Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,012 papers

Urinary extracellular vesicles and tubular transport.

  • Crissy F Rudolphi‎ et al.
  • Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association‎
  • 2023‎

Tubular transport is a key function of the kidney to maintain electrolyte and acid-base homeostasis. Urinary extracellular vesicles (uEVs) harbor water, electrolyte, and acid-base transporters expressed at the apical plasma membrane of tubular epithelial cells. Within the uEV proteome, the correlations between kidney and uEV protein abundances are strongest for tubular transporters. Therefore, uEVs offer a noninvasive approach to probing tubular transport in health and disease. Here, we review how kidney tubular physiology is reflected in uEVs and, conversely, how uEVs may modify tubular transport. Clinically, uEV tubular transporter profiling has been applied to rare diseases, such as inherited tubulopathies, but also to more common conditions, such as hypertension and kidney disease. Although uEVs hold the promise to advance the diagnosis of kidney disease to the molecular level, several biological and technical complexities must still be addressed. The future will tell whether uEV analysis will mainly be a powerful tool to study tubular physiology in humans or whether it will move forward to become a diagnostic bedside test.


Glucocorticoid affects dendritic transport of BDNF-containing vesicles.

  • Naoki Adachi‎ et al.
  • Scientific reports‎
  • 2015‎

Brain-derived neurotrophic factor (BDNF) is essential for neuronal survival, differentiation, and functions in the central nervous system (CNS). Because BDNF protein is sorted into secretory vesicles at the trans-Golgi network in the cell body after translation, transport of BDNF-containing vesicles to the secretion sites is an important process for its function. Here we examined the effect of dexamethasone (DEX), a synthetic glucocorticoid, on BDNF-containing vesicle transport and found that DEX decreased the proportion of stationary vesicles and increased velocity of the microtubule-based vesicle transport in dendrites of cortical neurons. Furthermore, DEX increased huntingtin (Htt) protein levels via glucocorticoid receptor (GR) activation, and reduction in the amount of Htt by a specific shRNA reversed the action of DEX on BDNF vesicle transport. Given that Htt protein is a positive regulator for the microtubule-dependent vesicular transport in neurons, our data suggest that glucocorticoid stimulates BDNF vesicle transport through upregulation of Htt protein levels.


ATAT1-enriched vesicles promote microtubule acetylation via axonal transport.

  • Aviel Even‎ et al.
  • Science advances‎
  • 2019‎

Microtubules are polymerized dimers of α- and β-tubulin that underlie a broad range of cellular activities. Acetylation of α-tubulin by the acetyltransferase ATAT1 modulates microtubule dynamics and functions in neurons. However, it remains unclear how this enzyme acetylates microtubules over long distances in axons. Here, we show that loss of ATAT1 impairs axonal transport in neurons in vivo, and cell-free motility assays confirm a requirement of α-tubulin acetylation for proper bidirectional vesicular transport. Moreover, we demonstrate that the main cellular pool of ATAT1 is transported at the cytosolic side of neuronal vesicles that are moving along axons. Together, our data suggest that axonal transport of ATAT1-enriched vesicles is the predominant driver of α-tubulin acetylation in axons.


Endo-lysosomal vesicles positive for Rab7 and LAMP1 are terminal vesicles for the transport of dextran.

  • William H Humphries‎ et al.
  • PloS one‎
  • 2011‎

The endo-lysosomal pathway is essential for intracellular transport and the degradation of extracellular cargo. The relationship between three populations of endo-lysosomal vesicles--Rab7-positive, LAMP1-positive, and both Rab7- and LAMP1-postive--was probed with fluorescence microscopy and single particle tracking. Of specific interest was determining if these vesicles were intermediate or terminal vesicles in the transport of extracellular cargo. We find that the major organelle in the endo-lysosomal pathway, both in terms of population and cargo transport, is positive for Rab7 and LAMP1. Dextran, a fluid phase cargo, shifts from localization within all three populations of vesicles at 30 minutes and 1 hour to primarily LAMP1- and Rab7/LAMP1-vesicles at longer times. This demonstrates that LAMP1- and Rab7/LAMP1-vesicles are terminal vesicles in the endo-lysosomal pathway. We tested two possible mechanisms for this distribution of cargo, delivery to mannose 6-phosphate receptor (M6PR)-negative vesicles and the fusion dynamics of individual vesicles. We find no correlation with M6PR but do find that Rab7-vesicles undergo significantly fewer fusion events than LAMP1- or Rab7/LAMP1-vesicles suggesting that the distribution of fluid phase cargo is driven by vesicle dynamics.


Bacterial membrane vesicles transport their DNA cargo into host cells.

  • Natalie J Bitto‎ et al.
  • Scientific reports‎
  • 2017‎

Bacterial outer membrane vesicles (OMVs) are extracellular sacs containing biologically active products, such as proteins, cell wall components and toxins. OMVs are reported to contain DNA, however, little is known about the nature of this DNA, nor whether it can be transported into host cells. Our work demonstrates that chromosomal DNA is packaged into OMVs shed by bacteria during exponential phase. Most of this DNA was present on the external surfaces of OMVs, with smaller amounts located internally. The DNA within the internal compartments of Pseudomonas aeruginosa OMVs were consistently enriched in specific regions of the bacterial chromosome, encoding proteins involved in virulence, stress response, antibiotic resistance and metabolism. Furthermore, we demonstrated that OMVs carry DNA into eukaryotic cells, and this DNA was detectable by PCR in the nuclear fraction of cells. These findings suggest a role for OMV-associated DNA in bacterial-host cell interactions and have implications for OMV-based vaccines.


DNA-Based Optical Quantification of Ion Transport across Giant Vesicles.

  • Marcus Fletcher‎ et al.
  • ACS nano‎
  • 2022‎

Accurate measurements of ion permeability through cellular membranes remains challenging due to the lack of suitable ion-selective probes. Here we use giant unilamellar vesicles (GUVs) as membrane models for the direct visualization of mass translocation at the single-vesicle level. Ion transport is indicated with a fluorescently adjustable DNA-based sensor that accurately detects sub-millimolar variations in K+ concentration. In combination with microfluidics, we employed our DNA-based K+ sensor for extraction of the permeation coefficient of potassium ions. We measured K+ permeability coefficients at least 1 order of magnitude larger than previously reported values from bulk experiments and show that permeation rates across the lipid bilayer increase in the presence of octanol. In addition, an analysis of the K+ flux in different concentration gradients allows us to estimate the complementary H+ flux that dissipates the charge imbalance across the GUV membrane. Subsequently, we show that our sensor can quantify the K+ transport across prototypical cation-selective ion channels, gramicidin A and OmpF, revealing their relative H+/K+ selectivity. Our results show that gramicidin A is much more selective to protons than OmpF with a H+/K+ permeability ratio of ∼104.


Inter-Golgi transport mediated by COPI-containing vesicles carrying small cargoes.

  • Patrina A Pellett‎ et al.
  • eLife‎
  • 2013‎

A core prediction of the vesicular transport model is that COPI vesicles are responsible for trafficking anterograde cargoes forward. In this study, we test this prediction by examining the properties and requirements of inter-Golgi transport within fused cells, which requires mobile carriers in order for exchange of constituents to occur. We report that both small soluble and membrane-bound secretory cargo and exogenous Golgi resident glycosyl-transferases are exchanged between separated Golgi. Large soluble aggregates, which traverse individual stacks, do not transfer between Golgi, implying that small cargoes (which can fit in a typical transport vesicle) are transported by a different mechanism. Super-resolution microscopy reveals that the carriers of both anterograde and retrograde cargoes are the size of COPI vesicles, contain coatomer, and functionally require ARF1 and coatomer for transport. The data suggest that COPI vesicles traffic both small secretory cargo and steady-state Golgi resident enzymes among stacked cisternae that are stationary. DOI:http://dx.doi.org/10.7554/eLife.01296.001.


Rab2 drives axonal transport of dense core vesicles and lysosomal organelles.

  • Viktor Karlovich Lund‎ et al.
  • Cell reports‎
  • 2021‎

Fast axonal transport of neuropeptide-containing dense core vesicles (DCVs), endolysosomal organelles, and presynaptic components is critical for maintaining neuronal functionality. How the transport of DCVs is orchestrated remains an important unresolved question. The small GTPase Rab2 mediates DCV biogenesis and endosome-lysosome fusion. Here, we use Drosophila to demonstrate that Rab2 also plays a critical role in bidirectional axonal transport of DCVs, endosomes, and lysosomal organelles, most likely by controlling molecular motors. We further show that the lysosomal motility factor Arl8 is required as well for axonal transport of DCVs, but unlike Rab2, it is also critical for DCV exit from cell bodies into axons. We also provide evidence that the upstream regulators of Rab2 and Arl8, Ema and BORC, activate these GTPases during DCV transport. Our results uncover the mechanisms underlying axonal transport of DCVs and reveal surprising parallels between the regulation of DCV and lysosomal motility.


Convection and extracellular matrix binding control interstitial transport of extracellular vesicles.

  • Peter A Sariano‎ et al.
  • Journal of extracellular vesicles‎
  • 2023‎

Extracellular vesicles (EVs) influence a host of normal and pathophysiological processes in vivo. Compared to soluble mediators, EVs can traffic a wide range of proteins on their surface including extracellular matrix (ECM) binding proteins, and their large size (∼30-150 nm) limits diffusion. We isolated EVs from the MCF10 series-a model human cell line of breast cancer progression-and demonstrated increasing presence of laminin-binding integrins α3β1 and α6β1 on the EVs as the malignant potential of the MCF10 cells increased. Transport of the EVs within a microfluidic device under controlled physiological interstitial flow (0.15-0.75 μm/s) demonstrated that convection was the dominant mechanism of transport. Binding of the EVs to the ECM enhanced the spatial concentration and gradient, which was mitigated by blocking integrins α3β1 and α6β1. Our studies demonstrate that convection and ECM binding are the dominant mechanisms controlling EV interstitial transport and should be leveraged in nanotherapeutic design.


Proton transport through influenza A virus M2 protein reconstituted in vesicles.

  • J Craig Moffat‎ et al.
  • Biophysical journal‎
  • 2008‎

Influenza A virus M2 protein is known to form acid-activated, proton-selective, amantadine-sensitive channels. We directly measured proton uptake in vesicles containing reconstituted M2 by monitoring external pH after addition of valinomycin to vesicles with 100-fold-diluted external [K(+)]. External pH typically increased by a few tenths of a pH unit over a few minutes after valinomycin addition, but proton uptake was not significantly altered by acidification. Under neutral conditions, external addition of 1 mM amantadine produced a reduction in flux consistent with randomly ordered channels; however, experimental variation is high with this method and the block was not statistically significant. Amantadine block was reduced at pH 5.4. In accord with Lin and Schroeder's study of reconstituted M2 using a pH-sensitive dye to monitor intravesicular pH, we conclude that bath pH weakly affects or does not significantly affect proton flow in the pH range 5.4-7.0 for the reconstituted system, contrary to results from electrophysiological studies. Theoretical analysis of the relaxation to Donnan equilibrium utilized for such vesicle uptake assays illuminates the appropriate timescale of the initial slope and an important limitation that must be placed on inferences about channel ion selectivity. The rise in pH over 10 s after ionophore addition yielded time-averaged single-channel conductances of 0.35 +/- 0.20 aS and 0.72 +/- 0.42 aS at pH 5.4 and 7.0, respectively, an order of magnitude lower than previously reported in vesicles. Assuming complete membrane incorporation and tetramerization of the reconstituted protein, such a low time-averaged conductance in the face of previously observed single-channel conductance (6 pS at pH 3) implies an open channel probability of 10(-6)-10(-4). Based on leakage of potassium from M2-containing vesicles, compared to protein-free vesicles, we conclude that M2 exhibits approximately 10(7) selectivity for hydrogen over potassium.


Cascades of transient pores in giant vesicles: line tension and transport.

  • Erdem Karatekin‎ et al.
  • Biophysical journal‎
  • 2003‎

Under ordinary circumstances, the membrane tension of a giant unilamellar vesicle is essentially nil. Using visible light, we stretch the vesicles, increasing the membrane tension until the membrane responds by the sudden opening of a large pore (several micrometers in size). Only a single pore is observed at a time in a given vesicle. However, a cascade of transient pores appear, up to 30-40 in succession, in the same vesicle. These pores are transient: they reseal within a few seconds as the inner liquid leaks out. The membrane tension, which is the driving force for pore opening, is relaxed with the opening of a pore and the leakage of the inner liquid; the line tension of the pore's edge is then able to drive the closure of a pore. We use fluorescent membrane probes and real-time videomicroscopy to study the dynamics of the pores. These can be visualized only if the vesicles are prepared in a viscous solution to slow down the leakout of the internal liquid. From measurements of the closure velocity of the pores, we are able to infer the line tension,. We have studied the effect of the shape of inclusion molecules on. Cholesterol, which can be modeled as an inverted cone-shaped molecule, increases the line tension when incorporated into the bilayers. Conversely, addition of cone-shaped detergents reduces. The effect of some detergents can be dramatic, reducing by two orders of magnitude, and increasing pore lifetimes up to several minutes. We give some examples of transport through transient pores and present a rough measurement of the leakout velocity of the inner liquid through a pore. We discuss how our results can be extended to less viscous aqueous solutions which are more relevant for biological systems and biotechnological applications.


Tumor protein D54 defines a new class of intracellular transport vesicles.

  • Gabrielle Larocque‎ et al.
  • The Journal of cell biology‎
  • 2020‎

Transport of proteins and lipids from one membrane compartment to another is via intracellular vesicles. We investigated the function of tumor protein D54 (TPD54/TPD52L2) and found that TPD54 was involved in multiple membrane trafficking pathways: anterograde traffic, recycling, and Golgi integrity. To understand how TPD54 controls these diverse functions, we used an inducible method to reroute TPD54 to mitochondria. Surprisingly, this manipulation resulted in the capture of many small vesicles (30 nm diameter) at the mitochondrial surface. Super-resolution imaging confirmed the presence of similarly sized TPD54-positive structures under normal conditions. It appears that TPD54 defines a new class of transport vesicle, which we term intracellular nanovesicles (INVs). INVs meet three criteria for functionality. They contain specific cargo, they have certain R-SNAREs for fusion, and they are endowed with a variety of Rab GTPases (16 out of 43 tested). The molecular heterogeneity of INVs and the diverse functions of TPD54 suggest that INVs have various membrane origins and a number of destinations. We propose that INVs are a generic class of transport vesicle that transfer cargo between these varied locations.


Molecular Transport and Growth of Lipid Vesicles Exposed to Antimicrobial Peptides.

  • Josefine Eilsø Nielsen‎ et al.
  • Langmuir : the ACS journal of surfaces and colloids‎
  • 2022‎

It is well-known that lipids constituting the cytoplasmic membrane undergo continuous reorganization to maintain the appropriate composition important for the integrity of the cell. The transport of lipids is controlled by mainly membrane proteins, but also spontaneous lipid transport between leaflets, lipid "flip-flop", occurs. These processes do not only occur spontaneously under equilibrium, but also promote structural rearrangements, morphological transitions, and growth processes. It has previously been shown that intravesicular lipid "flip-flop" and intervesicular lipid exchange under equilibrium can be deduced indirectly from contrast variation time-resolved small-angle neutron scattering (TR-SANS) where the molecules are "tagged" using hydrogen/deuterium (H/D) substitution. In this work, we show that this technique can be extended to simultaneously detect changes in the growth and the lipid "flip-flop" and exchange rates induced by a peptide additive on lipid vesicles consisting of DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine), d-DMPC (1,2-dimyristoyl-d54-sn-glycero-3-phosphocholine), DMPG (1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol)), and small amounts of DMPE-PEG (1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]). Changes in the overall size were independently monitored using dynamic light scattering (DLS). We find that the antimicrobial peptide, indolicidin, accelerates lipid transport and additionally induces limited vesicular growth. Moreover, in TR-SANS experiments using partially labeled lipid mixtures to separately study the kinetics of the lipid components, we show that, whereas peptide addition affects both lipids similarly, DMPG exhibits faster kinetics. We find that vesicular growth is mainly associated with peptide-mediated lipid reorganization that only slightly affects the overall exchange kinetics. This is confirmed by a TR-SANS experiment of vesicles preincubated with peptide showing that after pre-equilibration the kinetics are only slightly slower.


Retrograde Transport by Clathrin-Coated Vesicles is Involved in Intracellular Transport of PrPSc in Persistently Prion-Infected Cells.

  • Takeshi Yamasaki‎ et al.
  • Scientific reports‎
  • 2018‎

Intracellular dynamics of an abnormal isoform of prion protein (PrPSc) are tightly associated with prion propagation. However, the machineries involved in the intracellular trafficking of PrPSc are not fully understood. Our previous study suggested that PrPSc in persistently prion-infected cells dynamically circulates between endocytic-recycling compartments (ERCs) and peripheral regions of the cells. To investigate these machineries, we focused on retrograde transport from endosomes to the trans-Golgi network, which is one of the pathways involved in recycling of molecules. PrPSc was co-localized with components of clathrin-coated vesicles (CCVs) as well as those of the retromer complex, which are known as machineries for retrograde transport. Fractionation of intracellular compartments by density gradient centrifugation showed the presence of PrPSc and the components of CCVs in the same fractions. Furthermore, PrPSc was detected in CCVs isolated from intracellular compartments of prion-infected cells. Knockdown of clathrin interactor 1, which is one of the clathrin adaptor proteins involved in retrograde transport, did not change the amount of PrPSc, but it altered the distribution of PrPSc from ERCs to peripheral regions, including late endosomes/lysosomes. These data demonstrated that some PrPSc is transported from endosomes to ERCs by CCVs, which might be involved in the recycling of PrPSc.


Neuronal network maturation differently affects secretory vesicles and mitochondria transport in axons.

  • Eve Moutaux‎ et al.
  • Scientific reports‎
  • 2018‎

Studying intracellular dynamics in neurons is crucial to better understand how brain circuits communicate and adapt to environmental changes. In neurons, axonal secretory vesicles underlie various functions from growth during development to plasticity in the mature brain. Similarly, transport of mitochondria, the power plant of the cell, regulates both axonal development and synaptic homeostasis. However, because of their submicrometric size and rapid velocities, studying the kinetics of these organelles in projecting axons in vivo is technically challenging. In parallel, primary neuronal cultures are adapted to study axonal transport but they lack the physiological organization of neuronal networks, which in turn may bias observations. We previously developed a microfluidic platform to reconstruct a physiologically-relevant and functional corticostriatal network in vitro that is compatible with high-resolution videorecording of axonal trafficking. Here, using this system we report progressive changes in axonal transport kinetics of both dense core vesicles and mitochondria that correlate with network development and maturation. Interestingly, axonal flow of both types of organelles change in opposite directions, with rates increasing for vesicles and decreasing for mitochondria. Overall, our observations highlight the need for a better spatiotemporal control for the study of intracellular dynamics in order to avoid misinterpretations and improve reproducibility.


Self-propelling vesicles define glycolysis as the minimal energy machinery for neuronal transport.

  • María-Victoria Hinckelmann‎ et al.
  • Nature communications‎
  • 2016‎

The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) facilitates fast axonal transport in neurons. However, given that GAPDH does not produce ATP, it is unclear whether glycolysis per se is sufficient to propel vesicles. Although many proteins regulating transport have been identified, the molecular composition of transported vesicles in neurons has yet to be fully elucidated. Here we selectively enrich motile vesicles and perform quantitative proteomic analysis. In addition to the expected molecular motors and vesicular proteins, we find an enrichment of all the glycolytic enzymes. Using biochemical approaches and super-resolution microscopy, we observe that most glycolytic enzymes are selectively associated with vesicles and facilitate transport of vesicles in neurons. Finally, we provide evidence that mouse brain vesicles produce ATP from ADP and glucose, and display movement in a reconstituted in vitro transport assay of native vesicles. We conclude that transport of vesicles along microtubules can be autonomous.


Mycalolide B dissociates dynactin and abolishes retrograde axonal transport of dense-core vesicles.

  • Samantha L Cavolo‎ et al.
  • Molecular biology of the cell‎
  • 2015‎

Axonal transport is critical for maintaining synaptic transmission. Of interest, anterograde and retrograde axonal transport appear to be interdependent, as perturbing one directional motor often impairs movement in the opposite direction. Here live imaging of Drosophila and hippocampal neuron dense-core vesicles (DCVs) containing a neuropeptide or brain-derived neurotrophic factor shows that the F-actin depolymerizing macrolide toxin mycalolide B (MB) rapidly and selectively abolishes retrograde, but not anterograde, transport in the axon and the nerve terminal. Latrunculin A does not mimic MB, demonstrating that F-actin depolymerization is not responsible for unidirectional transport inhibition. Given that dynactin initiates retrograde transport and that amino acid sequences implicated in macrolide toxin binding are found in the dynactin component actin-related protein 1, we examined dynactin integrity. Remarkably, cell extract and purified protein experiments show that MB induces disassembly of the dynactin complex. Thus imaging selective retrograde transport inhibition led to the discovery of a small-molecule dynactin disruptor. The rapid unidirectional inhibition by MB suggests that dynactin is absolutely required for retrograde DCV transport but does not directly facilitate ongoing anterograde DCV transport in the axon or nerve terminal. More generally, MB's effects bolster the conclusion that anterograde and retrograde axonal transport are not necessarily interdependent.


Spermatozoa as a transport system of large unilamellar lipid vesicles into the oocyte.

  • N Geerts‎ et al.
  • Reproductive biomedicine online‎
  • 2014‎

In addition to their role as man-made membranes, vesicles continue to be investigated as carriers for drug delivery. While most research focuses on their injectable properties, here a new delivery strategy is proposed. It is shown that spermatozoa can transport vesicles of variable composition. For human spermatozoa, the vesicles started to show binding after 20 mol% of the nonbinding vesicle backbone lipids were substituted with positive, negative, cerebroside or ganglioside lipids. Vesicle binding is a dynamic process with constant 'on' and 'off' binding. The physiological and motility attributes of the spermatozoa are not affected by the attached vesicles. Sperm swimming characteristics changed only marginally. Also, the activation status of the acrosomal membrane, tested with the fluorescent probe Pisum sativum agglutinin, was not affected by vesicle binding. Moreover, the hyaluronic acid-binding test showed that viable, fully developed spermatozoa will attach and remain bound to hyaluronic acid-coated slides regardless of vesicle binding. Therefore a new 'hybrid' delivery system was created with human spermatozoa, and tested with a mouse IVF system. Large unilamellar vesicles physisorbed to mouse spermatozoa can not only penetrate the mouse oocytes in these proof-of-principle experiments, but also deliver the cargo placed within the vesicles.


Directed transport of neutrophil-derived extracellular vesicles enables platelet-mediated innate immune response.

  • Jan Rossaint‎ et al.
  • Nature communications‎
  • 2016‎

The innate immune response to bacterial infections requires the interaction of neutrophils and platelets. Here, we show that a multistep reciprocal crosstalk exists between these two cell types, ultimately facilitating neutrophil influx into the lung to eliminate infections. Activated platelets adhere to intravascular neutrophils through P-selectin/P-selectin glycoprotein ligand-1 (PSGL-1)-mediated binding, a primary interaction that allows platelets glycoprotein Ibα (GPIbα)-induced generation of neutrophil-derived extracellular vesicles (EV). EV production is directed by exocytosis and allows shuttling of arachidonic acid into platelets. EVs are then specifically internalized into platelets in a Mac1-dependent fashion, and relocated into intracellular compartments enriched in cyclooxygenase1 (Cox1), an enzyme processing arachidonic acid to synthesize thromboxane A2 (TxA2). Finally, platelet-derived-TxA2 elicits a full neutrophil response by inducing the endothelial expression of ICAM-1, intravascular crawling, and extravasation. We conclude that critical substrate-enzyme pairs are compartmentalized in neutrophils and platelets during steady state limiting non-specific inflammation, but bacterial infection triggers regulated EV shuttling resulting in robust inflammation and pathogen clearance.


Transport Via Macropinocytic Vesicles is Crucial for Productive Infection with Bombyx Mori Nucleopolyhedrovirus.

  • Jinshan Huang‎ et al.
  • Viruses‎
  • 2019‎

Bombyx mori nucleopolyhedrovirus (BmNPV) is a serious viral pathogen in the sericulture industry and enters host cells via macropinocytic endocytosis; however, the current understanding of the BmNPV entry mechanism remains limited. To confirm whether direct membrane fusion (DMF) results in productive BmNPV infection, DMF infectivity induced by low pH during BmNPV infection was investigated, and the infectious viral particle was traced using an eGFP-labeled virion. We found that BmNPV infection efficiently induced fluid uptake, which allowed BmNPV to bypass the cell membrane barrier via macropinocytosis. However, DMF induced by a low pH abolished the infection. While low pH is an essential condition for membrane fusion triggering, it is not sufficient for productive BmNPV infection, and DMF results in failure to transport the nucleocapsid into the nucleus. These results indicate that transport via macropinocytic vesicles facilitates BmNPV entry into the nucleus and contribute to our understanding of the BmNPV entry mechanism.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: