Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 7,872 papers

Genetic Transformation in Cryptococcus Species.

  • Ping Wang‎
  • Journal of fungi (Basel, Switzerland)‎
  • 2021‎

Genetic transformation plays an imperative role in our understanding of the biology in unicellular yeasts and filamentous fungi, such as Saccharomyces cerevisiae, Aspergillus nidulans, Cryphonectria parasitica, and Magnaporthe oryzae. It also helps to understand the virulence and drug resistance mechanisms of the pathogenic fungus Cryptococcus that causes cryptococcosis in health and immunocompromised individuals. Since the first attempt at DNA transformation in this fungus by Edman in 1992, various methods and techniques have been developed to introduce DNA into this organism and improve the efficiency of homology-mediated gene disruption. There have been many excellent summaries or reviews covering the subject. Here we highlight some of the significant achievements and additional refinements in the genetic transformation of Cryptococcus species.


Improving genetic transformation rates in honeybees.

  • M Otte‎ et al.
  • Scientific reports‎
  • 2018‎

Functional genetic studies in honeybees have been limited by transformation tools that lead to a high rate of transposon integration into the germline of the queens. A high transformation rate is required to reduce screening efforts because each treated queen needs to be maintained in a separate honeybee colony. Here, we report on further improvement of the transformation rate in honeybees by using a combination of different procedures. We employed a hyperactive transposase protein (hyPBaseapis), we tripled the amount of injected transposase mRNAs and we injected embryos into the first third (anterior part) of the embryo. These three improvements together doubled the transformation rate from 19% to 44%. We propose that the hyperactive transposase (hyPBaseapis) and the other steps used may also help to improve the transformation rates in other species in which screening and crossing procedures are laborious.


Genetic transformation of the dinoflagellate chloroplast.

  • Isabel C Nimmo‎ et al.
  • eLife‎
  • 2019‎

Coral reefs are some of the most important and ecologically diverse marine environments. At the base of the reef ecosystem are dinoflagellate algae, which live symbiotically within coral cells. Efforts to understand the relationship between alga and coral have been greatly hampered by the lack of an appropriate dinoflagellate genetic transformation technology. By making use of the plasmid-like fragmented chloroplast genome, we have introduced novel genetic material into the dinoflagellate chloroplast genome. We have shown that the introduced genes are expressed and confer the expected phenotypes. Genetically modified cultures have been grown for 1 year with subculturing, maintaining the introduced genes and phenotypes. This indicates that cells continue to divide after transformation and that the transformation is stable. This is the first report of stable chloroplast transformation in dinoflagellate algae.


The Genetic Transformation of Chlamydia pneumoniae.

  • Kensuke Shima‎ et al.
  • mSphere‎
  • 2018‎

We demonstrate the genetic transformation of Chlamydia pneumoniae using a plasmid shuttle vector system which generates stable transformants. The equine C. pneumoniae N16 isolate harbors the 7.5-kb plasmid pCpnE1. We constructed the plasmid vector pRSGFPCAT-Cpn containing a pCpnE1 backbone, plus the red-shifted green fluorescent protein (RSGFP), as well as the chloramphenicol acetyltransferase (CAT) gene used for the selection of plasmid shuttle vector-bearing C. pneumoniae transformants. Using the pRSGFPCAT-Cpn plasmid construct, expression of RSGFP in koala isolate C. pneumoniae LPCoLN was demonstrated. Furthermore, we discovered that the human cardiovascular isolate C. pneumoniae CV-6 and the human community-acquired pneumonia-associated C. pneumoniae IOL-207 could also be transformed with pRSGFPCAT-Cpn. In previous studies, it was shown that Chlamydia spp. cannot be transformed when the plasmid shuttle vector is constructed from a different plasmid backbone to the homologous species. Accordingly, we confirmed that pRSGFPCAT-Cpn could not cross the species barrier in plasmid-bearing and plasmid-free C. trachomatis, C. muridarum, C. caviae, C. pecorum, and C. abortus However, contrary to our expectation, pRSGFPCAT-Cpn did transform C. felis Furthermore, pRSGFPCAT-Cpn did not recombine with the wild-type plasmid of C. felis Taken together, we provide for the first time an easy-to-handle transformation protocol for C. pneumoniae that results in stable transformants. In addition, the vector can cross the species barrier to C. felis, indicating the potential of horizontal pathogenic gene transfer via a plasmid.IMPORTANCE The absence of tools for the genetic manipulation of C. pneumoniae has hampered research into all aspects of its biology. In this study, we established a novel reproducible method for C. pneumoniae transformation based on a plasmid shuttle vector system. We constructed a C. pneumoniae plasmid backbone shuttle vector, pRSGFPCAT-Cpn. The construct expresses the red-shifted green fluorescent protein (RSGFP) fused to chloramphenicol acetyltransferase in C. pneumoniaeC. pneumoniae transformants stably retained pRSGFPCAT-Cpn and expressed RSGFP in epithelial cells, even in the absence of chloramphenicol. The successful transformation in C. pneumoniae using pRSGFPCAT-Cpn will advance the field of chlamydial genetics and is a promising new approach to investigate gene functions in C. pneumoniae biology. In addition, we demonstrated that pRSGFPCAT-Cpn overcame the plasmid species barrier without the need for recombination with an endogenous plasmid, indicating the potential probability of horizontal chlamydial pathogenic gene transfer by plasmids between chlamydial species.


Methods for genetic transformation of filamentous fungi.

  • Dandan Li‎ et al.
  • Microbial cell factories‎
  • 2017‎

Filamentous fungi have been of great interest because of their excellent ability as cell factories to manufacture useful products for human beings. The development of genetic transformation techniques is a precondition that enables scientists to target and modify genes efficiently and may reveal the function of target genes. The method to deliver foreign nucleic acid into cells is the sticking point for fungal genome modification. Up to date, there are some general methods of genetic transformation for fungi, including protoplast-mediated transformation, Agrobacterium-mediated transformation, electroporation, biolistic method and shock-wave-mediated transformation. This article reviews basic protocols and principles of these transformation methods, as well as their advantages and disadvantages.


Genetic transformation technologies for the common dandelion, Taraxacum officinale.

  • Kasia Dinkeloo‎ et al.
  • Plant methods‎
  • 2021‎

Taraxacum officinale, or the common dandelion, is a widespread perennial species recognized worldwide as a common lawn and garden weed. Common dandelion is also cultivated for use in teas, as edible greens, and for use in traditional medicine. It produces latex and is closely related to the Russian dandelion, T. kok-saghyz, which is being developed as a rubber crop. Additionally, the vast majority of extant common dandelions reproduce asexually through apomictically derived seeds- an important goal for many major crops in modern agriculture. As such, there is increasing interest in the molecular control of important pathways as well as basic molecular biology and reproduction of common dandelion.


First steps towards underdominant genetic transformation of insect populations.

  • R Guy Reeves‎ et al.
  • PloS one‎
  • 2014‎

The idea of introducing genetic modifications into wild populations of insects to stop them from spreading diseases is more than 40 years old. Synthetic disease refractory genes have been successfully generated for mosquito vectors of dengue fever and human malaria. Equally important is the development of population transformation systems to drive and maintain disease refractory genes at high frequency in populations. We demonstrate an underdominant population transformation system in Drosophila melanogaster that has the property of being both spatially self-limiting and reversible to the original genetic state. Both population transformation and its reversal can be largely achieved within as few as 5 generations. The described genetic construct {Ud} is composed of two genes; (1) a UAS-RpL14.dsRNA targeting RNAi to a haploinsufficient gene RpL14 and (2) an RNAi insensitive RpL14 rescue. In this proof-of-principle system the UAS-RpL14.dsRNA knock-down gene is placed under the control of an Actin5c-GAL4 driver located on a different chromosome to the {Ud} insert. This configuration would not be effective in wild populations without incorporating the Actin5c-GAL4 driver as part of the {Ud} construct (or replacing the UAS promoter with an appropriate direct promoter). It is however anticipated that the approach that underlies this underdominant system could potentially be applied to a number of species.


Genetic alterations associated with malignant transformation of sporadic vestibular schwannoma.

  • Aril Løge Håvik‎ et al.
  • Acta neurochirurgica‎
  • 2022‎

Malignant peripheral nerve sheath tumor of the vestibulocochlear nerve (VN-MPNST) is exceedingly rare and carries a poor prognosis. Little is known about its underlying genetics and in particular the process of malignant transformation. There is an ongoing debate on whether the transformation is initiated by ionizing radiation. We present here the analysis and comparison of two post-radiation VN-MPNST and one undergoing spontaneous transformation.


Agrobacterium-Mediated Genetic Transformation of Taiwanese Isolates of Lemna aequinoctialis.

  • Kuang-Teng Wang‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2021‎

Duckweed (Lemna aequinoctialis) is one of the smallest flowering plants in the world. Due to its high reproduction rate and biomass, duckweeds are used as biofactors and feedstuff additives for livestock. It is also an ideal system for basic biological research and various practical applications. In this study, we attempt to establish a micropropagation technique and Agrobacterium-mediated transformation in L. aequinoctialis. The plant-growth regulator type and concentration and Agrobacterium-mediated transformation were evaluated for their effects on duckweed callus induction, proliferation, regeneration, and gene transformation efficiency. Calli were successfully induced from 100% of explants on Murashige and Skoog (MS) medium containing 25.0 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 2.0 μM thidiazuron (TDZ). MS medium containing 4.5 μM 2,4-D and 2.0 μM TDZ supported the long-lasting growth of calli. Fronds regenerated from 100% of calli on Schenk and Hildebrandt (SH) medium containing 1.0 μM 6-benzyladenine (6-BA). We also determined that 200 μM acetosyringone in the cocultivation medium for 1 day in the dark was crucial for transformation efficiency (up to 3 ± 1%). Additionally, we propose that both techniques will facilitate efficient high-throughput genetic manipulation in Lemnaceae.


Robust Genetic Transformation System to Obtain Non-chimeric Transgenic Chickpea.

  • Sudipta Shekhar Das Bhowmik‎ et al.
  • Frontiers in plant science‎
  • 2019‎

Chickpea transformation is an important component for the genetic improvement of this crop, achieved through modern biotechnological approaches. However, recalcitrant tissue cultures and occasional chimerism, encountered during transformation, hinder the efficient generation of transgenic chickpeas. Two key parameters, namely micro-injury and light emitting diode (LED)-based lighting were used to increase transformation efficiency. Early PCR confirmation of positive in vitro transgenic shoots, together with efficient grafting and an extended acclimatization procedure contributed to the rapid generation of transgenic plants. High intensity LED light facilitate chickpea plants to complete their life cycle within 9 weeks thus enabling up to two generations of stable transgenic chickpea lines within 8 months. The method was validated with several genes from different sources, either as single or multi-gene cassettes. Stable transgenic chickpea lines containing GUS (uidA), stress tolerance (AtBAG4 and TlBAG), as well as Fe-biofortification (OsNAS2 and CaNAS2) genes have successfully been produced.


Genetic Programs Driving Oncogenic Transformation: Lessons from in Vitro Models.

  • Eros Di Giorgio‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Cancer complexity relies on the intracellular pleiotropy of oncogenes/tumor suppressors and in the strong interplay between tumors and micro- and macro-environments. Here we followed a reductionist approach, by analyzing the transcriptional adaptations induced by three oncogenes (RAS, MYC, and HDAC4) in an isogenic transformation process. Common pathways, in place of common genes became dysregulated. From our analysis it emerges that, during the process of transformation, tumor cells cultured in vitro prime some signaling pathways suitable for coping with the blood supply restriction, metabolic adaptations, infiltration of immune cells, and for acquiring the morphological plasticity needed during the metastatic phase. Finally, we identified two signatures of genes commonly regulated by the three oncogenes that successfully predict the outcome of patients affected by different cancer types. These results emphasize that, in spite of the heterogeneous mutational burden among different cancers and even within the same tumor, some common hubs do exist. Their location, at the intersection of the various signaling pathways, makes a therapeutic approach exploitable.


Agrobacterium-Mediated Genetic Transformation of the Medicinal Plant Veratrum dahuricum.

  • Rui Ma‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2020‎

Veratrum dahuricum L. (Liliaceae), a monocotyledonous species distributed throughout the Changbai mountains of Northeast China, is pharmaceutically important, due to the capacity to produce the anticancer drug cyclopamine. An efficient transformation system of Veratrum dahuricum mediated with Agrobacterium tumefaciens is presented. Murashige and Skoog (MS) medium containing 8 mg/L picloram was used to induce embryogenic calli from immature embryos with 56% efficiency. A. tumefaciens LBA4404 carrying the bar gene driven by the cauliflower mosaic virus 35S promoter was employed for embryogenic callus inoculation. A. tumefaciens cell density OD660 = 0.8 for inoculation, half an hour infection period, and three days of co-culture duration were found to be optimal for callus transformation. Phosphinothricin (PPT, 16 mg/L) was used as the selectable agent, and a transformation efficiency of 15% (transgenic plants/100 infected calli) was obtained. The transgenic nature of the regenerated plants was confirmed by PCR and Southern blot analysis, and expression of the bar gene was detected by RT-PCR and Quick PAT/bar strips. The steroid alkaloids cyclopamine, jervine, and veratramine were detected in transgenic plants, in non-transformed and control plants collected from natural sites. The transformation system constitutes a prerequisite for the production of the pharmaceutically important anticancer drug cyclopamine by metabolic engineering of Veratrum.


Genetic transformation of the frog-killing chytrid fungus Batrachochytrium dendrobatidis.

  • Erik Kalinka‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2024‎

Batrachochytrium dendrobatidis (Bd), a causative agent of chytridiomycosis, is decimating amphibian populations around the world. Bd belongs to the chytrid lineage, a group of early-diverging fungi that are widely used to study fungal evolution. Like all chytrids, Bd develops from a motile form into a sessile, growth form, a transition that involves drastic changes in its cytoskeletal architecture. Efforts to study Bd cell biology, development, and pathogenicity have been limited by the lack of genetic tools with which to test hypotheses about underlying molecular mechanisms. Here, we report the development of a transient genetic transformation system for Bd. We used electroporation to deliver exogenous DNA into Bd cells and detected transgene expression for up to three generations under both heterologous and native promoters. We also adapted the transformation protocol for selection using an antibiotic resistance marker. Finally, we used this system to express fluorescent protein fusions and, as a proof of concept, expressed a genetically encoded probe for the actin cytoskeleton. Using live-cell imaging, we visualized the distribution and dynamics of polymerized actin at each stage of the Bd life cycle, as well as during key developmental transitions. This transformation system enables direct testing of key hypotheses regarding mechanisms of Bd pathogenesis. This technology also paves the way for answering fundamental questions of chytrid cell, developmental, and evolutionary biology.


The genetic intractability of Symbiodinium microadriaticum to standard algal transformation methods.

  • Jit Ern Chen‎ et al.
  • PloS one‎
  • 2019‎

Modern transformation and genome editing techniques have shown great success across a broad variety of organisms. However, no study of successfully applied genome editing has been reported in a dinoflagellate despite the first genetic transformation of Symbiodinium being published about 20 years ago. Using an array of different available transformation techniques, we attempted to transform Symbiodinium microadriaticum (CCMP2467), a dinoflagellate symbiont of reef-building corals, with the view to performing subsequent CRISPR-Cas9 mediated genome editing. Plasmid vectors designed for nuclear transformation containing the chloramphenicol resistance gene under the control of the CaMV p35S promoter as well as several putative endogenous promoters were used to test a variety of transformation techniques including biolistics, electroporation and agitation with silicon carbide whiskers. Chloroplast-targeted transformation was attempted using an engineered Symbiodinium chloroplast minicircle encoding a modified PsbA protein expected to confer atrazine resistance. We report that we have been unable to confer chloramphenicol or atrazine resistance on Symbiodinium microadriaticum strain CCMP2467.


Genetic Transformation of the Filamentous Fungus Pseudogymnoascus verrucosus of Antarctic Origin.

  • Anaí Díaz‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

Cold-adapted fungi isolated from Antarctica, in particular those belonging to the genus Pseudogymnoascus, are producers of secondary metabolites with interesting bioactive properties as well as enzymes with potential biotechnological applications. However, at genetic level, the study of these fungi has been hindered by the lack of suitable genetic tools such as transformation systems. In fungi, the availability of transformation systems is a key to address the functional analysis of genes related with the production of a particular metabolite or enzyme. To the best of our knowledge, the transformation of Pseudogymnoascus strains of Antarctic origin has not been achieved yet. In this work, we describe for the first time the successful transformation of a Pseudogymnoascus verrucosus strain of Antarctic origin, using two methodologies: the polyethylene glycol (PEG)-mediated transformation, and the electroporation of germinated conidia. We achieved transformation efficiencies of 15.87 ± 5.16 transformants per μg of DNA and 2.67 ± 1.15 transformants per μg of DNA for PEG-mediated transformation and electroporation of germinated conidia, respectively. These results indicate that PEG-mediated transformation is a very efficient method for the transformation of this Antarctic fungus. The genetic transformation of Pseudogymnoascus verrucosus described in this work represents the first example of transformation of a filamentous fungus of Antarctic origin.


Genetic Transformation in Peach (Prunus persica L.): Challenges and Ways Forward.

  • Angela Ricci‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2020‎

Almost 30 years have passed since the first publication reporting regeneration of transformed peach plants. Nevertheless, the general applicability of genetic transformation of this species has not yet been established. Many strategies have been tested in order to obtain an efficient peach transformation system. Despite the amount of time and the efforts invested, the lack of success has significantly limited the utility of peach as a model genetic system for trees, despite its relatively short generation time; small, high-quality genome; and well-studied genetic resources. Additionally, the absence of efficient genetic transformation protocols precludes the application of many biotechnological tools in peach breeding programs. In this review, we provide an overview of research on regeneration and genetic transformation in this species and summarize novel strategies and procedures aimed at producing transgenic peaches. Promising future approaches to develop a robust peach transformation system are discussed, focusing on the main bottlenecks to success including the low efficiency of A. tumefaciens-mediated transformation, the low level of correspondence between cells competent for transformation and those that have regenerative competence, and the high rate of chimerism in the few shoots that are produced following transformation.


Agrobacterium-Mediated Genetic Transformation of Wild Oryza Species Using Immature Embryos.

  • Sae Shimizu-Sato‎ et al.
  • Rice (New York, N.Y.)‎
  • 2020‎

Genetic transformation is one of the most important technologies for revealing or modulating gene function. It is used widely in both functional genomics and molecular breeding of rice. Demands on its use in wild Oryza species is increasing because of their high genetic diversity. Given the difficulties in genetic crosses between distantly related species, genetic transformation offers a way to alter or transfer genetic traits in wild rice accessions. However, transformation of wild Oryza accessions by conventional methods using calli induced from scutellum tissue of embryos in mature seeds often fails. Here, we report methods using immature embryos for the genetic transformation of a broad range of Oryza species. First, we investigated the ability of callus induction and regeneration from immature embryos of 192 accessions in 20 species under several culture conditions. We regenerated plants from immature embryos of 90 accessions in 16 species. Next, we optimized the conditions of Agrobacterium infection using a vector carrying the GFP gene driven by the maize ubiquitin promoter. GFP signals were observed in 51 accessions in 11 species. We analyzed the growth and seed set of transgenic plants of O. barthii, O. glumaepatula, O. rufipogon, and O. brachyantha. The plants grew to maturity and set seeds normally. Southern blot analyses using DNA from T0 plants showed that all GFP plants were derived from independent transformation events. We confirmed that the T-DNAs were transmitted to the next generation through the segregation of GFP signals in the T1 generation. These results show that many Oryza species can be transformed by using modified immature-embryo methods. This will accelerate the use of wild Oryza accessions in molecular genetic analyses and molecular breeding.


Genetic lesions associated with chronic lymphocytic leukemia transformation to Richter syndrome.

  • Giulia Fabbri‎ et al.
  • The Journal of experimental medicine‎
  • 2013‎

Richter syndrome (RS) derives from the rare transformation of chronic lymphocytic leukemia (CLL) into an aggressive lymphoma, most commonly of the diffuse large B cell lymphoma (DLBCL) type. The molecular pathogenesis of RS is only partially understood. By combining whole-exome sequencing and copy-number analysis of 9 CLL-RS pairs and of an extended panel of 43 RS cases, we show that this aggressive disease typically arises from the predominant CLL clone by acquiring an average of ∼20 genetic lesions/case. RS lesions are heterogeneous in terms of load and spectrum among patients, and include those involved in CLL progression and chemorefractoriness (TP53 disruption and NOTCH1 activation) as well as some not previously implicated in CLL or RS pathogenesis. In particular, disruption of the CDKN2A/B cell cycle regulator is associated with ∼30% of RS cases. Finally, we report that the genomic landscape of RS is significantly different from that of de novo DLBCL, suggesting that they represent distinct disease entities. These results provide insights into RS pathogenesis, and identify dysregulated pathways of potential diagnostic and therapeutic relevance.


Genetic transformation and analysis of rice OsAPx2 gene in Medicago sativa.

  • Qingjie Guan‎ et al.
  • PloS one‎
  • 2012‎

The OsAPx2 gene from rice was cloned to produce PBI121::OsAPx2 dual-expression plants, of which expression level would be increasing under stressful conditions. The enzyme ascorbate peroxidase (APX) in the leaves and roots of the plants increased with increasing exposure time to different sodium chloride (NaCl) and hydrogen peroxide (H(2)O(2))concentrations, as indicated by protein gel blot analysis. The increased enzyme yield improved the ability of the plants to resist the stress treatments. The OsAPx2 gene was localized in the cytoplasm of epidermal onion cells as indicated by the instantaneous expression of green fluorescence. An 80% regeneration rate was observed in Medicago sativa L. plants transformed with the OsAPx2 gene using Agrobacterium tumefaciens, as indicated by specific primer PCR. The OsAPx2 gene was expressed at the mRNA level and the individual M. sativa (T#1,T#2,T#5) were obtained through assaying the generation of positive T2 using RNA gel blot analysis. When the seeds of the wild type (WT) and the T2 (T#1,T#5) were incubated in culture containing MS with NaCl for 7 days, the results as shown of following: the root length of transgenic plant was longer than WT plants, the H(2)O(2) content in roots of WT was more than of transgenic plants, the APX activity under stresses increased by 2.89 times compared with the WT, the malondialdehyde (MDA) content of the WT was higher than the transgenic plants, the leaves of the WT turned yellow, but those of the transgenic plants remained green and remained healthy. The chlorophyll content in the WT leaves was less than in the transgenic plants, after soaking in solutions of H(2)O(2), sodium sulfite (Na(2)SO(3)), and sodium bicarbonate (NaHCO(3)). Therefore, the OsAPx2 gene overexpression in transgenic M. sativa improves the removal of H(2)O(2) and the salt-resistance compared with WT plants. A novel strain of M. sativa carrying a salt-resistance gene was obtained.


Pursuit of chlorovirus genetic transformation and CRISPR/Cas9-mediated gene editing.

  • Eric A Noel‎ et al.
  • PloS one‎
  • 2021‎

Genetic and molecular modifications of the large dsDNA chloroviruses, with genomes of 290 to 370 kb, would expedite studies to elucidate the functions of both identified and unidentified virus-encoded proteins. These plaque-forming viruses replicate in certain unicellular, eukaryotic chlorella-like green algae. However, to date, only a few of these algal species and virtually none of their viruses have been genetically manipulated due to lack of practical methods for genetic transformation and genome editing. Attempts at using Agrobacterium-mediated transfection of chlorovirus host Chlorella variabilis NC64A with a specially-designed binary vector resulted in successful transgenic cell selection based on expression of a hygromycin-resistance gene, initial expression of a green fluorescence gene and demonstration of integration of Agrobacterium T-DNA. However, expression of the integrated genes was soon lost. To develop gene editing tools for modifying specific chlorovirus CA-4B genes using preassembled Cas9 protein-sgRNA ribonucleoproteins (RNPs), we tested multiple methods for delivery of Cas9/sgRNA RNP complexes into infected cells including cell wall-degrading enzymes, electroporation, silicon carbide (SiC) whiskers, and cell-penetrating peptides (CPPs). In one experiment two independent virus mutants were isolated from macerozyme-treated NC64A cells incubated with Cas9/sgRNA RNPs targeting virus CA-4B-encoded gene 034r, which encodes a glycosyltransferase. Analysis of DNA sequences from the two mutant viruses showed highly targeted nucleotide sequence modifications in the 034r gene of each virus that were fully consistent with Cas9/RNP-directed gene editing. However, in ten subsequent experiments, we were unable to duplicate these results and therefore unable to achieve a reliable system to genetically edit chloroviruses. Nonetheless, these observations provide strong initial suggestions that Cas9/RNPs may function to promote editing of the chlorovirus genome, and that further experimentation is warranted and worthwhile.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: