Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 47 papers

The transcription factor 7 like 2‑binding protein TIP5 activates β‑catenin/transcription factor signaling in hepatocellular carcinoma.

  • Chushi Li‎ et al.
  • Molecular medicine reports‎
  • 2018‎

Aberrant activation of β‑catenin/transcription factor 7 like 2 (TCF7L2) signaling is frequently observed during the progression of hepatocellular carcinoma (HCC). However, regulation of the nuclear β‑catenin/TCF7L2 complex remains largely unknown. In the present study, immunoprecipitation and glutathione S‑transferase pull‑down assays identified transcription termination factor‑1 interacting protein 5 (TIP5) as a binding partner of TCF7L2. TIP5 activated β‑catenin/TCF7L2 signaling by enhancing the interaction between β‑catenin and TCF7L2. The results from quantitative polymerase chain reaction and western blot analysis indicated that TIP5 was upregulated in clinical HCC samples. In addition, TIP5 positively regulated the proliferation of HCC cells in the MTT assay, colony formation in the soft agar assay, migration in the Boyden chamber assay and epithelial‑mesenchymal transition of HCC cells by activating β‑catenin/TCF7L2 signaling. Therefore, the results of the present study demonstrate that TIP5 serves an oncogenic role in HCC by activating β‑catenin/TCF7L2 signaling, suggesting that TIP5 may be a promising therapeutic target for HCC.


TCF7L2 (Transcription Factor 7-Like 2) Regulation of GATA6 (GATA-Binding Protein 6)-Dependent and -Independent Vascular Smooth Muscle Cell Plasticity and Intimal Hyperplasia.

  • Roshni Srivastava‎ et al.
  • Arteriosclerosis, thrombosis, and vascular biology‎
  • 2019‎

Objective- TCF7L2 (transcription factor 7-like 2) is a Wnt-regulated transcription factor that maintains stemness and promotes proliferation in embryonic tissues and adult stem cells. Mice with a coronary artery disease-linked mutation in Wnt-coreceptor LRP6 (LDL receptor-related protein 6) exhibit vascular smooth muscle cell dedifferentiation and obstructive coronary artery disease, which are paradoxically associated with reduced TCF7L2 expression. We conducted a comprehensive study to explore the role of TCF7L2 in vascular smooth muscle cell differentiation and protection against intimal hyperplasia. Approach and Results- Using multiple mouse models, we demonstrate here that TCF7L2 promotes differentiation and inhibits proliferation of vascular smooth muscle cells. TCF7L2 accomplishes these effects by stabilization of GATA6 (GATA-binding protein 6) and upregulation of SM-MHC (smooth muscle cell myosin heavy chain) and cell cycle inhibitors. Accordingly, TCF7L2 haploinsufficient mice exhibited increased susceptibility to injury-induced hyperplasia, while mice overexpressing TCF7L2 were protected against injury-induced intimal hyperplasia compared with wild-type littermates. Consequently, the overexpression of TCF7L2 in LRP6 mutant mice rescued the injury-induced intimal hyperplasia. Conclusions- Our novel findings imply cell type-specific functional role of TCF7L2 and provide critical insight into mechanisms underlying the pathogenesis of intimal hyperplasia.


MicroRNA-22-3p targeted regulating transcription factor 7-like 2 (TCF7L2) constrains the Wnt/β-catenin pathway and malignant behavior in osteosarcoma.

  • YuanLiang Xue‎ et al.
  • Bioengineered‎
  • 2022‎

Various studies have manifested that microRNAs (miRNAs) are involved in the modulation of the occurrence and development of osteosarcoma (OS). However, whether miR-22-3p is associated with OS growth remains unclear. In the study, the potential molecular mechanisms of miR-22-3p in OS was explored. It was affirmed that miR-22-3p was associated with distant metastasis and tumor size in OS patients, and reduced in OS tissues and cells while transcription factor 7-like 2 (TCF7L2) was elevated. Elevated miR-22-3p repressed OS cell progression, and the Wnt/β-catenin pathway, while elevated TCF7L2 was opposite. MiR-22-3p targeted TCF7L2 in OS. In functional rescue experiments, knockdown of miR-22-3p on OS progression and promotion of Wnt/β-catenin were reversed by simultaneous knockdown of TCF7L2. Transplantation experiments in nude mice showed that elevated miR-22-3p repressed OS tumor growth and decreased TCF7L2, Wnt and β-catenin. Shortly, this study suggest that miR-22-3p refrains the Wnt/β-catenin pathway by targeting TCF7L2 and thereby preventing OS deterioration. MiR-22-3p/TCF7L2 axis is supposed to be a candidate molecular target for future OS treatment.


Transcription factor-7-like 2 (TCF7L2) gene acts downstream of the Lkb1/Stk11 kinase to control mTOR signaling, β cell growth, and insulin secretion.

  • Marie-Sophie Nguyen-Tu‎ et al.
  • The Journal of biological chemistry‎
  • 2018‎

Variants in the transcription factor-7-like 2 (TCF7L2/TCF4) gene, involved in Wnt signaling, are associated with type 2 diabetes. Loss of Tcf7l2 selectively from the β cell in mice has previously been shown to cause glucose intolerance and to lower β cell mass. Deletion of the tumor suppressor liver kinase B1 (LKB1/STK11) leads to β cell hyperplasia and enhanced glucose-stimulated insulin secretion, providing a convenient genetic model for increased β cell growth and function. The aim of this study was to explore the possibility that Tcf7l2 may be required for the effects of Lkb1 deletion on insulin secretion in the mouse β cell. Mice bearing floxed Lkb1 and/or Tcf7l2 alleles were bred with knockin mice bearing Cre recombinase inserted at the Ins1 locus (Ins1Cre), allowing highly β cell-selective deletion of either or both genes. Oral glucose tolerance was unchanged by the further deletion of a single Tcf7l2 allele in these cells. By contrast, mice lacking both Tcf7l2 alleles on this background showed improved oral glucose tolerance and insulin secretion in vivo and in vitro compared with mice lacking a single Tcf7l2 allele. Biallelic Tcf7l2 deletion also enhanced β cell proliferation, increased β cell mass, and caused changes in polarity as revealed by the "rosette-like" arrangement of β cells. Tcf7l2 deletion also increased signaling by mammalian target of rapamycin (mTOR), augmenting phospho-ribosomal S6 levels. We identified a novel signaling mechanism through which a modifier gene, Tcf7l2, lies on a pathway through which LKB1 acts in the β cell to restrict insulin secretion.


TCF7L2 and EGR1 synergistic activation of transcription of LCN2 via an ERK1/2-dependent pathway in esophageal squamous cell carcinoma cells.

  • Yan Zhao‎ et al.
  • Cellular signalling‎
  • 2019‎

High level expression of lipocalin 2 (LCN2) usually indicates poor prognosis in esophageal squamous cell carcinoma (ESCC) and many other cancers. Our previous study showed LCN2 promotes migration and invasion of ESCC cells through a novel positive feedback loop. However, the key transcription activation protein (KTAP) in the loop had not yet been identified. In this study, we first predicted the most probable KTAPs by bioinformatic analysis. We then assessed the transcription regulatory regions in the human LCN2 gene by fusing deletions of its 5'-flanking region to a dual-luciferase reporter. We found that the region -720/-200 containing transcription factor 7-like 2 (TCF7L2) (-273/-209) and early growth response 1 (EGR1) (-710/-616) binding sites is crucial for LCN2 promoter activity. Chromatin immunoprecipitation (ChIP) experiments demonstrated that TCF7L2 and EGR1 bound directly to their binding sites within the LCN2 promoter as KTAPs. Mechanistically, overexpression of TCF7L2 and EGR1 increased endogenous LCN2 expression via the ERK signaling pathway. Treatment with recombinant human LCN2 protein enhanced activation of the ERK pathway to facilitate endogenous LCN2 expression, as well as increase the expression level of TCF7L2 and EGR1. Treatment with the MEK inhibitor U0126 inhibited the activation by TCF7L2 or EGR1 overexpression. Moreover, overexpression of TCF7L2 or EGR1 accelerated the migration and invasion of ESCC cells. A synergistic effect was observed between TCF7L2 and EGR1 in amplifying the induction of LCN2 and enhancing migration and invasion. Taken together, our study indicates that TCF7L2 and EGR1 are the KTAPs of LCN2, within a positive "LCN2 → MEK/ERK → LCN2" path, to promote the migration and invasion of ESCC cells. Based on their clinicopathological significance, LCN2 and its two expression regulators TCF7L2 and ERG1 might be therapeutic targets for ESCC.


MicroRNA-194: a novel regulator of glucagon-like peptide-1 synthesis in intestinal L cells.

  • Jiao Wang‎ et al.
  • Cell death & disease‎
  • 2021‎

In the status of obesity, the glucagon-like peptide-1 (GLP-1) level usually declines and results in metabolic syndrome. This study aimed to investigate the intracellular mechanism of GLP-1 synthesis in L cells from the perspective of microRNA (miRNA). In the present study, we found that GLP-1 level was down-regulated in the plasma and ileum tissues of obese mice, while the ileac miR-194 expression was up-regulated. In vitro experiments indicated that miR-194 overexpression down-regulated GLP-1 level, mRNA levels of proglucagon gene (gcg) and prohormone convertase 1/3 gene (pcsk1), and the nuclear protein level of beta-catenin (β-catenin). Further investigation confirmed that β-catenin could promote gcg transcription through binding to transcription factor 7-like 2 (TCF7L2). miR-194 suppressed gcg mRNA level via negatively regulating TCF7L2 expression. What's more, forkhead box a1 (Foxa1) could bind to the promoter of pcsk1 and enhanced its transcription. miR-194 suppressed pcsk1 transcription through targeting Foxa1. Besides, the interference of miR-194 reduced palmitate (PA)-induced cell apoptosis and the anti-apoptosis effect of miR-194 inhibitor was abolished by TCF7L2 knockdown. Finally, in HFD-induced obese mice, the silence of miR-194 significantly elevated GLP-1 level and improved the metabolic symptoms caused by GLP-1 deficiency. To sum up, our study found that miR-194 suppressed GLP-1 synthesis in L cells via inhibiting TCF7L2-mediated gcg transcription and Foxa1-mediated pcsk1 transcription. Meanwhile, miR-194 took part in the PA-induced apoptosis of L cells.


Role of TCF7L2 risk variant and dietary fibre intake on incident type 2 diabetes.

  • G Hindy‎ et al.
  • Diabetologia‎
  • 2012‎

The T allele of transcription factor 7-like 2 gene variant, TCF7L2 rs7903146, increases the risk of type 2 diabetes by 40-50%. As TCF7L2 rs7903146 has been associated with diminished incretin effect we investigated whether interaction between dietary intake of carbohydrate, fat, protein or fibre and this variant affects the risk of type 2 diabetes.


Common variants in TCF7L2 and CDKAL1 genes and risk of type 2 diabetes mellitus in Egyptians.

  • Dalia El-Lebedy‎ et al.
  • Journal, genetic engineering & biotechnology‎
  • 2016‎

In this work we studied association of common variants in transcription factor 7-like 2 (TCF7L2) and cyclin-dependent kinase 5 regulatory subunit-associated protein 1-like 1 (CDKAL1) genes with type 2 diabetes mellitus (T2DM) in Egyptians.


Two novel type 2 diabetes loci revealed through integration of TCF7L2 DNA occupancy and SNP association data.

  • Matthew E Johnson‎ et al.
  • BMJ open diabetes research & care‎
  • 2014‎

The transcription factor 7-like 2 (TCF7L2) locus is strongly implicated in the pathogenesis of type 2 diabetes (T2D). We previously mapped the genomic regions bound by TCF7L2 using ChIP (chromatin immunoprecipitation)-seq in the colorectal carcinoma cell line, HCT116, revealing an unexpected highly significant over-representation of genome-wide association studies (GWAS) loci associated primarily with endocrine (in particular T2D) and cardiovascular traits.


Association of Canonical Wnt/β-Catenin Pathway and Type 2 Diabetes: Genetic Epidemiological Study in Han Chinese.

  • Jinjin Wang‎ et al.
  • Nutrients‎
  • 2015‎

We aimed to investigate the associations of polymorphisms in Canonical Wnt/β-catenin pathway (WNT) signaling genes (including low-density lipoprotein-related protein 5 [LRP5] and transcription factor 7-like 2 [TCF7L2] gene) and the downstream gene glucagon (GCG) and risk of type 2 diabetes mellitus (T2DM) in a Han Chinese population. We genotyped the single nucleotide polymorphisms (SNPs) for LRP5, TCF7L2 and GCG gene were genotyped in 1842 patients with T2DM and 7777 normal glucose-tolerant healthy subjects. We used multifactor dimensionality reduction (MDR) and multiplicative logistic regression adjusting for sex, age, anthropometric measurements and lipid levels to investigate the gene-gene interactions for the risk of T2DM. Among the five SNPs in LRP5, the recessive model of rs7102273 and the haplotype GCTCC were associated with T2DM risk; the haplotype GCTTC was associated with decreased risk. For TCF7L2, the rs11196218 genotype GA and the haplotype CCG, TTG, TTA were associated with T2DM risk; whereas, the haplotype CTG and TCG were associated with decreased risk. Both MDR and multiplicative logistic regression revealed potential gene-gene interactions among LRP5, TCF7L2, and GCG associated with T2DM. The WNT signaling pathway may play a significant role in risk of T2DM in Han Chinese people.


Lower Dietary Intake of Plant Protein Is Associated with Genetic Risk of Diabetes-Related Traits in Urban Asian Indian Adults.

  • Sooad Alsulami‎ et al.
  • Nutrients‎
  • 2021‎

The increasing prevalence of type 2 diabetes among South Asians is caused by a complex interplay between environmental and genetic factors. We aimed to examine the impact of dietary and genetic factors on metabolic traits in 1062 Asian Indians. Dietary assessment was performed using a validated semi-quantitative food frequency questionnaire. Seven single nucleotide polymorphisms (SNPs) from the Transcription factor 7-like 2 and fat mass and obesity-associated genes were used to construct two metabolic genetic risk scores (GRS): 7-SNP and 3-SNP GRSs. Both 7-SNP GRS and 3-SNP GRS were associated with a higher risk of T2D (p = 0.0000134 and 0.008, respectively). The 3-SNP GRS was associated with higher waist circumference (p = 0.010), fasting plasma glucose (FPG) (p = 0.002) and glycated haemoglobin (HbA1c) (p = 0.000066). There were significant interactions between 3-SNP GRS and protein intake (% of total energy intake) on FPG (Pinteraction = 0.011) and HbA1c (Pinteraction = 0.007), where among individuals with lower plant protein intake (<39 g/day) and those with >1 risk allele had higher FPG (p = 0.001) and HbA1c (p = 0.00006) than individuals with ≤1 risk allele. Our findings suggest that lower plant protein intake may be a contributor to the increased ethnic susceptibility to diabetes described in Asian Indians. Randomised clinical trials with increased plant protein in the diets of this population are needed to see whether the reduction of diabetes risk occurs in individuals with prediabetes.


Impact of nine common type 2 diabetes risk polymorphisms in Asian Indian Sikhs: PPARG2 (Pro12Ala), IGF2BP2, TCF7L2 and FTO variants confer a significant risk.

  • Dharambir K Sanghera‎ et al.
  • BMC medical genetics‎
  • 2008‎

Recent genome-wide association (GWA) studies have identified several unsuspected genes associated with type 2 diabetes (T2D) with previously unknown functions. In this investigation, we have examined the role of 9 most significant SNPs reported in GWA studies: [peroxisome proliferator-activated receptor gamma 2 (PPARG2; rs 1801282); insulin-like growth factor two binding protein 2 (IGF2BP2; rs 4402960); cyclin-dependent kinase 5, a regulatory subunit-associated protein1-like 1 (CDK5; rs7754840); a zinc transporter and member of solute carrier family 30 (SLC30A8; rs13266634); a variant found near cyclin-dependent kinase inhibitor 2A (CDKN2A; rs10811661); hematopoietically expressed homeobox (HHEX; rs 1111875); transcription factor-7-like 2 (TCF7L2; rs 10885409); potassium inwardly rectifying channel subfamily J member 11(KCNJ11; rs 5219); and fat mass obesity-associated gene (FTO; rs 9939609)].


Tcf7l2 in hepatocytes regulates de novo lipogenesis in diet-induced non-alcoholic fatty liver disease in mice.

  • Da Som Lee‎ et al.
  • Diabetologia‎
  • 2023‎

Non-alcoholic fatty liver disease (NAFLD) associated with type 2 diabetes may more easily progress towards severe forms of non-alcoholic steatohepatitis (NASH) and cirrhosis. Although the Wnt effector transcription factor 7-like 2 (TCF7L2) is closely associated with type 2 diabetes risk, the role of TCF7L2 in NAFLD development remains unclear. Here, we investigated how changes in TCF7L2 expression in the liver affects hepatic lipid metabolism based on the major risk factors of NAFLD development.


N-myc downstream regulated gene 1 suppresses osteoblast differentiation through inactivating Wnt/β-catenin signaling.

  • Xiaoli Shi‎ et al.
  • Stem cell research & therapy‎
  • 2022‎

N-myc downstream regulated gene 1 (NDRG1) plays a role in a variety of biological processes including differentiation of osteoclasts. However, it is not known if and how NDRG1 regulates osteogenic differentiation of marrow stromal progenitor cells.


Targeted deletion of Tcf7l2 in adipocytes promotes adipocyte hypertrophy and impaired glucose metabolism.

  • Gisela Geoghegan‎ et al.
  • Molecular metabolism‎
  • 2019‎

Activation of the Wnt-signaling pathway is known to inhibit differentiation in adipocytes. However, there is a gap in our understanding of the transcriptional network regulated by components of the Wnt-signaling pathway during adipogenesis and in adipocytes during postnatal life. The key intracellular effectors of the Wnt-signaling pathway occur through TCF transcription factors such as TCF7L2 (transcription factor-7-like 2). Several genetic variants in proximity to TCF7L2 have been linked to type 2 diabetes through genome-wide association studies in various human populations. Our work aims to functionally characterize the adipocyte specific gene program regulated by TCF7L2 and understand how this program regulates metabolism.


The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer.

  • Mark M Pomerantz‎ et al.
  • Nature genetics‎
  • 2009‎

An inherited variant on chromosome 8q24, rs6983267, is significantly associated with cancer pathogenesis. We present evidence that the region harboring this variant is a transcriptional enhancer, that the alleles of rs6983267 differentially bind transcription factor 7-like 2 (TCF7L2) and that the risk region physically interacts with the MYC proto-oncogene. These data provide strong support for a biological mechanism underlying this non-protein-coding risk variant.


A targeted approach to genome-wide studies reveals new genetic associations with central corneal thickness.

  • Matthew D Benson‎ et al.
  • Molecular vision‎
  • 2017‎

To evaluate the ability of a targeted genome-wide association study (GWAS) to identify genes associated with central corneal thickness (CCT).


Investigating a multigene prognostic assay based on significant pathways for Luminal A breast cancer through gene expression profile analysis.

  • Haiyan Gao‎ et al.
  • Oncology letters‎
  • 2018‎

The present study aimed to investigate potential recurrence-risk biomarkers based on significant pathways for Luminal A breast cancer through gene expression profile analysis. Initially, the gene expression profiles of Luminal A breast cancer patients were downloaded from The Cancer Genome Atlas database. The differentially expressed genes (DEGs) were identified using a Limma package and the hierarchical clustering analysis was conducted for the DEGs. In addition, the functional pathways were screened using Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses and rank ratio calculation. The multigene prognostic assay was exploited based on the statistically significant pathways and its prognostic function was tested using train set and verified using the gene expression data and survival data of Luminal A breast cancer patients downloaded from the Gene Expression Omnibus. A total of 300 DEGs were identified between good and poor outcome groups, including 176 upregulated genes and 124 downregulated genes. The DEGs may be used to effectively distinguish Luminal A samples with different prognoses verified by hierarchical clustering analysis. There were 9 pathways screened as significant pathways and a total of 18 DEGs involved in these 9 pathways were identified as prognostic biomarkers. According to the survival analysis and receiver operating characteristic curve, the obtained 18-gene prognostic assay exhibited good prognostic function with high sensitivity and specificity to both the train and test samples. In conclusion the 18-gene prognostic assay including the key genes, transcription factor 7-like 2, anterior parietal cortex and lymphocyte enhancer factor-1 may provide a new method for predicting outcomes and may be conducive to the promotion of precision medicine for Luminal A breast cancer.


Sfrp5 increases glucose-stimulated insulin secretion in the rat pancreatic beta cell line INS-1E.

  • Maren Carstensen-Kirberg‎ et al.
  • PloS one‎
  • 2019‎

Previous studies reported that secreted frizzled-related protein-5 (Sfrp5) decreases beta cell proliferation and increases fasting insulin levels, but studies on direct effects of Sfrp5 on insulin secretion and its underlying mechanisms are missing. This study examined effects of Sfrp5 on (i) beta cell viability and proliferation, (ii) basal and glucose-stimulated insulin secretion and (iii) canonical and non-canonical Wnt signalling pathways. We incubated rat INS-1E cells with 0.1, 1 or 5 μg/ml recombinant Sfrp5 for 24h. We measured basal and glucose-stimulated insulin secretion at glucose concentrations of 2.5 and 20 mmol/l. Phosphorylated and total protein content as well as mRNA levels of markers of cell proliferation, canonical and non-canonical Wnt signalling pathways were examined using Western blotting and real-time PCR. Differences between treatments were analysed by repeated measurement one-way ANOVA or Friedman's test followed by correction for multiple testing using the Benjamini-Hochberg procedure. At 5 μg/ml, Sfrp5 reduced mRNA levels of cyclin-B1 by 25% (p<0.05). At 1 and 5 μg/ml, Sfrp5 increased glucose-stimulated insulin secretion by 24% and by 34% (both p<0.05), respectively, but had no impact on basal insulin secretion. Sfrp5 reduced the phosphorylation of the splicing forms p46 and p54 of JNK by 39% (p<0.01) and 49% (p<0.05), respectively. In conclusion, Sfrp5 reduced markers of cell proliferation, but increased in parallel dose-dependently glucose-stimulated insulin secretion in INS-1E cells. This effect is likely mediated by reduced JNK activity, an important component of the non-canonical Wnt signalling pathway.


MESP2 binds competitively to TCF4 to suppress gastric cancer progression by regulating the SKP2/p27 axis.

  • Lingjun Ge‎ et al.
  • Cell death discovery‎
  • 2023‎

Gastric cancer (GC) is a major cause of human deaths worldwide, and is notorious for its high incidence and mortality rates. Mesoderm Posterior Basic Helix-loop-helix (bHLH) transcription factor 2 (MESP2) acts as a transcription factor with a conserved bHLH domain. However, whether MESP2 contributes to tumorigenesis and its potential molecular mechanisms, remain unexplored. Noticeably, MESP2 expression levels are decreased in GC tissues and cell lines compared to those in normal tissue. Further, in vitro and in vivo experiments have confirmed that MESP2 overexpression suppresses GC cell growth, migration, and invasion, whereas MESP2 knockdown results in the exact opposite. Here, we present the first report that MESP2 binds to transcription factor 7-like 2 (TCF7L2/TCF4) to inhibit the activation of the TCF4/beta-catenin transcriptional complex, decrease the occupancy of the complex on the S-phase kinase Associated Protein 2 (SKP2) promoter, and promote p27 accumulation. MESP2 knockdown facilitated tumorigenesis, which was partially suppressed by SKP2 knockdown. Taken together, we conclude that MESP2 binds competitively to TCF4 to suppress GC progression by regulating the SKP2/p27 axis, thus offering a potential therapeutic strategy for future treatment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: