Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 82 papers

Repeated Tick Infestations Impair Borrelia burgdorferi Transmission in a Non-Human Primate Model of Tick Feeding.

  • Sukanya Narasimhan‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2023‎

The blacklegged tick, Ixodes scapularis, is the predominant vector of Borrelia burgdorferi, the agent of Lyme disease in the USA. Natural hosts of I. scapularis such as Peromyscus leucopus are repeatedly infested by these ticks without acquiring tick resistance. However, upon repeated tick infestations, non-natural hosts such as guinea pigs, mount a robust immune response against critical tick salivary antigens and acquire tick resistance able to thwart tick feeding and Borrelia burgdorferi transmission. The salivary targets of acquired tick resistance could serve as vaccine targets to prevent tick feeding and the tick transmission of human pathogens. Currently, there is no animal model able to demonstrate both tick resistance and diverse clinical manifestations of Lyme disease. Non-human primates serve as robust models of human Lyme disease. By evaluating the responses to repeated tick infestation, this animal model could accelerate our ability to define the tick salivary targets of acquired resistance that may serve as vaccines to prevent the tick transmission of human pathogens. Towards this goal, we assessed the development of acquired tick resistance in non-human primates upon repeated tick infestations. We report that following repeated tick infestations, non-human primates do not develop the hallmarks of acquired tick resistance observed in guinea pigs. However, repeated tick infestations elicit immune responses able to impair the tick transmission of B. burgdorferi. A mechanistic understanding of the protective immune responses will provide insights into B. burgdorferi-tick-host interactions and additionally contribute to anti-tick vaccine discovery.


Rhipicephalus (Boophilus) microplus aquaporin as an effective vaccine antigen to protect against cattle tick infestations.

  • Felix D Guerrero‎ et al.
  • Parasites & vectors‎
  • 2014‎

Vaccination as a control method against the cattle tick, Rhipicephalus (Boophilus) microplus has been practiced since the introduction of two products in the mid-1990s. There is a need for a vaccine that could provide effective control of R. microplus in a more consistent fashion than existing products. During our transcriptome studies of R. microplus, several gene coding regions were discovered to encode proteins with significant amino acid similarity to aquaporins.


Identification and characterization of Rhipicephalus (Boophilus) microplus candidate protective antigens for the control of cattle tick infestations.

  • Consuelo Almazán‎ et al.
  • Parasitology research‎
  • 2010‎

The cattle ticks, Rhipicephalus (Boophilus) spp., affect cattle production in tropical and subtropical regions of the world. Tick vaccines constitute a cost-effective and environmentally friendly alternative to tick control. The recombinant Rhipicephalus microplus Bm86 antigen has been shown to protect cattle against tick infestations. However, variable efficacy of Bm86-based vaccines against geographic tick strains has encouraged the research for additional tick-protective antigens. Herein, we describe the analysis of R. microplus glutathione-S transferase, ubiquitin (UBQ), selenoprotein W, elongation factor-1 alpha, and subolesin (SUB) complementary DNAs (cDNAs) by RNA interference (RNAi) in R. microplus and Rhipicephalus annulatus. Candidate protective antigens were selected for vaccination experiments based on the effect of gene knockdown on tick mortality, feeding, and fertility. Two cDNA clones encoding for UBQ and SUB were used for cattle vaccination and infestation with R. microplus and R. annulatus. Control groups were immunized with recombinant Bm86 or adjuvant/saline. The highest vaccine efficacy for the control of tick infestations was obtained for Bm86. Although with low immunogenic response, the results with the SUB vaccine encourage further investigations on the use of recombinant subolesin alone or in combination with other antigens for the control of cattle tick infestations. The UBQ peptide showed low immunogenicity, and the results of the vaccination trial were inconclusive to assess the protective efficacy of this antigen. These experiments showed that RNAi could be used for the selection of candidate tick-protective antigens. However, vaccination trials are necessary to evaluate the effect of recombinant antigens in the control of tick infestations, a process that requires efficient recombinant protein production and formulation systems.


Mining a differential sialotranscriptome of Rhipicephalus microplus guides antigen discovery to formulate a vaccine that reduces tick infestations.

  • Sandra R Maruyama‎ et al.
  • Parasites & vectors‎
  • 2017‎

Ticks cause massive damage to livestock and vaccines are one sustainable substitute for the acaricides currently heavily used to control infestations. To guide antigen discovery for a vaccine that targets the gamut of parasitic strategies mediated by tick saliva and enables immunological memory, we exploited a transcriptome constructed from salivary glands from all stages of Rhipicephalus microplus ticks feeding on genetically tick-resistant and susceptible bovines.


Risk factors associated with tick infestations on equids in Khyber Pakhtunkhwa, Pakistan, with notes on Rickettsia massiliae detection.

  • Abid Ali‎ et al.
  • Parasites & vectors‎
  • 2021‎

Studies on ticks infesting equids are lacking in various parts of the world, including Khyber Pakhtunkhwa (KP), Pakistan. The aim of this study was to investigate the diversity of ticks infesting equids, associated risk factors and rickettsial detection in ticks from equids in KP.


Vaccinomics Approach to the Identification of Candidate Protective Antigens for the Control of Tick Vector Infestations and Anaplasma phagocytophilum Infection.

  • Marinela Contreras‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2017‎

Anaplasma phagocytophilum is an emerging tick-borne pathogen causing human granulocytic anaplasmosis (HGA), tick-borne fever (TBF) in small ruminants, and other forms of anaplasmosis in different domestic and wild animals. The main vectors of this pathogen are Ixodes tick species, particularly I. scapularis in the United States and I. ricinus in Europe. One of the main limitations for the development of effective vaccines for the prevention and control of A. phagocytophilum infection and transmission is the identification of effective tick protective antigens. The objective of this study was to apply a vaccinomics approach to I. scapularis-A. phagocytophilum interactions for the identification and characterization of candidate tick protective antigens for the control of vector infestations and A. phagocytophilum infection. The vaccinomics pipeline included the use of quantitative transcriptomics and proteomics data from uninfected and A. phagocytophilum-infected I. scapularis ticks for the selection of candidate protective antigens based on the variation in tick mRNA and protein levels in response to infection, their putative biological function, and the effect of antibodies against these proteins on tick cell apoptosis and pathogen infection. The characterization of selected candidate tick protective antigens included the identification and characterization of I. ricinus homologs, functional characterization by different methodologies including RNA interference, immunofluorescence, gene expression profiling, and artificial tick feeding on rabbit antibodies against the recombinant antigens to select the candidates for vaccination trials. The vaccinomics pipeline developed in this study resulted in the identification of two candidate tick protective antigens that could be selected for future vaccination trials. The results showed that I. scapularis lipocalin (ISCW005600) and lectin pathway inhibitor (AAY66632) and I. ricinus homologs constitute candidate protective antigens for the control of vector infestations and A. phagocytophilum infection. Both antigens are involved in the tick evasion of host defense response and pathogen infection and transmission, but targeting different immune response pathways. The vaccinomics pipeline proposed here could be used to continue the identification and characterization of candidate tick protective antigens for the development of effective vaccines for the prevention and control of HGA, TBF, and other forms of anaplasmosis caused by A. phagocytophilum.


A Vaccinomics Approach for the Identification of Tick Protective Antigens for the Control of Ixodes ricinus and Dermacentor reticulatus Infestations in Companion Animals.

  • Marinela Contreras‎ et al.
  • Frontiers in physiology‎
  • 2019‎

Ticks and tick-borne pathogens affect health and welfare of companion animals worldwide, and some human tick-borne diseases are associated with exposure to domestic animals. Vaccines are the most environmentally friendly alternative to acaracides for the control of tick infestations, and to reduce the risk for tick-borne diseases affecting human and animal health. However, vaccines have not been developed or successfully implemented for most vector-borne diseases. The main limitation for the development of effective vaccines is the identification of protective antigens. To address this limitation, in this study we used an experimental approach combining vaccinomics based on transcriptomics and proteomics data with vaccination trials for the identification of tick protective antigens. The study was focused on Ixodes ricinus and Dermacentor reticulatus that infest humans, companion animals and other domestic and wild animals, and transmit disease-causing pathogens. Tick larvae and adult salivary glands were selected for analysis to target tick organs and developmental stages playing a key role during tick life cycle and pathogen infection and transmission. Two I. ricinus (heme lipoprotein and uncharacterized secreted protein) and five D. reticulatus (glypican-like protein, secreted protein involved in homophilic cell adhesion, sulfate/anion exchanger, signal peptidase complex subunit 3, and uncharacterized secreted protein) proteins were identified as the most effective protective antigens based on the criteria of vaccine E > 80%. The putative function of selected protective antigens, which are involved in different biological processes, resulted in vaccines affecting multiple tick developmental stages. These results suggested that the combination of some of these antigens might be considered to increase vaccine efficacy through antigen synergy for the control of tick infestations and potentially affecting pathogen infection and transmission. These antigens were proposed for commercial vaccine development for the control of tick infestations in companion animals, and potentially in other hosts for these tick species.


A randomized controlled trial of the efficacy of orally administered fluralaner (Bravecto™) against induced Ixodes holocyclus (Australian paralysis tick) infestations on dogs.

  • Petr Fisara‎ et al.
  • Parasites & vectors‎
  • 2015‎

Ixodes holocyclus ticks are a frequently fatal threat to dogs in eastern Australia. These ticks secrete a neurotoxin that can produce an ascending paralysis after 72 h attachment that can lead to death in affected animals. Fluralaner is a potent systemic acaricide with immediate and persistent efficacy for tick control including evidence of 100% efficacy against Ixodes ricinus ticks within 72 h. This study investigated the potential for oral fluralaner administration to control I. holocyclus infestation and the subsequent risk of host paralysis.


Efficacy of a novel orally administered combination product containing sarolaner, moxidectin and pyrantel (Simparica Trio™) against induced infestations of five common tick species infesting dogs in the USA.

  • Kristina Kryda‎ et al.
  • Parasites & vectors‎
  • 2020‎

The efficacy of a novel oral combination product, Simparica Trio™, containing sarolaner, moxidectin and pyrantel was evaluated against five tick species that commonly infest dogs in the USA, Amblyomma americanum, Amblyomma maculatum, Dermacentor variabilis, Ixodes scapularis and Rhipicephalus sanguineus.


Efficacy of sarolaner (Simparica®) against induced infestations of Haemaphysalis longicornis on dogs.

  • Kenji Oda‎ et al.
  • Parasites & vectors‎
  • 2019‎

Haemaphysalis longicornis is the major tick affecting dogs in most of the East Asia/Pacific region and has recently been detected in a number of areas of the USA. This tick is a vector for a number of pathogens of dogs, other mammals and humans. In this study, the efficacy of a single oral administration of sarolaner (Simparica®, Zoetis) at the minimum label dosage (2 mg/kg) was evaluated against an existing infestation of H. longicornis and subsequent weekly reinfestations for 5 weeks after treatment.


Efficacy of sarolaner (Simparic™) against induced infestations of Amblyomma cajennense on dogs.

  • Fabio Scott‎ et al.
  • Parasites & vectors‎
  • 2017‎

Amblyomma cajennense is the main vector of Rickettsia rickettsii which causes Brazilian spotted fever. This adult tick preferably infests horses and capybaras, but has low host specificity during its immature stages, thus posing a threat to humans and dogs. In this study, the efficacy of sarolaner (Simparic™/Simparica®, Zoetis) when administered once orally to dogs at 2 mg/kg was evaluated against induced infestations of A. cajennense nymphs for up to 35 days after treatment.


Co-Immunization Efficacy of Recombinant Antigens against Rhipicephalus microplus and Hyalomma anatolicumTick Infestations.

  • Balasamudram Chandrasekhar Parthasarathi‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2023‎

The immunoprophylactic management of ticks is the most effective option to control tick infestations and counter spread the acaricide resistance problem worldwide. Several researchers reported an inconsistent efficacy of the single antigen-based immunization of hosts against different tick species. In the present study, to develop a multi-target immunization protocol, proteins from Rhipicephalus microplus BM86 and Hyalomma anatolicum subolesin (SUB) and tropomyosin (TPM) were targeted to evaluate the cross-protective potential. The sequence identities of the BM86, SUB, and TPM coding genes amongst Indian tick isolates of targeted species were 95.6-99.8%, 98.7-99.6%, and 98.9-99.9%, respectively, while at the predicted amino acid level, the identities were 93.2 to 99.5, 97.6 to 99.4, and 98.2 to 99.3%. The targeted genes were expressed in the eukaryotic expression system, pKLAC2-Kluyveromyces lactis, and 100 µg each of purified recombinant protein (Bm86-89 kDa, SUB-21 kDa, and TPM-36 kDa) mixed with adjuvant was injected individually through the intramuscular route at different sites of the body on days 0, 30, and 60 to immunize cross-bred cattle. Post-immunization, a statistically significant (p < 0.001) antibody response (IgG, IgG1, and IgG2) in comparison to the control, starting from 15 to 140 days, against each antigen was recorded. Following multi-antigen immunization, the animals were challenged twice with the larvae of R. microplus and H. anatolicum and theadults of H. anatolicum, and a significant vaccine efficacy of 87.2% and 86.2% against H. anatolicum larvae and adults, respectively, and 86.7% against R. microplus was obtained. The current study provides significant support to develop a multi-antigen vaccine against cattle tick species.


Vaccination with Ectoparasite Proteins Involved in Midgut Function and Blood Digestion Reduces Salmon Louse Infestations.

  • Marinela Contreras‎ et al.
  • Vaccines‎
  • 2020‎

Infestation with the salmon louse Lepeophtheirus salmonis (Copepoda, Caligidae) affects Atlantic salmon (Salmo salar L.) production in European aquaculture. Furthermore, high levels of salmon lice in farms significantly increase challenge pressure against wild salmon populations. Currently, available control methods for salmon louse have limitations, and vaccination appears as an attractive, environmentally sound strategy. In this study, we addressed one of the main limitations for vaccine development, the identification of candidate protective antigens. Based on recent advances in tick vaccine research, herein, we targeted the salmon louse midgut function and blood digestion for the identification of candidate target proteins for the control of ectoparasite infestations. The results of this translational approach resulted in the identification and subsequent evaluation of the new candidate protective antigens, putative Toll-like receptor 6 (P30), and potassium chloride, and amino acid transporter (P33). Vaccination with these antigens provided protection in Atlantic salmon by reducing adult female (P33) or chalimus II (P30) sea lice infestations. These results support the development of vaccines for the control of sea lice infestations.


Tick capillary feeding for the study of proteins involved in tick-pathogen interactions as potential antigens for the control of tick infestation and pathogen infection.

  • Sandra Antunes‎ et al.
  • Parasites & vectors‎
  • 2014‎

Ticks represent a significant health risk to animals and humans due to the variety of pathogens they can transmit during feeding. The traditional use of chemicals to control ticks has serious drawbacks, including the selection of acaricide-resistant ticks and environmental contamination with chemical residues. Vaccination with the tick midgut antigen BM86 was shown to be a good alternative for cattle tick control. However, results vary considerably between tick species and geographic location. Therefore, new antigens are required for the development of vaccines controlling both tick infestations and pathogen infection/transmission. Tick proteins involved in tick-pathogen interactions may provide good candidate protective antigens for these vaccines, but appropriate screening procedures are needed to select the best candidates.


Transcriptional profiling of the murine cutaneous response during initial and subsequent infestations with Ixodes scapularis nymphs.

  • Dar M Heinze‎ et al.
  • Parasites & vectors‎
  • 2012‎

Ixodes scapularis ticks are hematophagous arthropods capable of transmitting many infectious agents to humans. The process of blood feeding is an extended and continuous interplay between tick and host responses. While this process has been studied extensively in vitro, no global understanding of the host response to ticks has emerged.


Gene Expression in the Salivary Gland of Rhipicephalus (Boophilus) microplus Fed on Tick-Susceptible and Tick-Resistant Hosts.

  • Poliana Fernanda Giachetto‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2019‎

The success of cattle tick fixation largely depends on the secretion of substances that alter the immune response of the host. The majority of these substances are expressed by the parasite salivary gland and secreted in tick saliva. It is known that hosts can mount immune responses against ticks and bovine European breeds, and bovine industrial crossbreeds are more susceptible to infestations than are Bos indicus cattle. To identify candidates for the development of novel control strategies for the cattle tick Rhipicephalus (Boophilus) microplus, a salivary gland transcriptome analysis of engorged females fed on susceptible or resistant hosts was performed. Using RNA-Seq, transcriptomes were de novo assembled and produced a total of 235,451 contigs with 93.3% transcriptome completeness. Differential expression analysis identified 137 sequences as differentially expressed genes (DEGs) between ticks raised on tick-susceptible or tick-resistant cattle. DEGs predicted to be secreted proteins include innexins, which are transmembrane proteins that form gap junction channels; the transporters Na+/dicarboxylate, Na+/tricarboxylate, and phosphate transporter and a putative monocarboxylate transporter; a phosphoinositol 4-phosphate adaptor protein; a cysteine-rich protein containing a trypsin inhibitor-like (TIL) domain; a putative defense protein 3 containing a reeler domain; and an F-actin-uncapping protein LRRC16A with a CARMIL_C domain; these genes were upregulated in ticks fed on tick-susceptible cattle. DEGs predicted to be non-secreted proteins included a small heat shock protein and the negative elongation factor B-like, both acting in a coordinated manner to increase HSP transcript levels in the salivary glands of the ticks fed on tick-susceptible cattle; the 26S protease regulatory subunit 6B and another chaperone with similarity to calnexin, also upregulated in ticks fed on tick-susceptible cattle; an EF-hand calcium binding protein and a serine carboxypeptidase (SCP), both involved in the blood coagulation cascade and upregulated in ticks fed on tick-susceptible cattle; and two ribosomal proteins, the 60S acidic ribosomal protein P2 and the 60S ribosomal protein L19. These results help to characterize cattle tick salivary gland gene expression in tick-susceptible and tick-resistant hosts and suggest new putative targets for the control of tick infestations, as those genes involved in the mechanism of stress response during blood feeding.


Comparative speed of kill of sarolaner (Simparica) and afoxolaner (NexGard against induced infestations of Ixodes scapularis on dogs.

  • Robert H Six‎ et al.
  • Parasites & vectors‎
  • 2016‎

The black-legged (or deer) tick, Ixodes scapularis, commonly infests dogs and cats in North America and is the main vector for the pathogen that causes Lyme disease in dogs and humans. The speed of kill of a parasiticide is critical to minimize the direct and deleterious effects of tick infestation and especially to reduce the risk of tick-borne pathogen transmission. In this study, speed of kill of a novel orally administered isoxazoline parasiticide, sarolaner chewable tablets (Simparica), against I. scapularis on dogs was evaluated and compared with afoxolaner (NexGard) for five weeks after a single oral dose.


Preliminary Evaluation of Tick Protein Extracts and Recombinant Ferritin 2 as Anti-tick Vaccines Targeting Ixodes ricinus in Cattle.

  • Sarah Knorr‎ et al.
  • Frontiers in physiology‎
  • 2018‎

Anti-tick vaccines have the potential to be an environmentally friendly and cost-effective option for tick control. In vaccine development, the identification of efficacious antigens forms the major bottleneck. In this study, the efficacy of immunization with recombinant ferritin 2 and native tick protein extracts (TPEs) against Ixodes ricinus infestations in calves was assessed in two immunization experiments. In the first experiment, each calf (n = 3) was immunized twice with recombinant ferritin 2 from I. ricinus (IrFER2), TPE consisting of soluble proteins from the internal organs of partially fed I. ricinus females, or adjuvant, respectively. In the second experiment, each calf (n = 4) was immunized with protein extracts from the midgut (ME) of partially fed females, the salivary glands (SGE) of partially fed females, a combination of ME and SGE, or adjuvant, respectively. Two weeks after the booster immunization, calves were challenged with 100 females and 200 nymphs. Blood was collected from the calves before the first and after the second immunization and fed to I. ricinus females and nymphs using an in vitro artificial tick feeding system. The two calves vaccinated with whole TPE and midgut extract (ME) showed hyperemia on tick bite sites 2 days post tick infestation and exudative blisters were observed in the ME-vaccinated animal, signs that were suggestive of a delayed type hypersensitivity (DTH) reaction. Significantly fewer ticks successfully fed on the three animals vaccinated with TPE, SGE, or ME. Adults fed on the TPE and ME vaccinated animals weighed significantly less. Tick feeding on the IrFER2 vaccinated calf was not impaired. The in vitro feeding of serum or fresh whole blood collected from the vaccinated animals did not significantly affect tick feeding success. Immunization with native I. ricinus TPEs thus conferred a strong immune response in calves and significantly reduced the feeding success of both nymphs and adults. In vitro feeding of serum or blood collected from vaccinated animals to ticks did not affect tick feeding, indicating that antibodies alone were not responsible for the observed vaccine immunity.


Comparative speed of kill of sarolaner (Simparica) and afoxolaner (NexGard) against induced infestations of Amblyomma americanum on dogs.

  • Robert H Six‎ et al.
  • Parasites & vectors‎
  • 2016‎

The lone star tick, Amblyomma americanum, infests dogs and cats in North America and is the vector of the pathogens that cause monocytic and granulocytic ehrlichiosis in dogs and humans. A parasiticide's speed of kill is important to minimize the direct and deleterious effects of tick infestation and especially to reduce the risk of transmission of tick-borne pathogens. In this study, speed of kill of a novel orally administered isoxazoline parasiticide, sarolaner (Simparica chewable tablets), against A. americanum on dogs was evaluated and compared with afoxolaner (NexGard) for 5 weeks following a single oral dose.


Comparative speed of kill of sarolaner (Simparica) and afoxolaner (NexGard) against induced infestations of Rhipicephalus sanguineus s.l. on dogs.

  • Robert H Six‎ et al.
  • Parasites & vectors‎
  • 2016‎

The brown dog tick, Rhipicephalus sanguineus sensu lato, commonly infests dogs globally, is the major vector of the pathogen that causes canine monocytic ehrlichiosis and also transmits Babesia vogeli. A rapid speed of kill of a parasiticide is essential to reduce the direct deleterious effects of tick infestation and the risk of tick-borne pathogen transmission. The speed of kill of a novel orally administered isoxazoline parasiticide, sarolaner (Simparica), against R. sanguineus sensu lato on dogs was evaluated and compared with afoxolaner (NexGard) for 5 weeks after a single oral dose.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: