Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,898 papers

Eviction notice served on Toxoplasma.

  • Juan C Sánchez-Arcila‎ et al.
  • eLife‎
  • 2022‎

The gene RARRES3 uses an unexpected strategy to eliminate the parasite Toxoplasma gondii from human cells.


Toxoplasma gondii Seroprevalence and Trends in Women Presenting for Toxoplasma Screening in South-West Romania.

  • Cristiana Luiza Radoi‎ et al.
  • Microorganisms‎
  • 2023‎

Toxoplasmosis, caused by the obligate intracellular protozoan parasite Toxoplasma gondii (T. gondii), is a globally prevalent zoonotic disease with potentially severe implications for immunocompromised individuals, pregnant women, and their fetuses/children. This study examined the prevalence of anti-T. gondii IgM and IgG antibodies in two groups of childbearing age women, including 653 participants in Group 1 (2013-2016) and 3221 participants in Group 2 (2019-2022). Our results revealed a decrease in the overall positivity rate of anti-T. gondii IgM antibodies from 2.32% to 1.06%, suggesting improved public health interventions over time. However, there were variations among different age groups and between rural and urban environments, with a significant decrease in urban areas across all age groups from Group 1 to Group 2. Regarding anti-T. gondii IgG antibodies, we did not observe a significant change in the seropositivity rate between the two groups. In the rural population with an age group over 35 years, we observed the highest positivity rate in Group 2. This study provided information on the risk factors and burden of toxoplasmosis in women of childbearing age with data that can be valuable to public health policies and the planning of healthcare measures for effective toxoplasmosis management.


Opposing Transcriptional Mechanisms Regulate Toxoplasma Development.

  • Dong-Pyo Hong‎ et al.
  • mSphere‎
  • 2017‎

The Toxoplasma biology that underlies human chronic infection is developmental conversion of the acute tachyzoite stage into the latent bradyzoite stage. We investigated the roles of two alkaline-stress-induced ApiAP2 transcription factors, AP2IV-3 and AP2IX-9, in bradyzoite development. These factors were expressed in two overlapping waves during bradyzoite development, with AP2IX-9 increasing expression earlier than AP2IV-3, which peaked as AP2IX-9 expression was declining. Disruption of the AP2IX-9 gene enhanced, while deletion of AP2IV-3 gene decreased, tissue cyst formation, demonstrating that these factors have opposite functions in bradyzoite development. Conversely, conditional overexpression of FKBP-modified AP2IX-9 or AP2IV-3 with the small molecule Shield 1 had a reciprocal effect on tissue cyst formation, confirming the conclusions of the knockout experiments. The AP2IX-9 repressor and AP2IV-3 activator tissue cyst phenotypes were borne out in gene expression studies that determined that many of the same bradyzoite genes were regulated in an opposite manner by these transcription factors. A common gene target was the canonical bradyzoite marker BAG1, and mechanistic experiments determined that, like AP2IX-9, AP2IV-3 regulates a BAG1 promoter-luciferase reporter and specifically binds the BAG1 promoter in parasite chromatin. Altogether, these results suggest that the AP2IX-9 transcriptional repressor and the AP2IV-3 transcriptional activator likely compete to control bradyzoite gene expression, which may permit Toxoplasma to better adapt to different tissue environments and select a suitable host cell for long-term survival of the dormant tissue cyst. IMPORTANCEToxoplasma infections are lifelong because of the development of the bradyzoite tissue cyst, which is effectively invisible to the immune system. Despite the important clinical consequences of this developmental pathway, the molecular basis of the switch mechanisms that control tissue cyst formation is still poorly understood. Significant changes in gene expression are associated with tissue cyst development, and ApiAP2 transcription factors are an important mechanism regulating this developmental transcriptome. However, the molecular composition of these ApiAP2 complexes and the operating principles of ApiAP2 mechanisms are not well defined. Here we establish that competing ApiAP2 transcriptional mechanisms operate to regulate this clinically important developmental pathway.


The transcriptome of Toxoplasma gondii.

  • Jay R Radke‎ et al.
  • BMC biology‎
  • 2005‎

Toxoplasma gondii gives rise to toxoplasmosis, among the most prevalent parasitic diseases of animals and man. Transformation of the tachzyoite stage into the latent bradyzoite-cyst form underlies chronic disease and leads to a lifetime risk of recrudescence in individuals whose immune system becomes compromised. Given the importance of tissue cyst formation, there has been intensive focus on the development of methods to study bradyzoite differentiation, although the molecular basis for the developmental switch is still largely unknown.


Protein nanovaccine confers robust immunity against Toxoplasma.

  • Kamal El Bissati‎ et al.
  • NPJ vaccines‎
  • 2017‎

We designed and produced a self-assembling protein nanoparticle. This self-assembling protein nanoparticle contains five CD8+ HLA-A03-11 supertypes-restricted epitopes from antigens expressed during Toxoplasma gondii's lifecycle, the universal CD4+ T cell epitope PADRE, and flagellin as a scaffold and TLR5 agonist. These CD8+ T cell epitopes were separated by N/KAAA spacers and optimized for proteasomal cleavage. Self-assembling protein nanoparticle adjuvanted with TLR4 ligand-emulsion GLA-SE were evaluated for their efficacy in inducing IFN-γ responses and protection of HLA-A*1101 transgenic mice against T. gondii. Immunization, using self-assembling protein nanoparticle-GLA-SE, activated CD8+ T cells to produce IFN-γ. Self-assembling protein nanoparticle-GLA-SE also protected HLA-A*1101 transgenic mice against subsequent challenge with Type II parasites. Hence, combining CD8+ T cell-eliciting peptides and PADRE into a multi-epitope protein that forms a nanoparticle, administered with GLA-SE, leads to efficient presentation by major histocompatibility complex Class I and II molecules. Furthermore, these results suggest that activation of TLR4 and TLR5 could be useful for development of vaccines that elicit T cells to prevent toxoplasmosis in humans.


The Toxoplasma gondii Cyst Wall Interactome.

  • Vincent Tu‎ et al.
  • mBio‎
  • 2020‎

A characteristic of the latent cyst stage of Toxoplasma gondii is a thick cyst wall that forms underneath the membrane of the bradyzoite vacuole. Previously, our laboratory group published a proteomic analysis of purified in vitro cyst wall fragments that identified an inventory of cyst wall components. To further refine our understanding of the composition of the cyst wall, several cyst wall proteins were tagged with a promiscuous biotin ligase (BirA*), and their interacting partners were screened by streptavidin affinity purification. Within the cyst wall pulldowns, previously described cyst wall proteins, dense granule proteins, and uncharacterized hypothetical proteins were identified. Several of the newly identified hypothetical proteins were validated to be novel components of the cyst wall and tagged with BirA* to expand the model of the cyst wall interactome. Community detection of the cyst wall interactome model revealed three distinct clusters: a dense granule, a cyst matrix, and a cyst wall cluster. Characterization of several of the identified cyst wall proteins using genetic strategies revealed that MCP3 affects in vivo cyst sizes. This study provides a model of the potential protein interactions within the cyst wall and the groundwork to understand cyst wall formation.IMPORTANCE A model of the cyst wall interactome was constructed using proteins identified through BioID. The proteins within this cyst wall interactome model encompass several proteins identified in a prior characterization of the cyst wall proteome. This model provides a more comprehensive understanding of the composition of the cyst wall and may lead to insights on how the cyst wall is formed.


Nullscript inhibits Cryptosporidium and Toxoplasma growth.

  • Fumi Murakoshi‎ et al.
  • International journal for parasitology. Drugs and drug resistance‎
  • 2020‎

Cryptosporidium and Toxoplasma are parasites that have caused problems worldwide. Cryptosporidium causes severe watery diarrhoea and may be fatal in immunocompromised patients and in infants. Nitazoxanide is the only agent currently approved by the FDA, but its efficacy is limited. Toxoplasmosis is also a problem in the immunocompromised, as currently available treatment options have limited efficacy and patient tolerance can be poor. In the present investigation, we screened libraries of epigenetic compounds to identify those that inhibited C. parvum growth. Nullscript was identified as a compound with an inhibitory effect on C. parvum and T. gondii growth, and was less toxic to host cells. Nullscript was also able to significantly decrease oocyst excretion in C. parvum-infected SCID mice.


Toxoplasma gondii Chitinase Induces Macrophage Activation.

  • Fausto Almeida‎ et al.
  • PloS one‎
  • 2015‎

Toxoplasma gondii is an obligate intracellular protozoan parasite found worldwide that is able to chronically infect almost all vertebrate species, especially birds and mammalians. Chitinases are essential to various biological processes, and some pathogens rely on chitinases for successful parasitization. Here, we purified and characterized a chitinase from T. gondii. The enzyme, provisionally named Tg_chitinase, has a molecular mass of 13.7 kDa and exhibits a Km of 0.34 mM and a Vmax of 2.64. The optimal environmental conditions for enzymatic function were at pH 4.0 and 50 °C. Tg_chitinase was immunolocalized in the cytoplasm of highly virulent T. gondii RH strain tachyzoites, mainly at the apical extremity. Tg_chitinase induced macrophage activation as manifested by the production of high levels of pro-inflammatory cytokines, a pathogenic hallmark of T. gondii infection. In conclusion, to our knowledge, we describe for the first time a chitinase of T. gondii tachyzoites and provide evidence that this enzyme might influence the pathogenesis of T. gondii infection.


Unusual presentation of toxoplasma gondii encephalitis.

  • Caleb Davis‎ et al.
  • The western journal of emergency medicine‎
  • 2012‎

We report a case of altered mental status secondary to acute Toxoplasma Gondii encephalitis. The patient had no medical or surgical history and presented with acute onset of lethargy with no clear precipitant. A physical exam revealed no focal neurological deficits and a subsequent medical workup revealed multiple intracranial lesions with a biopsy confirming the diagnosis of Toxoplasma Gondii encephalitis in the setting of newly diagnosed human immunodeficiency virus (HIV). A literature review revealed that this is a unique case of toxoplasmic encephalopathy in the United States in a previously undiagnosed HIV positive patient presenting to an emergency department.


CRISPR-Mediated Transcriptional Repression in Toxoplasma gondii.

  • Benedikt M Markus‎ et al.
  • mSphere‎
  • 2021‎

Tools for tuning endogenous gene expression are key to determining the genetic basis of diverse cellular phenotypes. Although synthetic regulatable promoters are available in Toxoplasma, scalable methods for targeted and combinatorial downregulation of gene expression-like RNA interference-have yet to be developed. To investigate the feasibility of CRISPR-mediated transcriptional regulation, we examined the function of two catalytically inactive Cas9 (dCas9) orthologs, from Streptococcus pyogenes and Streptococcus thermophilus, in Toxoplasma. Following the addition of single-guide RNAs (sgRNAs) targeting the promoter and 5' untranslated region (UTR) of the surface antigen gene SAG1, we profiled changes in protein abundance of targeted genes by flow cytometry for transcriptional reporters and immunoblotting. We found that the dCas9 orthologs generated a range of target gene expression levels, and the degree of repression was durable and stably inherited. Therefore, S. pyogenes and S. thermophilus dCas9 can effectively produce intermediate levels of gene expression in Toxoplasma. The distinct sgRNA scaffold requirements of the two dCas9s permit their orthogonal use for simultaneous examination of two distinct loci through transcriptional modulation, labeling for microscopy-based studies, or other dCas9-based approaches. Taking advantage of newly available genomic transcription start site data, these tools will aid in the development of new loss-of-function screening approaches in Toxoplasma. IMPORTANCE Toxoplasma gondii is a ubiquitous intracellular parasite of humans and animals that causes life-threatening disease in immunocompromised patients, fetal abnormalities when contracted during gestation, and recurrent eye lesions in some patients. Despite its health implications, about half of the Toxoplasma genome still lacks functional annotation. A particularly powerful tool for the investigation of an organism's cell biology is the modulation of gene expression, which can produce the subtle phenotypes often required for informing gene function. In Toxoplasma, such tools have limited throughput and versatility. Here, we detail the adaptation of a new set of tools based on CRISPR-Cas9, which allows the targeted downregulation of gene expression in Toxoplasma. With its scalability and adaptability to diverse genomic loci, this approach has the potential to greatly accelerate the functional characterization of the Toxoplasma genome.


Toxoplasma secretory granules: one population or more?

  • Corinne Mercier‎ et al.
  • Trends in parasitology‎
  • 2015‎

In Toxoplasma gondii, dense granules are known as the storage secretory organelles of the so-called GRA proteins (for dense granule proteins), which are destined to the parasitophorous vacuole (PV) and the PV-derived cyst wall. Recently, newly annotated GRA proteins targeted to the host cell nucleus have enlarged this view. Here we provide an update on the latest developments on the Toxoplasma secreted proteins, which to date have been mainly studied at both the tachyzoite and bradyzoite stages, and we point out that recent discoveries could open the issue of a possible, yet uncharacterized, distinct secretory pathway in Toxoplasma.


Identification and expression analysis of ABC protein-encoding genes in Toxoplasma gondii. Toxoplasma gondii ATP-binding cassette superfamily.

  • Virginie Sauvage‎ et al.
  • Molecular and biochemical parasitology‎
  • 2006‎

The ATP-binding cassette (ABC) transporters are one of the largest evolutionarily conserved families of proteins. They are characterized by the presence of nucleotide-binding domains (NBDs), which are highly conserved among organisms. In the present study, we used human and protozoan ABC sequences, and ATP-binding consensus motifs to screen the Toxoplasma gondii TwinScan2 predicted proteins database. We identified 24 ABC open reading frames (ORFs), whose deduced amino acid sequences exhibited all the typical biochemical features of the ABC family members. Fifteen of them clustered into five of the seven families of human ABC proteins: six ABCBs (drug, peptides and lipid export), two ABCCs (organic anion conjugates and drug export), one ABCE (Rnase L inhibitor, RLI, antibiotic resistance and translation regulation), one ABCF (drug resistance and regulation of gene expression) and five ABCGs (drug export and resistance). The nine other ORFs were represented by four ABCHs (energy-generating subunits), four SMCs (structural maintenance of chromosomes) and one member of unclear origin, whose closest homologue was the yeast Elf1 protein (mRNA export factor). A notable feature of the Toxoplasma ABC superfamily seems to be the absence of genes encoding ABCA and ABCD members. Expression analysis of ABC genes in tachyzoite and bradyzoite stages revealed the presence of ABC transcripts for all genes studied. Further research on the implication of these ABC proteins will increase our knowledge of the basic biology of Toxoplasma and provide the opportunity to identify novel therapeutic targets. To our knowledge, this is the first report of ABC transporters in T. gondii.


In vivo anti-Toxoplasma activity of aripiprazole.

  • Mehrzad Saraei‎ et al.
  • Iranian journal of basic medical sciences‎
  • 2015‎

There are supportive evidences about the possible role of latent Toxoplasma. gondii infections on the behavior and neurologic functions, such as increased dopamine levels in the brain. The aim of this study was to examine anti-toxoplasma activity of aripiprazole that is an atypical anti-psychotic drug in mice.


Association between Suicide and Toxoplasma gondii Seropositivity.

  • Laura Alejandra Mendoza-Larios‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2021‎

This study aimed to determine the association between suicide and Toxoplasma gondii (T. gondii) seropositivity. Serum samples of 89 decedents who committed suicide (cases) and 58 decedents who did not commit suicide (controls) were tested for anti-T. gondii IgG and IgM antibodies using enzyme-linked immunosorbent assays. Anti-T. gondii IgM antibodies were further detected by enzyme-linked fluorescence assay (ELFA). A total of 8 (9.0%) of the 89 cases and 6 (10.3%) of the 58 controls were positive for anti-T. gondii IgG antibodies (OR: 0.85; 95% CI: 0.28-2.60; p = 0.78). Anti-T. gondii IgG levels were higher than 150 IU/mL in two (2.2%) cases and in five (8.6%) controls (OR: 0.24; 95% CI: 0.04-1.30; p = 0.11). Anti-T. gondii IgM antibodies were not found in any case or control using the enzyme immunoassay and were found in only one (1.7%) control using ELFA (p = 0.39). Rates of IgG seropositivity and high levels of anti-T. gondii antibodies were similar in cases and in controls regardless of their sex or age groups. The results do not support an association between T. gondii seropositivity and suicide. However, the statistical power of the test was low. Further research is necessary to confirm this lack of association.


Diagnosis of toxoplasmosis and typing of Toxoplasma gondii.

  • Quan Liu‎ et al.
  • Parasites & vectors‎
  • 2015‎

Toxoplasmosis, caused by the obligate intracellular protozoan Toxoplasma gondii, is an important zoonosis with medical and veterinary importance worldwide. The disease is mainly contracted by ingesting undercooked or raw meat containing viable tissue cysts, or by ingesting food or water contaminated with oocysts. The diagnosis and genetic characterization of T. gondii infection is crucial for the surveillance, prevention and control of toxoplasmosis. Traditional approaches for the diagnosis of toxoplasmosis include etiological, immunological and imaging techniques. Diagnosis of toxoplasmosis has been improved by the emergence of molecular technologies to amplify parasite nucleic acids. Among these, polymerase chain reaction (PCR)-based molecular techniques have been useful for the genetic characterization of T. gondii. Serotyping methods based on polymorphic polypeptides have the potential to become the choice for typing T. gondii in humans and animals. In this review, we summarize conventional non-DNA-based diagnostic methods, and the DNA-based molecular techniques for the diagnosis and genetic characterization of T. gondii. These techniques have provided foundations for further development of more effective and accurate detection of T. gondii infection. These advances will contribute to an improved understanding of the epidemiology, prevention and control of toxoplasmosis.


Protection induced by virus-like particles containing Toxoplasma gondii microneme protein 8 against highly virulent RH strain of Toxoplasma gondii infection.

  • Su-Hwa Lee‎ et al.
  • PloS one‎
  • 2017‎

Toxoplasma gondii (T. gondii) microneme protein 8 (MIC8) represents a novel, functional distinct invasion factor. In this study, we generated virus-like particles (VLPs) targeting Toxoplasma gondii MIC8 for the first time, and investigated the protection against highly virulent RH strain of T. gondii in a mouse model. We found that VLP vaccination induced Toxoplasma gondii-specific IgG and IgG1 antibody responses in the sera. Upon challenge infection with RH strain of T. gondii tachyzoites, vaccinated mice showed a significant increase of both IgG antibodies in sera and IgA antibodies in feces compared to those before challenge, and a rapid expansion of both germinal center B cell (B220+, GL7+) and T cell (CD4+, CD8+) populations. Importantly, intranasally immunized mice showed higher neutralizing antibodies and displayed no proinflammatory cytokine IFN-γ in the spleen. Mice were completely protected from a lethal challenge infection with the highly virulent T. gondii (RH) showing no body weight loss (100% survival). Our study shows the effective protection against T. gondii infection provided by VLPs containing microneme protein 8 of T. gondii, thus indicating a potential T. gondii vaccine candidate.


Toxoplasma metabolic flexibility in different growth conditions.

  • Daniel Walsh‎ et al.
  • Trends in parasitology‎
  • 2022‎

Apicomplexan parasites have complex metabolic networks that coordinate acquisition of metabolites by de novo synthesis and by scavenging from the host. Toxoplasma gondii has a wide host range and may rely on the flexibility of this metabolic network. Currently, the literature categorizes genes as essential or dispensable according to their dispensability for parasite survival under nutrient-replete in vitro conditions. However, recent studies revealed correlations between medium composition and gene essentiality. Therefore, nutrient availability in the host environment likely determines the requirement of metabolic pathways, which may redefine priorities for drug target identification in a clinical setting. Here we review the recent work characterizing some of the major Toxoplasma metabolic pathways and their functional adaptation to host nutrient content.


Structure of Toxoplasma gondii fructose-1,6-bisphosphate aldolase.

  • Lauren E Boucher‎ et al.
  • Acta crystallographica. Section F, Structural biology communications‎
  • 2014‎

The apicomplexan parasite Toxoplasma gondii must invade host cells to continue its lifecycle. It invades different cell types using an actomyosin motor that is connected to extracellular adhesins via the bridging protein fructose-1,6-bisphosphate aldolase. During invasion, aldolase serves in the role of a structural bridging protein, as opposed to its normal enzymatic role in the glycolysis pathway. Crystal structures of the homologous Plasmodium falciparum fructose-1,6-bisphosphate aldolase have been described previously. Here, T. gondii fructose-1,6-bisphosphate aldolase has been crystallized in space group P22121, with the biologically relevant tetramer in the asymmetric unit, and the structure has been determined via molecular replacement to a resolution of 2.0 Å. An analysis of the quality of the model and of the differences between the four chains in the asymmetric unit and a comparison between the T. gondii and P. falciparum aldolase structures is presented.


Toxoplasma gondii infection in sheep from Romania.

  • Anamaria Ioana Paștiu‎ et al.
  • Parasites & vectors‎
  • 2023‎

Toxoplasmosis is a widespread zoonosis caused by the intracellular protozoan parasite Toxoplasma gondii. Limited epidemiological information is available about the prevalence of T. gondii in sheep in Romania, and a high incidence would have implications for both the economy and public health. To our knowledge, no studies are available about the T. gondii strains circulating in lambs. The objective of this study was to assess the prevalence of T. gondii in sheep (serology), lambs (serology, bioassay, PCR) and sheep abortions (PCR) in Romania. Moreover, the study aimed to perform the genetic characterization of T. gondii isolates from lambs.


1,3,4-Thiadiazoles Effectively Inhibit Proliferation of Toxoplasma gondii.

  • Lidia Węglińska‎ et al.
  • Cells‎
  • 2021‎

Congenital and acquired toxoplasmosis caused by the food- and water-born parasite Toxoplasma gondii (T. gondii) is one of the most prevalent zoonotic infection of global importance. T. gondii is an obligate intracellular parasite with limited capacity for extracellular survival, thus a successful, efficient and robust host cell invasion process is crucial for its survival, proliferation and transmission. In this study, we screened a series of novel 1,3,4-thiadiazole-2-halophenylamines functionalized at the C5 position with the imidazole ring (1b-12b) for their effects on T. gondii host cell invasion and proliferation. To achieve this goal, these compounds were initially subjected to in vitro assays to assess their cytotoxicity on human fibroblasts and then antiparasitic efficacy. Results showed that all of them compare favorably to control drugs sulfadiazine and trimethoprim in terms of T. gondii growth inhibition (IC50) and selectivity toward the parasite, expressed as selectivity index (SI). Subsequently, the most potent of them with meta-fluoro 2b, meta-chloro 5b, meta-bromo 8b, meta-iodo 11b and para-iodo 12b substitution were tested for their efficacy in inhibition of tachyzoites invasion and subsequent proliferation by direct action on established intracellular infection. All the compounds significantly inhibited the parasite invasion and intracellular proliferation via direct action on both tachyzoites and parasitophorous vacuoles formation. The most effective was para-iodo derivative 12b that caused reduction in the percentage of infected host cells by 44% and number of tachyzoites per vacuole by 93% compared to non-treated host cells. Collectively, these studies indicate that 1,3,4-thiadiazoles 1b-12b, especially 12b with IC50 of 4.70 µg/mL and SI of 20.89, could be considered as early hit compounds for future design and synthesis of anti-Toxoplasma agents that effectively and selectively block the invasion and subsequent proliferation of T. gondii into host cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: