Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 56,532 papers

Fragmentation trees reloaded.

  • Sebastian Böcker‎ et al.
  • Journal of cheminformatics‎
  • 2016‎

Untargeted metabolomics commonly uses liquid chromatography mass spectrometry to measure abundances of metabolites; subsequent tandem mass spectrometry is used to derive information about individual compounds. One of the bottlenecks in this experimental setup is the interpretation of fragmentation spectra to accurately and efficiently identify compounds. Fragmentation trees have become a powerful tool for the interpretation of tandem mass spectrometry data of small molecules. These trees are determined from the data using combinatorial optimization, and aim at explaining the experimental data via fragmentation cascades. Fragmentation tree computation does not require spectral or structural databases. To obtain biochemically meaningful trees, one needs an elaborate optimization function (scoring).


QuCo: quartet-based co-estimation of species trees and gene trees.

  • Maryam Rabiee‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2022‎

Phylogenomics faces a dilemma: on the one hand, most accurate species and gene tree estimation methods are those that co-estimate them; on the other hand, these co-estimation methods do not scale to moderately large numbers of species. The summary-based methods, which first infer gene trees independently and then combine them, are much more scalable but are prone to gene tree estimation error, which is inevitable when inferring trees from limited-length data. Gene tree estimation error is not just random noise and can create biases such as long-branch attraction.


Perovskite neural trees.

  • Hai-Tian Zhang‎ et al.
  • Nature communications‎
  • 2020‎

Trees are used by animals, humans and machines to classify information and make decisions. Natural tree structures displayed by synapses of the brain involves potentiation and depression capable of branching and is essential for survival and learning. Demonstration of such features in synthetic matter is challenging due to the need to host a complex energy landscape capable of learning, memory and electrical interrogation. We report experimental realization of tree-like conductance states at room temperature in strongly correlated perovskite nickelates by modulating proton distribution under high speed electric pulses. This demonstration represents physical realization of ultrametric trees, a concept from number theory applied to the study of spin glasses in physics that inspired early neural network theory dating almost forty years ago. We apply the tree-like memory features in spiking neural networks to demonstrate high fidelity object recognition, and in future can open new directions for neuromorphic computing and artificial intelligence.


Inferring species trees from incongruent multi-copy gene trees using the Robinson-Foulds distance.

  • Ruchi Chaudhary‎ et al.
  • Algorithms for molecular biology : AMB‎
  • 2013‎

Constructing species trees from multi-copy gene trees remains a challenging problem in phylogenetics. One difficulty is that the underlying genes can be incongruent due to evolutionary processes such as gene duplication and loss, deep coalescence, or lateral gene transfer. Gene tree estimation errors may further exacerbate the difficulties of species tree estimation.


"Correcting" Gene Trees to be More Like Species Trees Frequently Increases Topological Error.

  • Zhi Yan‎ et al.
  • Genome biology and evolution‎
  • 2023‎

The evolutionary histories of individual loci in a genome can be estimated independently, but this approach is error-prone due to the limited amount of sequence data available for each gene, which has led to the development of a diverse array of gene tree error correction methods which reduce the distance to the species tree. We investigate the performance of two representatives of these methods: TRACTION and TreeFix. We found that gene tree error correction frequently increases the level of error in gene tree topologies by "correcting" them to be closer to the species tree, even when the true gene and species trees are discordant. We confirm that full Bayesian inference of the gene trees under the multispecies coalescent model is more accurate than independent inference. Future gene tree correction approaches and methods should incorporate an adequately realistic model of evolution instead of relying on oversimplified heuristics.


Inferring species trees from gene trees in a radiation of California trapdoor spiders (Araneae, Antrodiaetidae, Aliatypus).

  • Jordan D Satler‎ et al.
  • PloS one‎
  • 2011‎

The California Floristic Province is a biodiversity hotspot, reflecting a complex geologic history, strong selective gradients, and a heterogeneous landscape. These factors have led to high endemic diversity across many lifeforms within this region, including the richest diversity of mygalomorph spiders (tarantulas, trapdoor spiders, and kin) in North America. The trapdoor spider genus Aliatypus encompasses twelve described species, eleven of which are endemic to California. Several Aliatypus species show disjunct distributional patterns in California (some are found on both sides of the vast Central Valley), and the genus as a whole occupies an impressive variety of habitats.


Gene expression trees in lymphoid development.

  • Ivan G Costa‎ et al.
  • BMC immunology‎
  • 2007‎

The regulatory processes that govern cell proliferation and differentiation are central to developmental biology. Particularly well studied in this respect is the lymphoid system due to its importance for basic biology and for clinical applications. Gene expression measured in lymphoid cells in several distinguishable developmental stages helps in the elucidation of underlying molecular processes, which change gradually over time and lock cells in either the B cell, T cell or Natural Killer cell lineages. Large-scale analysis of these gene expression trees requires computational support for tasks ranging from visualization, querying, and finding clusters of similar genes, to answering detailed questions about the functional roles of individual genes.


Trees and their seed networks: The social dynamics of urban fruit trees and implications for genetic diversity.

  • Aurore Rimlinger‎ et al.
  • PloS one‎
  • 2021‎

Trees are a traditional component of urban spaces where they provide ecosystem services critical to urban wellbeing. In the Tropics, urban trees' seed origins have rarely been characterized. Yet, understanding the social dynamics linked to tree planting is critical given their influence on the distribution of associated genetic diversity. This study examines elements of these dynamics (seed exchange networks) in an emblematic indigenous fruit tree species from Central Africa, the African plum tree (Dacryodes edulis, Burseraceae), within the urban context of Yaoundé. We further evaluate the consequences of these social dynamics on the distribution of the genetic diversity of the species in the city. Urban trees were planted predominantly using seeds sourced from outside the city, resulting in a level of genetic diversity as high in Yaoundé as in a whole region of production of the species. Debating the different drivers that foster the genetic diversity in planted urban trees, the study argues that cities and urban dwellers can unconsciously act as effective guardians of indigenous tree genetic diversity.


Broadly sampled multigene trees of eukaryotes.

  • Hwan Su Yoon‎ et al.
  • BMC evolutionary biology‎
  • 2008‎

Our understanding of the eukaryotic tree of life and the tremendous diversity of microbial eukaryotes is in flux as additional genes and diverse taxa are sampled for molecular analyses. Despite instability in many analyses, there is an increasing trend to classify eukaryotic diversity into six major supergroups: the 'Amoebozoa', 'Chromalveolata', 'Excavata', 'Opisthokonta', 'Plantae', and 'Rhizaria'. Previous molecular analyses have often suffered from either a broad taxon sampling using only single-gene data or have used multigene data with a limited sample of taxa. This study has two major aims: (1) to place taxa represented by 72 sequences, 61 of which have not been characterized previously, onto a well-sampled multigene genealogy, and (2) to evaluate the support for the six putative supergroups using two taxon-rich data sets and a variety of phylogenetic approaches.


Distance metrics for ranked evolutionary trees.

  • Jaehee Kim‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2020‎

Genealogical tree modeling is essential for estimating evolutionary parameters in population genetics and phylogenetics. Recent mathematical results concerning ranked genealogies without leaf labels unlock opportunities in the analysis of evolutionary trees. In particular, comparisons between ranked genealogies facilitate the study of evolutionary processes of different organisms sampled at multiple time periods. We propose metrics on ranked tree shapes and ranked genealogies for lineages isochronously and heterochronously sampled. Our proposed tree metrics make it possible to conduct statistical analyses of ranked tree shapes and timed ranked tree shapes or ranked genealogies. Such analyses allow us to assess differences in tree distributions, quantify estimation uncertainty, and summarize tree distributions. We show the utility of our metrics via simulations and an application in infectious diseases.


BioNames: linking taxonomy, texts, and trees.

  • Roderic D M Page‎
  • PeerJ‎
  • 2013‎

BioNames is a web database of taxonomic names for animals, linked to the primary literature and, wherever possible, to phylogenetic trees. It aims to provide a taxonomic "dashboard" where at a glance we can see a summary of the taxonomic and phylogenetic information we have for a given taxon and hence provide a quick answer to the basic question "what is this taxon?" BioNames combines classifications from the Global Biodiversity Information Facility (GBIF) and GenBank, images from the Encyclopedia of Life (EOL), animal names from the Index of Organism Names (ION), and bibliographic data from multiple sources including the Biodiversity Heritage Library (BHL) and CrossRef. The user interface includes display of full text articles, interactive timelines of taxonomic publications, and zoomable phylogenies. It is available at http://bionames.org.


Constructing phylogenetic trees using interacting pathways.

  • Peng Wan‎ et al.
  • Bioinformation‎
  • 2013‎

Phylogenetic trees are used to represent evolutionary relationships among biological species or organisms. The construction of phylogenetic trees is based on the similarities or differences of their physical or genetic features. Traditional approaches of constructing phylogenetic trees mainly focus on physical features. The recent advancement of high-throughput technologies has led to accumulation of huge amounts of biological data, which in turn changed the way of biological studies in various aspects. In this paper, we report our approach of building phylogenetic trees using the information of interacting pathways. We have applied hierarchical clustering on two domains of organisms-eukaryotes and prokaryotes. Our preliminary results have shown the effectiveness of using the interacting pathways in revealing evolutionary relationships.


Genomics-assisted breeding in fruit trees.

  • Hiroyoshi Iwata‎ et al.
  • Breeding science‎
  • 2016‎

Recent advancements in genomic analysis technologies have opened up new avenues to promote the efficiency of plant breeding. Novel genomics-based approaches for plant breeding and genetics research, such as genome-wide association studies (GWAS) and genomic selection (GS), are useful, especially in fruit tree breeding. The breeding of fruit trees is hindered by their long generation time, large plant size, long juvenile phase, and the necessity to wait for the physiological maturity of the plant to assess the marketable product (fruit). In this article, we describe the potential of genomics-assisted breeding, which uses these novel genomics-based approaches, to break through these barriers in conventional fruit tree breeding. We first introduce the molecular marker systems and whole-genome sequence data that are available for fruit tree breeding. Next we introduce the statistical methods for biparental linkage and quantitative trait locus (QTL) mapping as well as GWAS and GS. We then review QTL mapping, GWAS, and GS studies conducted on fruit trees. We also review novel technologies for rapid generation advancement. Finally, we note the future prospects of genomics-assisted fruit tree breeding and problems that need to be overcome in the breeding.


Semi-supervised oblique predictive clustering trees.

  • Tomaž Stepišnik‎ et al.
  • PeerJ. Computer science‎
  • 2021‎

Semi-supervised learning combines supervised and unsupervised learning approaches to learn predictive models from both labeled and unlabeled data. It is most appropriate for problems where labeled examples are difficult to obtain but unlabeled examples are readily available (e.g., drug repurposing). Semi-supervised predictive clustering trees (SSL-PCTs) are a prominent method for semi-supervised learning that achieves good performance on various predictive modeling tasks, including structured output prediction tasks. The main issue, however, is that the learning time scales quadratically with the number of features. In contrast to axis-parallel trees, which only use individual features to split the data, oblique predictive clustering trees (SPYCTs) use linear combinations of features. This makes the splits more flexible and expressive and often leads to better predictive performance. With a carefully designed criterion function, we can use efficient optimization techniques to learn oblique splits. In this paper, we propose semi-supervised oblique predictive clustering trees (SSL-SPYCTs). We adjust the split learning to take unlabeled examples into account while remaining efficient. The main advantage over SSL-PCTs is that the proposed method scales linearly with the number of features. The experimental evaluation confirms the theoretical computational advantage and shows that SSL-SPYCTs often outperform SSL-PCTs and supervised PCTs both in single-tree setting and ensemble settings. We also show that SSL-SPYCTs are better at producing meaningful feature importance scores than supervised SPYCTs when the amount of labeled data is limited.


Arbuscular Mycorrhizal Community in Roots and Nitrogen Uptake Patterns of Understory Trees Beneath Ectomycorrhizal and Non-ectomycorrhizal Overstory Trees.

  • Chikae Tatsumi‎ et al.
  • Frontiers in plant science‎
  • 2020‎

Nitrogen (N) is an essential plant nutrient, and plants can take up N from several sources, including via mycorrhizal fungal associations. The N uptake patterns of understory plants may vary beneath different types of overstory trees, especially through the difference in their type of mycorrhizal association (arbuscular mycorrhizal, AM; or ectomycorrhizal, ECM), because soil mycorrhizal community and N availability differ beneath AM (non-ECM) and ECM overstory trees (e.g., relatively low nitrate content beneath ECM overstory trees). To test this hypothesis, we examined six co-existing AM-symbiotic understory tree species common beneath both AM-symbiotic black locust (non-ECM) and ECM-symbiotic oak trees of dryland forests in China. We measured AM fungal community composition of roots and natural abundance stable isotopic composition of N (δ15N) in plant leaves, roots, and soils. The root mycorrhizal community composition of understory trees did not significantly differ between beneath non-ECM and ECM overstory trees, although some OTUs more frequently appeared beneath non-ECM trees. Understory trees beneath non-ECM overstory trees had similar δ15N values in leaves and soil nitrate, suggesting that they took up most of their nitrogen as nitrate. Beneath ECM overstory trees, understory trees had consistently lower leaf than root δ15N, suggesting they depended on mycorrhizal fungi for N acquisition since mycorrhizal fungi transfer isotopically light N to host plants. Additionally, leaf N concentrations in the understory trees were lower beneath ECM than the non-ECM overstory trees. Our results show that, without large differences in root mycorrhizal community, the N uptake patterns of understory trees vary between beneath different overstory trees.


Simplifying gene trees for easier comprehension.

  • Paul-Ludwig Lott‎ et al.
  • BMC bioinformatics‎
  • 2006‎

In the genomic age, gene trees may contain large amounts of data making them hard to read and understand. Therefore, an automated simplification is important.


Standard operating procedure for computing pangenome trees.

  • Lars Snipen‎ et al.
  • Standards in genomic sciences‎
  • 2010‎

We present the pan-genome tree as a tool for visualizing similarities and differences between closely related microbial genomes within a species or genus. Distance between genomes is computed as a weighted relative Manhattan distance based on gene family presence/absence. The weights can be chosen with emphasis on groups of gene families conserved to various degrees inside the pan-genome. The software is available for free as an R-package.


Identifying dramatic selection shifts in phylogenetic trees.

  • Karin S Dorman‎
  • BMC evolutionary biology‎
  • 2007‎

The rate of evolution varies spatially along genomes and temporally in time. The presence of evolutionary rate variation is an informative signal that often marks functional regions of genomes and historical selection events. There exist many tests for temporal rate variation, or heterotachy, that start by partitioning sampled sequences into two or more groups and testing rate homogeneity among the groups. I develop a Bayesian method to infer phylogenetic trees with a divergence point, or dramatic temporal shifts in selection pressure that affect many nucleotide sites simultaneously, located at an unknown position in the tree.


Reconstruction of cell lineage trees in mice.

  • Adam Wasserstrom‎ et al.
  • PloS one‎
  • 2008‎

The cell lineage tree of a multicellular organism represents its history of cell divisions from the very first cell, the zygote. A new method for high-resolution reconstruction of parts of such cell lineage trees was recently developed based on phylogenetic analysis of somatic mutations accumulated during normal development of an organism. In this study we apply this method in mice to reconstruct the lineage trees of distinct cell types. We address for the first time basic questions in developmental biology of higher organisms, namely what is the correlation between the lineage relation among cells and their (1) function, (2) physical proximity and (3) anatomical proximity. We analyzed B-cells, kidney-, mesenchymal- and hematopoietic-stem cells, as well as satellite cells, which are adult skeletal muscle stem cells isolated from their niche on the muscle fibers (myofibers) from various skeletal muscles. Our results demonstrate that all analyzed cell types are intermingled in the lineage tree, indicating that none of these cell types are single exclusive clones. We also show a significant correlation between the physical proximity of satellite cells within muscles and their lineage. Furthermore, we show that satellite cells obtained from a single myofiber are significantly clustered in the lineage tree, reflecting their common developmental origin. Lineage analysis based on somatic mutations enables performing high resolution reconstruction of lineage trees in mice and humans, which can provide fundamental insights to many aspects of their development and tissue maintenance.


Inferring biological networks with output kernel trees.

  • Pierre Geurts‎ et al.
  • BMC bioinformatics‎
  • 2007‎

Elucidating biological networks between proteins appears nowadays as one of the most important challenges in systems biology. Computational approaches to this problem are important to complement high-throughput technologies and to help biologists in designing new experiments. In this work, we focus on the completion of a biological network from various sources of experimental data.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: