Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,570 papers

Structural basis for the dual thymidine and thymidylate kinase activity of herpes thymidine kinases.

  • Anna Gardberg‎ et al.
  • Structure (London, England : 1993)‎
  • 2003‎

Crystal structures of equine herpesvirus type-4 thymidine kinase (EHV4-TK) in complex with (i). thymidine and ADP, (ii). thymidine and SO(4) and the bisubstrate analogs, (iii). TP(4)A, and (iv). TP(5)A have been solved. Additionally, the structure of herpes simplex virus type-1 thymidine kinase (HSV1-TK) in complex with TP(5)A has been determined. These are the first structures of nucleoside kinases revealing conformational transitions upon binding of bisubstrate analogs. The structural basis for the dual thymidine and thymidylate kinase activity of these TKs is elucidated. While the active sites of HSV1-TK and EHV4-TK resemble one another, notable differences are observed in the Lid regions and in the way the enzymes bind the base of the phosphoryl-acceptor. The latter difference could partly explain the higher activity of EHV4-TK toward the prodrug ganciclovir.


Anticancer activity of a thymidine quinoxaline conjugate is modulated by cytosolic thymidine pathways.

  • Qiong Wei‎ et al.
  • BMC cancer‎
  • 2015‎

High levels of thymidine kinase 1 (TK1) and thymidine phosphorylase (TYMP) are key molecular targets by thymidine therapeutics in cancer treatment. The dual roles of TYMP as a tumor growth factor and a key activation enzyme of anticancer metabolites resulted in a mixed outcome in cancer patients. In this study, we investigated the roles of TK1 and TYMP on a thymidine quinoxaline conjugate to evaluate an alternative to circumvent the contradictive role of TYMP.


The effect of fluoropyrimidines with or without thymidine phosphorylase inhibitor on the expression of thymidine phosphorylase.

  • Michiel De Bruin‎ et al.
  • European journal of pharmacology‎
  • 2004‎

Thymidine phosphorylase (platelet-derived-endothelial-cell-growth-factor) catalyzes the reversible phosphorolysis of thymidine to thymine and 2-deoxyribose-1-phosphate, activates 5'-deoxy-5-fluorouridine (5'DFUR) and inactivates trifluorothymidine (TFT). The effect of 5'DFUR and TFT with or without a specific thymidine phosphorylase inhibitor (TPI) on thymidine phosphorylase mRNA, protein expression and activity was studied, in three human colon cancer cell lines, WiDR, HT29 and Lovo exposed for 72 h at IC50 concentrations. In Lovo cells TFT plus TPI only increased thymidine phosphorylase-protein expression 1.7-fold; 5'DFUR and TFT treatment increased thymidine phosphorylase mRNA levels 5- and 1.4-fold, respectively. In WiDR cells, 5'DFUR plus TPI significantly decreased thymidine phosphorylase-protein. TFT and TFT plus TPI increased thymidine phosphorylase-protein 2- and 3-fold, respectively. TPI and 5'DFUR decreased thymidine phosphorylase-mRNA levels significantly. In HT29 cells, 5'DFUR and 5'DFUR plus TPI decreased both thymidine phosphorylase-protein and thymidine phosphorylase-mRNA. In all cell lines 5'DFUR and TFT did not affect thymidine phosphorylase activity, but treatment with TPI (alone or in combination) eliminated thymidine phosphorylase activity. This demonstrated that regulation is drug and cell line dependent.


Depletion of plasma thymidine results in growth retardation and mitochondrial myopathy in mice overexpressing human thymidine phosphorylase.

  • Naomoto Harada‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

Plasma thymidine levels in rodents are higher than in other mammals including humans, possibly due to a different pattern and lower level of thymidine phosphorylase expression. Here, we generated a novel knock-in (KI) mouse line with high systemic expression of human thymidine phosphorylase to investigate this difference in nucleotide metabolism in rodents. The KI mice showed growth retardation around weaning and died by 4 weeks of age with a decrease in plasma thymidine level compared with the litter-control WT mice. These phenotypes were completely or partially rescued by administration of the thymidine phosphorylase inhibitor 5-chloro-6-(2-iminopyrrolidin-1-yl) methyl-2,4(1H,3H)-pyrimidinedione hydrochloride or thymidine, respectively. Interestingly, when thymidine phosphorylase inhibitor administration was discontinued in adult animals, KI mice showed deteriorated grip strength and locomotor activity, decreased bodyweight, and subsequent hind-limb paralysis. Upon histological analyses, we observed axonal degeneration in the spinal cord, muscular atrophy with morphologically abnormal mitochondria in quadriceps, retinal degeneration, and abnormality in the exocrine pancreas. Moreover, we detected mitochondrial DNA depletion in multiple tissues of KI mice. These results indicate that the KI mouse represents a new animal model for mitochondrial diseases and should be applicable for the study of differences in nucleotide metabolism between humans and mice.


Synthetic Thymidine Analog Labeling without Misconceptions.

  • Anna Ivanova‎ et al.
  • Cells‎
  • 2022‎

Tagging proliferating cells with thymidine analogs is an indispensable research tool; however, the issue of the potential in vivo cytotoxicity of these compounds remains unresolved. Here, we address these concerns by examining the effects of BrdU and EdU on adult hippocampal neurogenesis and EdU on the perinatal somatic development of mice. We show that, in a wide range of doses, EdU and BrdU label similar numbers of cells in the dentate gyrus shortly after administration. Furthermore, whereas the administration of EdU does not affect the division and survival of neural progenitor within 48 h after injection, it does affect cell survival, as evaluated 6 weeks later. We also show that a single injection of various doses of EdU on the first postnatal day does not lead to noticeable changes in a panel of morphometric criteria within the first week; however, higher doses of EdU adversely affect the subsequent somatic maturation and brain growth of the mouse pups. Our results indicate the potential caveats in labeling the replicating DNA using thymidine analogs and suggest guidelines for applying this approach.


Thymidine Catabolism as a Metabolic Strategy for Cancer Survival.

  • Sho Tabata‎ et al.
  • Cell reports‎
  • 2017‎

Thymidine phosphorylase (TP), a rate-limiting enzyme in thymidine catabolism, plays a pivotal role in tumor progression; however, the mechanisms underlying this role are not fully understood. Here, we found that TP-mediated thymidine catabolism could supply the carbon source in the glycolytic pathway and thus contribute to cell survival under conditions of nutrient deprivation. In TP-expressing cells, thymidine was converted to metabolites, including glucose 6-phosphate, lactate, 5-phospho-α-D-ribose 1-diphosphate, and serine, via the glycolytic pathway both in vitro and in vivo. These thymidine-derived metabolites were required for the survival of cells under low-glucose conditions. Furthermore, activation of thymidine catabolism was observed in human gastric cancer. These findings demonstrate that thymidine can serve as a glycolytic pathway substrate in human cancer cells.


Thymidine Phosphorylase Gene Expression in Stage III Colorectal Cancer.

  • Elinor B Lindskog‎ et al.
  • Clinical Medicine Insights. Oncology‎
  • 2012‎

The thymidine phosphorylase (TP) enzyme has several tumor-promoting functions. The aim of this study was to explore TP gene expression in relation to clinical and histopathological data obtained from patients with stage III colorectal cancer.


Vorinostat synergises with capecitabine through upregulation of thymidine phosphorylase.

  • E Di Gennaro‎ et al.
  • British journal of cancer‎
  • 2010‎

Potentiation of anticancer activity of capecitabine is required to improve its therapeutic index. In colorectal cancer (CRC) cells, we evaluated whether the histone deacetylase-inhibitor vorinostat may induce synergistic antitumour effects in combination with capecitabine by modulating the expression of thymidine phosphorylase (TP), a key enzyme in the conversion of capecitabine to 5-florouracil (5-FU), and thymidylate synthase (TS), the target of 5-FU.


Negative Cooperative Binding of Thymidine, Ordered Substrate Binding, and Product Release of Human Mitochondrial Thymidine Kinase 2 Explain Its Complex Kinetic Properties and Physiological Functions.

  • Liya Wang‎ et al.
  • ACS omega‎
  • 2018‎

Mitochondrial thymidine kinase 2 (TK2) catalyzes the phosphorylation of thymidine (dT) and deoxycytidine (dC) and is essential for mitochondrial function in post-mitotic tissues. The phosphorylation of dT shows negative cooperativity, but the phosphorylation of dC follows classical Michaelis-Menten kinetics. The enzyme is feedback-inhibited by its end products deoxythymidine triphosphate (dTTP) and deoxycytidine triphosphate (dCTP). In order to better understand the reaction mechanism and the negative cooperative behavior, we conducted isothermal titration calorimetry (ITC) and intrinsic tryptophan fluorescence (ITF) quenching studies with purified recombinant human TK2. Cooperative binding was observed with dT but not dC by the ITC analysis in accordance with earlier enzyme kinetic studies. The phosphate donor adenosine triphosphate (ATP) did not bind to either dTTP-bound or dTTP-free enzymes but bound tightly to the dT- or dC-TK2 complexes with large differences in enthalpy and entropy changes, strongly suggesting an ordered binding of the substrates and different conformational states of the ATP and dT- and dC-TK2 ternary complexes. dTTP binding was endothermic; however, dCTP could not be shown to interact with the enzyme. ITF quenching studies also revealed tight binding of dT, dC, deoxythymidine monophosphate, deoxycytidine monophosphate, and dTTP but not adenosine 5'-diphosphate or ATP. These results strongly indicate an ordered sequential binding of the substrates and ordered release of the products as well as different conformational states of the active site of TK2. These results help to explain the different kinetics observed with dT and dC as substrates, which have important implications for TK2 regulation in vivo.


Thymidine kinase 1 through the ages: a comprehensive review.

  • Eliza E Bitter‎ et al.
  • Cell & bioscience‎
  • 2020‎

Proliferation markers, such as proliferating cell nuclear antigen (PCNA), Ki-67, and thymidine kinase 1 (TK1), have potential as diagnostic tools and as prognostic factors in assessing cancer treatment and disease progression. TK1 is involved in cellular proliferation through the recovery of the nucleotide thymidine in the DNA salvage pathway. TK1 upregulation has been found to be an early event in cancer development. In addition, serum levels of TK1 have been shown to be tied to cancer stage, so that higher levels of TK1 indicate a more serious prognosis. As a result of these findings and others, TK1 is not only a potentially viable biomarker for cancer recurrence, treatment monitoring, and survival, but is potentially more advantageous than current biomarkers. Compared to other proliferation markers, TK1 levels during S phase more accurately determine the rate of DNA synthesis in actively dividing tumors. Several reviews of TK1 elaborate on various assays that have been developed to measure levels in the serum of cancer patients in clinical settings. In this review, we include a brief history of important TK1 discoveries and findings, a comprehensive overview of TK1 regulation at DNA to protein levels, and recent findings that indicate TK1's potential role in cancer pathogenesis and its growing potential as a tumor biomarker and therapeutic target.


Elimination of 15N-thymidine after oral administration in human infants.

  • Niyatie Ammanamanchi‎ et al.
  • PloS one‎
  • 2024‎

We have developed a new clinical research approach for the quantification of cellular proliferation in human infants to address unanswered questions about tissue renewal and regeneration. The approach consists of oral 15N-thymidine administration to label cells in S-phase, followed by Multi-isotope Imaging Mass Spectrometry for detection of the incorporated label in cell nuclei. To establish the approach, we performed an observational study to examine uptake and elimination of 15N-thymidine. We compared at-home label administration with in-hospital administration in infants with tetralogy of Fallot, a form of congenital heart disease, and infants with heart failure.


Ozonation products of zidovudine and thymidine in oxidative water treatment.

  • Jan Funke‎ et al.
  • Water research X‎
  • 2021‎

Ozonation is an advanced treatment technology that is increasingly used for the removal of organic micropollutants from wastewater and drinking water. However, reaction of organic compounds with ozone can also result in the formation of toxic transformation products. In the present study, the degradation of the antiviral drug zidovudine during ozonation was investigated. To obtain further insights into the reaction mechanisms and pathways, results of zidovudine were compared with the transformation of the naturally occurring derivative thymidine. Kinetic experiments were accompanied by elucidation of formed transformation products using lab-scale batch experiments and subsequent liquid chromatography - high resolution mass spectrometry (LC-HRMS) analysis. Degradation rate constants for zidovudine with ozone in the presence of t-BuOH as radical scavenger varied between 2.8 ∙ 104 M-1 s-1 (pH 7) and 3.2 ∙ 104 M-1 s-1 (pH 3). The structural difference of zidovudine to thymidine is the exchange of the OH-moiety by the azide function at position 3'. In contrast to inorganic azide, no reaction with ozone was observed for the organic bound azide. In total, nine transformation products (TPs) were identified for both zidovudine and thymidine. Their formation can be attributed to the attack of ozone at the C-C-double bond of the pyrimidine-base. As a result of rearrangements, the primary ozonide decomposed in three pathways forming two different TPs, including hydroperoxide TPs. Rearrangement reactions followed by hydrolysis and subsequent release of H2O2 further revealed a cascade of TPs containing amide moieties. In addition, a formyl amide riboside and a urea riboside were identified as TPs indicating that oxidations of amide groups occur during ozonation processes.


Cytotoxicity of trifluridine correlates with the thymidine kinase 1 expression level.

  • Yuki Kataoka‎ et al.
  • Scientific reports‎
  • 2019‎

Trifluridine (FTD), a tri-fluorinated thymidine analogue, is a key component of the oral antitumor drug FTD/TPI (also known as TAS-102), which is used to treat refractory metastatic colorectal cancer. Thymidine kinase 1 (TK1) is thought to be important for the incorporation of FTD into DNA, resulting in DNA dysfunction and cytotoxicity. However, it remains unknown whether TK1 is essential for FTD incorporation into DNA and whether this event is affected by the expression level of TK1 because TK1-specific-deficient human cancer cell lines have not been established. Here, we generated TK1-knock-out human colorectal cancer cells using the CRISPR/Cas9 genome editing system and validated the specificity of TK1 knock-out by measuring expression of AFMID, which is encoded on the same locus as TK1. Using TK1-knock-out cells, we confirmed that TK1 is essential for cellular sensitivity to FTD. Furthermore, we demonstrated a correlation between the TK1 expression level and cytotoxicity of FTD using cells with inducible TK1 expression, which were generated from TK1-knock-out cells. Based on our finding that the TK1 expression level correlates with sensitivity to FTD, we suggest that FTD/TPI might efficiently treat cancers with high TK1 expression.


Tandem mass spectrometric sequence characterization of synthetic thymidine-rich oligonucleotides.

  • A M Abdullah‎ et al.
  • Journal of mass spectrometry : JMS‎
  • 2022‎

Tandem mass spectrometry (MS/MS) can provide direct and accurate sequence characterization of synthetic oligonucleotide drugs, including modified oligonucleotides. Multiple factors can affect oligonucleotide MS/MS sequencing, including the intrinsic properties of oligonucleotides (i.e., nucleotide composition and structural modifications) and instrument parameters associated with the ion activation for fragmentation. In this study, MS/MS sequencing of a thymidine (T)-rich and phosphorothioate (PS)-modified DNA oligonucleotide was investigated using two fragmentation techniques: trap-type collision-induced dissociation ("CID") and beam-type CID also termed as higher-energy collisional dissociation ("HCD"), preceded by a hydrophilic interaction liquid chromatography (HILIC) separation. A low to moderate charge state (-4), which predominated under the optimized HILIC-MS conditions, was selected as the precursor ion for MS/MS analysis. Comparison of the two distinctive ion activation mechanisms on the same precursor demonstrated that HCD was superior to CID in promoting higher sequence coverage and analytical sensitivity in sequence elucidation of T-rich DNA oligonucleotides. Specifically, HCD provided more sequence-defining fragments with higher fragment intensities than CID. Furthermore, the direct comparison between unmodified and PS-modified DNA oligonucleotides demonstrated a loss of MS/MS fragmentation efficiency by PS modification in both CID and HCD approaches, and a resultant reduction in sequence coverage. The deficiency in PS DNA sequence coverage observed with single collision energy HCD, however, was partially recovered by applying HCD with multiple collision energies. Collectively, this work demonstrated that HCD is advantageous to MS/MS sequencing of T-rich PS-modified DNA oligonucleotides.


Oncolytic efficacy of thymidine kinase-deleted vaccinia virus strain Guang9.

  • Lili Deng‎ et al.
  • Oncotarget‎
  • 2017‎

Oncolytic virotherapy is being developed as a promising platform for cancer therapy due to its ability to lyse cancer cells in a tumor-specific manner. Vaccinia virus has been used as a live vaccine in the smallpox eradication program and now is being potential in cancer therapy with a great safety profile. Vaccinia strain Guang9 (VG9) is an attenuated Chinese vaccinia virus and its oncolytic efficacy has been evaluated in our previous study. To improve the tumor selectivity and oncolytic efficacy, we here developed a thymidine kinase (TK)-deleted vaccinia virus based on Guang9 strain. The viral replication, marker gene expression and cytotoxicity in various cell lines were evaluated; antitumor effects in vivo were assessed in multiple tumor models. In vitro, the TK-deleted vaccinia virus replicated rapidly, but the cytotoxicity varied in different cell lines. It was notably attenuated in normal cells and resting cells in vitro, while tumor-selectively replicated in vivo. Significant antitumor effects were observed both in murine melanoma tumor model and human hepatoma tumor model. It significantly inhibited the growth of subcutaneously implanted tumors and prolonged the survival of tumor-bearing mice. Collectively, TK-deleted vaccinia strain Guang9 is a promising constructive virus vector for tumor-directed gene therapy and will be a potential therapeutic strategy in cancer treatment.


Late-onset thymidine kinase 2 deficiency: a review of 18 cases.

  • Cristina Domínguez-González‎ et al.
  • Orphanet journal of rare diseases‎
  • 2019‎

TK2 gene encodes for mitochondrial thymidine kinase, which phosphorylates the pyrimidine nucleosides thymidine and deoxycytidine. Recessive mutations in the TK2 gene are responsible for the 'myopathic form' of the mitochondrial depletion/multiple deletions syndrome, with a wide spectrum of severity.


Thymidine utilisation pathway is a novel phenotypic switch of Mycoplasma hominis.

  • Gleb Yu Fisunov‎ et al.
  • Journal of medical microbiology‎
  • 2022‎

Introduction. Mycoplasma hominis is a bacterium belonging to the class Mollicutes. It causes acute and chronic infections of the urogenital tract. The main features of this bacterium are an absence of cell wall and a reduced genome size (517-622 protein-encoding genes). Previously, we have isolated morphologically unknown M. hominis colonies called micro-colonies (MCs) from the serum of patients with inflammatory urogenital tract infection.Hypothesis. MCs are functionally different from the typical colonies (TCs) in terms of metabolism and cell division.Aim. To determine the physiological differences between MCs and TCs of M. hominis and elucidate the pathways of formation and growth of MCs by a comparative proteomic analysis of these two morphological forms.Methodology. LC-MS proteomic analysis of TCs and MCs using an Ultimate 3000 RSLC nanoHPLC system connected to a QExactive Plus mass spectrometer.Results. The study of the proteomic profiles of M. hominis colonies allowed us to reconstruct their energy metabolism pathways. In addition to the already known pentose phosphate and arginine deamination pathways, M. hominis can utilise ribose phosphate and deoxyribose phosphate formed by nucleoside catabolism as energy sources. Comparative proteomic HPLC-MS analysis revealed that the proteomic profiles of TCs and MCs were different. We assume that MC cells preferably utilised deoxyribonucleosides, particularly thymidine, as an energy source rather than arginine or ribonucleosides. Utilisation of deoxyribonucleosides is less efficient as compared with that of ribonucleosides and arginine in terms of energy production. Thymidine phosphorylase DeoA is one of the key enzymes of deoxyribonucleosides utilisation. We obtained a DeoA overexpressing mutant that exhibited a phenotype similar to that of MCs, which confirmed our hypothesis.Conclusion. In addition to the two known pathways for energy production (arginine deamination and the pentose phosphate pathway) M. hominis can use deoxyribonucleosides and ribonucleosides. MC cells demonstrate a reorganisation of energy metabolism: unlike TC cells, they preferably utilise deoxyribonucleosides, particularly thymidine, as an energy source rather than arginine or ribonucleosides. Thus MC cells enter a state of energy starvation, which helps them to survive under stress, and in particular, to be resistant to antibiotics.


Mice deficient for cytosolic thymidine kinase gene develop fatal kidney disease.

  • Vasily N Dobrovolsky‎ et al.
  • Molecular genetics and metabolism‎
  • 2003‎

The thymidine kinase (Tk) gene codes for a cytosolic protein involved in the pyrimidine nucleotide salvage pathway. A functional Tk gene is not necessary for cells in culture, and a naturally occurring Tk deficient phenotype has not been described in humans or animal models. In order to determine the biological significance of the Tk gene, we created Tk(-/-) knockout (KO) mice through homologous recombination in mouse embryonic stem cells. Tk KO mice have shortened life spans compared with their wild-type or Tk heterozygous (HET) siblings. All Tk KO mice develop sclerosis of kidney glomeruli and die before one year of age of kidney failure. Among other changes in KO animals, the most consistent is a switch from exclusively mucous secretion to predominantly serous secretion in the sublingual salivary gland. HET parents can produce KO mice at a frequency approaching Mendelian inheritance. Other observations in KO animals include an elevated level of serum thymidine, a significant decrease in the cloning efficiency of splenic lymphocytes, an increase in the frequency of hypoxanthine guanine phosphoribosyl transferase gene mutant lymphocytes, and histological alteration in the lymphoid structure of the spleen. In addition, KO animals sporadically exhibit inflammation of the arteries, which taken together with the lymphocyte and spleen abnormalities, suggest an abnormal immune system. Alterations in Tk KO mice indicate that the pyrimidine nucleotide salvage pathway is indispensable in vivo.


Quantification of Plasma and Urine Thymidine and 2'-Deoxyuridine by LC-MS/MS for the Pharmacodynamic Evaluation of Erythrocyte Encapsulated Thymidine Phosphorylase in Patients with Mitochondrial Neurogastrointestinal Encephalomyopathy.

  • Karin Kipper‎ et al.
  • Journal of clinical medicine‎
  • 2020‎

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare disorder caused by mutations in TYMP, leading to a deficiency in thymidine phosphorylase and a subsequent systemic accumulation of thymidine and 2'-deoxyuridine. Erythrocyte-encapsulated thymidine phosphorylase (EE-TP) is under clinical development as an enzyme replacement therapy for MNGIE. Bioanalytical methods were developed according to regulatory guidelines for the quantification of thymidine and 2'-deoxyuridine in plasma and urine using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for supporting the pharmacodynamic evaluation of EE-TP. Samples were deproteinized with 5% perchloric acid (v/v) and the supernatants analyzed using a Hypercarb column (30 × 2.1 mm, 3 µm), with mobile phases of 0.1% formic acid in methanol and 0.1% formic acid in deionized water. Detection was conducted using an ion-spray interface running in positive mode. Isotopically labelled thymidine and 2'-deoxyuridine were used as internal standards. Calibration curves for both metabolites showed linearity (r > 0.99) in the concentration ranges of 10-10,000 ng/mL for plasma, and 1-50 µg/mL for urine, with method analytical performances within the acceptable criteria for quality control samples. The plasma method was successfully applied to the diagnosis of two patients with MNGIE and the quantification of plasma metabolites in three patients treated with EE-TP.


Thymidine starvation promotes c-di-AMP-dependent inflammation during pathogenic bacterial infection.

  • Qing Tang‎ et al.
  • Cell host & microbe‎
  • 2022‎

Antimicrobials can impact bacterial physiology and host immunity with negative treatment outcomes. Extensive exposure to antifolate antibiotics promotes thymidine-dependent Staphylococcus aureus small colony variants (TD-SCVs), commonly associated with worse clinical outcomes. We show that antibiotic-mediated disruption of thymidine synthesis promotes elevated levels of the bacterial second messenger cyclic di-AMP (c-di-AMP), consequently inducing host STING activation and inflammation. An initial antibiotic screen in Firmicutes revealed that c-di-AMP production was largely driven by antifolate antibiotics targeting dihydrofolate reductase (DHFR), which promotes folate regeneration required for thymidine biosynthesis. Additionally, TD-SCVs exhibited excessive c-di-AMP production and STING activation in a thymidine-dependent manner. Murine lung infection with TD-SCVs revealed STING-dependent elevation of proinflammatory cytokines, causing higher airway neutrophil infiltration and activation compared with normal-colony S. aureus and hemin-dependent SCVs. Collectively, our results suggest that thymidine metabolism disruption in Firmicutes leads to elevated c-di-AMP-mediated STING-dependent inflammation, with potential impacts on antibiotic usage and infection outcomes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: