microenvironmental features in primary tumors, TFF1 expression could modulate ER+ breast cancer growth, leading to a less proliferative phenotype. Our results showed it may not play a role in late stages of bone metastasis, however further studies are warranted to understand whether it could contribute in the early-stages of the metastatic cascade. In conclusion, TFF1 upregulation in primary ER+ breast cancer could be useful to identify patients at high-risk of bone metastasis. This could help clinicians in the identification of patients who likely can develop bone metastasis and who could benefit from personalized treatments and follow-up strategies to prevent metastatic disease.


Trefoil Factor 1 Suppresses Epithelial-mesenchymal Transition through Inhibition of TGF-beta Signaling in Gastric Cancer Cells.

  • Da-Young Lee‎ et al.
  • Journal of cancer prevention‎
  • 2021‎

Gastric cancer is a malignancy with high incidence and mortality worldwide. In gastric cancer, epithelial-mesenchymal transition (EMT) and metastasis further increase the mortality rate. Trefoil factor 1 (TFF1) has been reported as a protective factor in the gastric mucosa. In this study, TFF1 inhibited the migration and invasive capability of gastric cancer cells. Elevated TFF1 levels induced the expression of E-cadherin, the epithelial marker, and reduced the expression of N-cadherin, vimentin, Snail, Twist, Zinc finger E-box binding homeobox (ZEB) 1 and ZEB2, well-known repressors of E-cadherin expression. In addition, the expression of matrix metalloproteinase (MMP)-2, MMP-7 and MMP-9, which are major markers of cancer metastasis, was suppressed by TFF1. Upregulation of TFF1 inhibited TGF-β, a major signaling for EMT induction, and the phosphorylation of Smad2/3 activated by TGF-β in AGS cells. In conclusion, TFF1 inhibits EMT through suppression of TGF-β signaling in AGS cells, which might be used in therapeutic strategies for reducing metastatic potential and invasiveness of these cells.


The trefoil factor 1 participates in gastrointestinal cell differentiation by delaying G1-S phase transition and reducing apoptosis.

  • Carine Bossenmeyer-Pourié‎ et al.
  • The Journal of cell biology‎
  • 2002‎

Trefoil factor (TFF)1 is synthesized and secreted by the normal stomach mucosa and by the gastrointestinal cells of injured tissues. The link between mouse TFF1 inactivation and the fully penetrant antropyloric tumor phenotype prompted the classification of TFF1 as a gastric tumor suppressor gene. Accordingly, altered expression, deletion, and/or mutations of the TFF1 gene are frequently observed in human gastric carcinomas. The present study was undertaken to address the nature of the cellular and molecular mechanisms targeted by TFF1 signalling. TFF1 effects were investigated in IEC18, HCT116, and AGS gastrointestinal cells treated with recombinant human TFF1, and in stably transfected HCT116 cells synthesizing constitutive or doxycycline-induced human TFF1. We observed that TFF1 triggers two types of cellular responses. On one hand, TFF1 lowers cell proliferation by delaying G1-S cell phase transition. This results from a TFF1-mediated increase in the levels of cyclin-dependent kinase inhibitors of both the INK4 and CIP subfamilies, leading to lower E2F transcriptional activity. On the other hand, TFF1 protects cells from chemical-, anchorage-free-, or Bad-induced apoptosis. In this process, TFF1 signalling targets the active form of caspase-9. Together, these results provide the first evidence of a dual antiproliferative and antiapoptotic role for TFF1. Similar paradoxical functions have been reported for tumor suppressor genes involved in cell differentiation, a function consistent with TFF1.


Trefoil factor 1 in early breast carcinoma: a potential indicator of clinical outcome during the first 3 years of follow-up.

  • Milan Markićević‎ et al.
  • International journal of medical sciences‎
  • 2014‎

A role of an estrogen-regulated, autocrine motogenic factor was assumed to be a major biological role of trefoil factor 1 (TFF1) in breast cancer. TFF1 is regarded as a predictive factor for positive response to endocrine therapy in breast cancer patients. The aim of our study was to examine TFF1 level distribution in breast carcinomas in order to distinguish estrogen-independent from estrogen-dependent TFF1 expression and to evaluate clinical usefulness of TFF1 status in early breast cancer during the first 3 years of follow-up.


Deficiency in trefoil factor 1 (TFF1) increases tumorigenicity of human breast cancer cells and mammary tumor development in TFF1-knockout mice.

  • E Buache‎ et al.
  • Oncogene‎
  • 2011‎

Although trefoil factor 1 (TFF1; previously named pS2) is abnormally expressed in about 50% of human breast tumors, its physiopathological role in this disease has been poorly studied. Moreover, controversial data have been reported. TFF1 function in the mammary gland therefore needs to be clarified. In this study, using retroviral vectors, we performed TFF1 gain- or loss-of-function experiments in four human mammary epithelial cell lines: normal immortalized TFF1-negative MCF10A, malignant TFF1-negative MDA-MB-231 and malignant TFF1-positive MCF7 and ZR75.1. The expression of TFF1 stimulated the migration and invasion in the four cell lines. Forced TFF1 expression in MCF10A, MDA-MB-231 and MCF7 cells did not modify anchorage-dependent or -independent cell proliferation. By contrast, TFF1 knockdown in MCF7 enhanced soft-agar colony formation. This increased oncogenic potential of MCF7 cells in the absence of TFF1 was confirmed in vivo in nude mice. Moreover, chemically induced tumorigenesis in TFF1-deficient (TFF1-KO) mice led to higher tumor incidence in the mammary gland and larger tumor size compared with wild-type mice. Similarly, tumor development was increased in the TFF1-KO ovary and lung. Collectively, our results clearly show that TFF1 does not exhibit oncogenic properties, but rather reduces tumor development. This beneficial function of TFF1 is in agreement with many clinical studies reporting a better outcome for patients with TFF1-positive breast primary tumors.


Trefoil factor 3 as a novel biomarker to distinguish between adenocarcinoma and squamous cell carcinoma.

  • Xiao-Nan Wang‎ et al.
  • Medicine‎
  • 2015‎

In carcinoma, such as of the lung, the histological subtype is important to select an appropriate therapeutic strategy for patients. However, carcinomas with poor differentiation cannot always be distinguished on the basis of morphology alone nor on clinical findings. Hence, delineation of poorly differentiated adenocarcinoma and squamous cell carcinoma, the 2 most common epithelial-origin carcinomas, is pivotal for selection of optimum therapy. Herein, we explored the potential utility of trefoil factor 3 (TFF3) as a biomarker for primary lung adenocarcinoma and extrapulmonary adenocarcinomas derived from different organs. We observed that 90.9% of lung adenocarcinomas were TFF3-positive, whereas no expression of TFF3 was observed in squamous cell carcinomas. The subtype of lung carcinoma was confirmed by four established biomarkers, cytokeratin 7 and thyroid transcription factor 1 for adenocarcinoma and P63 and cytokeratin 5/6 for squamous cell carcinoma. Furthermore, expression of TFF3 mRNA was observed by quantitative PCR in all of 11 human lung adenocarcinoma cell lines and highly correlated with markers of the adenocarcinomatous lineage. In contrast, little or no expression of TFF3 was observed in 4 lung squamous cell carcinoma cell lines. By use of forced expression, or siRNA-mediated depletion of TFF3, we determined that TFF3 appeared to maintain rather than promote glandular differentiation of lung carcinoma cells. In addition, TFF3 expression was also determined in adenocarcinomas from colorectum, stomach, cervix, esophagus, and larynx. Among all these extrapulmonary carcinomas, 93.7% of adenocarcinomas exhibited TFF3 positivity, whereas only 2.9% of squamous cell carcinomas were TFF3-positive. Totally, 92.9% of both pulmonary and extrapulmonary adenocarcinomas exhibited TFF3 positivity, whereas only 1.5% of squamous cell carcinomas were TFF3-positive. In conclusion, TFF3 is preferentially expressed in adenocarcinoma and may function as an additional biomarker for distinguishing adenocarcinoma from squamous cell carcinoma.


Long non-coding RNA FOXD3 antisense RNA 1 augments anti-estrogen resistance in breast cancer cells through the microRNA-363/ trefoil factor 1/ phosphatidylinositol 3-kinase/protein kinase B axis.

  • Lili Ren‎ et al.
  • Bioengineered‎
  • 2021‎

Long non-coding RNA (lncRNA) FOXD3 antisense RNA 1 (FOXD3-AS1) has been reported to participate in multiple processes that contribute toward the development of cancer. The present study aimed to explore the effect of lncRNA FOXD3-AS1 on anti-estrogen resistance in breast cancer (BC) cells. FOXD3-AS1 was found to be highly expressed in BC cell lines. Moreover, FOXD3-AS1 was highly expressed in estrogen receptor-negative (ER-) cells compared to the ER-positive (ER+) cells. FOXD3-AS1 overexpression in T47D and MCF-7 (ER+) cells enhanced the resistance of cells to tamoxifen (TMX), whereas FOX3-AS1 downregulation reduced the TMX resistance in MDA-MB-231 (ER-) cells. Similar results were reproduced in vivo that FOXD3-AS1 inhibition reduced the growth of xenograft tumors formed by MDA-MB-231 cells following TMX treatment whereas FOXD3-AS1 overexpression in T47D cells facilitated tumor growth. The bioinformatic analysis and luciferase assays indicated that FOXD3-AS1 sponged microRNA-363 (miR-363) to restore expression of trefoil factor 1 (TFF1) mRNA. Overexpression of miR-363 reduced T47D cell proliferation induced by FOXD3-AS1, whereas overexpression of TFF1 restored growth of MDA-MB-231 cells reduced after FOXD3-AS1 silencing. The phosphorylation of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) was increased by FOXD3-AS1 but attenuated by miR-363. Inhibition of PI3K/Akt blocked the role of FOXD3-AS1 and reduced the TMX resistance in T47D and MCF-7 cells. Taken together, the present study suggested that FOXD3-AS1 sponges miR-363 to upregulate TFF1 expression, leading to PI3K/Akt signaling activation and anti-estrogen resistance in BC cells.


Macrophages promote epithelial proliferation following infectious and non-infectious lung injury through a Trefoil factor 2-dependent mechanism.

  • Li-Yin Hung‎ et al.
  • Mucosal immunology‎
  • 2019‎

Coordinated efforts between macrophages and epithelia are considered essential for wound healing, but the macrophage-derived molecules responsible for repair are poorly defined. This work demonstrates that lung macrophages rely upon Trefoil factor 2 to promote epithelial proliferation following damage caused by sterile wounding, Nippostrongylus brasiliensis or Bleomycin sulfate. Unexpectedly, the presence of T, B, or ILC populations was not essential for macrophage-driven repair. Instead, conditional deletion of TFF2 in myeloid-restricted CD11cCre TFF2 flox mice exacerbated lung pathology and reduced the proliferative expansion of CD45- EpCAM+ pro-SPC+ alveolar type 2 cells. TFF2 deficient macrophages had reduced expression of the Wnt genes Wnt4 and Wnt16 and reconstitution of hookworm-infected CD11cCre TFF2flox mice with rWnt4 and rWnt16 restored the proliferative defect in lung epithelia post-injury. These data reveal a previously unrecognized mechanism wherein lung myeloid phagocytes utilize a TFF2/Wnt axis as a mechanism that drives epithelial proliferation following lung injury.


A polypeptide "building block" for the β-trefoil fold identified by "top-down symmetric deconstruction".

  • Jihun Lee‎ et al.
  • Journal of molecular biology‎
  • 2011‎

Fibroblast growth factor-1, a member of the 3-fold symmetric β-trefoil fold, was subjected to a series of symmetric constraint mutations in a process termed "top-down symmetric deconstruction." The mutations enforced a cumulative exact 3-fold symmetry upon symmetrically equivalent positions within the protein and were combined with a stability screen. This process culminated in a β-trefoil protein with exact 3-fold primary-structure symmetry that exhibited excellent folding and stability properties. Subsequent fragmentation of the repeating primary-structure motif yielded a 42-residue polypeptide capable of spontaneous assembly as a homotrimer, producing a thermostable β-trefoil architecture. The results show that despite pronounced reduction in sequence complexity, pure symmetry in the design of a foldable, thermostable β-trefoil fold is possible. The top-down symmetric deconstruction approach provides a novel alternative means to successfully identify a useful polypeptide "building block" for subsequent "bottom-up" de novo design of target protein architecture.


Analyses of the folding sites of irregular β-trefoil fold proteins through sequence-based techniques and Gō-model simulations.

  • Risako Kimura‎ et al.
  • BMC molecular and cell biology‎
  • 2020‎

The details of the folding mechanisms have not yet been fully understood for many proteins, and it is believed that the information on the folding mechanism of a protein is encoded in its amino acid sequence. β-trefoil proteins are known to have the same 3D scaffold, namely, a three-fold symmetric scaffold, despite the proteins' low sequence identity among superfamilies. In this study, we extract an initial folding unit from the amino acid sequences of irregular β-trefoil proteins by constructing an average distance map (ADM) and utilizing inter-residue average distance statistics to determine the relative contact frequencies for residue pairs in terms of F values. We compare our sequence-based prediction results with the packing between hydrophobic residues in native 3D structures and a Gō-model simulation.


Proliferation of Human Corneal Endothelia in Organ Culture Stimulated by Wounding and the Engineered Human Fibroblast Growth Factor 1 Derivative TTHX1114.

  • David Eveleth‎ et al.
  • Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics‎
  • 2020‎

Purpose: Corneal endothelial dystrophies are characterized by endothelial cell loss and dysfunction. Recent evidence suggests that corneal endothelial cells (CECs) can regenerate although they do not do so under normal conditions. This work sought to test whether CECs can be stimulated to proliferate in organ culture by wounding and/or by treatment with the engineered human fibroblast growth factor 1 (FGF1) derivative TTHX1114. Methods: Human donor corneas obtained from eye banks were maintained in organ culture in the presence or absence of TTHX1114. Wounds in the corneas were created by quartering the corneas. The CEC monolayer was identified as a regular layer by Hoechst staining of the nuclear DNA with cell outlines delineated by immunohistochemical identification of ZO-1. Nuclei and nuclei incorporating 5-ethynyl-2'-deoxyuridine (EdU) were counted using ImageJ. Results: CECs in normal corneas in undisturbed monolayers had low, but measurable, rates of proliferation. CECs at the edge of a wound had higher rates of proliferation, probably due to the release of contact inhibition. TTHX1114 increased proliferation at wound edges. After 7 days of culture, proliferating CECs formed contiguous groups of labeled cells that did not migrate away from one another. TTHX1114-treated cells, including the EdU labeled proliferating cells, retained normal morphology, including cell/cell junction ZO-1 staining. Conclusions: Proliferation of CECs in organ-cultured corneas is low, but can be stimulated by wounding or by the administration of TTHX1114 with the effects of each being additive. The CEC monolayer appears to have a population of progenitor cells that are susceptible to stimulation.


Transcription factor Ets1 cooperates with estrogen receptor α to stimulate estradiol-dependent growth in breast cancer cells and tumors.

  • Brian T Kalet‎ et al.
  • PloS one‎
  • 2013‎

The purpose of this study was to explore the role of transcription factor Ets1 in estrogen receptor α (ERα)-positive breast cancer progression. We expressed human Ets1 or empty vector in four human ERα-positive breast cancer cell lines and observed increased colony formation. Further examination of cellular responses in stable Ets1-expressing MCF7 clones displayed increased proliferation, migration, and invasion. Ets1-expressing MCF7 tumors grown in the mammary fat pads of nude mice exhibited increased rates of tumor growth (7.36±2.47 mm(3)/day) compared to control MCF7 tumors (2.52±1.70 mm(3)/day), but maintained their dependence on estradiol for tumor growth. Proliferation marker Ki-67 staining was not different between control and Ets1-expressing tumors, but Ets1-expressing tumors exhibited large necrotic centers and elevated apoptotic staining. Ets1 was shown to cooperate with ERα and the p160 nuclear receptor coactivator (NCOA/SRC) family to increase activation of a consensus estrogen response element luciferase reporter construct. Ets1-expressing MCF7 cells also exhibited elevated expression of the ERα target genes, progesterone receptor and trefoil factor 1. Using GST-pulldown assays, Ets1 formed stable complexes containing both ERα and p160 nuclear receptor coactivators. Taken together, these data suggest that the Ets1-dependent estradiol sensitization of breast cancer cells and tumors may be partially due to the ability of Ets1 to cooperate with ERα and nuclear receptor coactivators to stimulate transcriptional activity of estrogen-dependent genes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: