Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 591 papers

C-Mannosylation of thrombopoietin receptor (c-Mpl) regulates thrombopoietin-dependent JAK-STAT signaling.

  • Yukiko Sasazawa‎ et al.
  • Biochemical and biophysical research communications‎

The thrombopoietin receptor, also known as c-Mpl, is a member of the cytokine superfamily, which regulates the differentiation of megakaryocytes and formation of platelets by binding to its ligand, thrombopoietin (TPO), through Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling. The loss-of-function mutations of c-Mpl cause severe thrombocytopenia due to impaired megakaryocytopoiesis, and gain-of-function mutations cause thrombocythemia. c-Mpl contains two Trp-Ser-Xaa-Trp-Ser (Xaa represents any amino acids) sequences, which are characteristic sequences of type I cytokine receptors, corresponding to C-mannosylation consensus sequences: Trp-Xaa-Xaa-Trp/Cys. C-mannosylation is a post-translational modification of tryptophan residue in which one mannose is attached to the first tryptophan residue in the consensus sequence via C-C linkage. Although c-Mpl contains some C-mannosylation sequences, whether c-Mpl is C-mannosylated or not has been uninvestigated. We identified that c-Mpl is C-mannosylated not only at Trp(269) and Trp(474), which are putative C-mannosylation site, but also at Trp(272), Trp(416), and Trp(477). Using C-mannosylation defective mutant of c-Mpl, the C-mannosylated tryptophan residues at four sites (Trp(269), Trp(272), Trp(474), and Trp(477)) are essential for c-Mpl-mediated JAK-STAT signaling. Our findings suggested that C-mannosylation of c-Mpl is a possible therapeutic target for platelet disorders.


Overproduction of thrombopoietin by BRAFV600E-mutated mouse hepatocytes and contribution of thrombopoietin to hepatocarcinogenesis.

  • Hiroki Tanaka‎ et al.
  • Cancer science‎
  • 2019‎

In hepatocarcinogenesis induced by diethylnitrosamine (DEN) in B6C3F1 mice, the BrafV637E mutation, corresponding to the human BRAFV600E mutation, plays a pivotal role. The livers of transgenic mice with a hepatocyte-specific human BRAFV600E mutation weighed 4.5 times more than that of normal mice and consisted entirely of hepatocytes, resembling DEN-induced preneoplastic hepatocytes. However, these transgenic mice spontaneously died 7 wk after birth, therefore this study aimed to clarify the causes of death. In the transgenic mice, the liver showed thrombopoietin (TPO) overexpression, which is associated with eventual megakaryocytosis and thrombocytosis, and activated platelets were deposited in hepatic sinusoids. TPO was also overexpressed in the DEN-induced hepatic tumors, and sinusoidal platelet deposition was observed in the hepatic tumors of humans and mice. Podoplanin was expressed in some of the Kupffer cells in the liver of the transgenic mice, indicating that platelet activation occurred via the interaction of podoplanin with C-type lectin receptor 2 (CLEC-2) on the platelet membrane. Additionally, erythrocyte dyscrasia and glomerulonephropathy/interstitial pneumonia associated with platelet deposition were observed. In the transgenic mice, aspirin (Asp) administration prevented platelet activation, reduced the liver/body weight ratio, decreased the platelet deposition in the liver, kidney, and lung, and prevented erythrocyte dyscrasia and ameliorated the renal/pulmonary changes. Thrombopoietin overproduction by BRAFV600E-mutated hepatocytes may contribute to hepatocyte proliferation via thrombocytosis, platelet activation, and the interaction of platelets with hepatic sinusoidal cells, while hematologic, renal, and pulmonary disorders due to aberrant platelet activation may lead to spontaneous death in the transgenic mice.


Cryo-EM structure of the extracellular domain of murine Thrombopoietin Receptor in complex with Thrombopoietin.

  • Kaiseal T G Sarson-Lawrence‎ et al.
  • Nature communications‎
  • 2024‎

Thrombopoietin (Tpo) is the primary regulator of megakaryocyte and platelet numbers and is required for haematopoetic stem cell maintenance. Tpo functions by binding its receptor (TpoR, a homodimeric Class I cytokine receptor) and initiating cell proliferation or differentiation. Here we characterise the murine Tpo:TpoR signalling complex biochemically and structurally, using cryo-electron microscopy. Tpo uses opposing surfaces to recruit two copies of receptor, forming a 1:2 complex. Although it binds to the same, membrane-distal site on both receptor chains, it does so with significantly different affinities and its highly glycosylated C-terminal domain is not required. In one receptor chain, a large insertion, unique to TpoR, forms a partially structured loop that contacts cytokine. Tpo binding induces the juxtaposition of the two receptor chains adjacent to the cell membrane. The therapeutic agent romiplostim also targets the cytokine-binding site and the characterisation presented here supports the future development of improved TpoR agonists.


Icaritin Provokes Serum Thrombopoietin and Downregulates Thrombopoietin/MPL of the Bone Marrow in a Mouse Model of Immune Thrombocytopenia.

  • Ke Zhang‎ et al.
  • Mediators of inflammation‎
  • 2018‎

Immune thrombocytopenia (ITP) is a common acquired autoimmune disease, and thrombopoietin (TPO) is an important cytokine that regulates the production of megakaryocytes and platelets. We have identified a biologically active component, icaritin, from a Chinese herba epimedii extract. Icaritin promotes platelet production and regulates T cell polarization, but its mechanism is not clear. In this study, the BALB/c mouse model of ITP was established by injection of an antiplatelet antibody every other day for seven total times. The antiplatelet sera were derived from guinea pigs immunized with the platelets of BALB/c mice. Mice with ITP were treated with icaritin at low, moderate, or high doses of 4.73, 9.45, and 18.90 mg/kg, respectively, for fourteen consecutive days. The present study shows that icaritin can significantly increase peripheral blood platelet counts and thrombocytocrit, increase the TPO level in serum, attenuate splenomegaly, and reduce the abnormal proliferation of megakaryocytes in the spleen and bone marrow. Icaritin can also downregulate the expression of bone marrow TPO, myeloproliferative leukemia virus oncogene (MPL), and p-Stat3. Our results suggest that icaritin can significantly improve the health of mice with ITP via possible downregulation of p-Stat3 expression in the JAK2/Stat3 phosphorylation signaling pathway and regulation of bone marrow TPO/MPL metabolism.


Orientation-specific signalling by thrombopoietin receptor dimers.

  • Judith Staerk‎ et al.
  • The EMBO journal‎
  • 2011‎

Ligand binding to the thrombopoietin receptor is thought to stabilize an active receptor dimer that regulates megakaryocyte differentiation and platelet formation, as well as haematopoietic stem cell renewal. By fusing a dimeric coiled coil in all seven possible orientations to the thrombopoietin receptor transmembrane (TM)-cytoplasmic domains, we show that specific biological effects and in vivo phenotypes are imparted by distinct dimeric orientations, which can be visualized by cysteine mutagenesis and crosslinking. Using functional assays and computational searches, we identify one orientation that represents the inactive dimeric state and another similar to a physiologically activated receptor. Several other dimeric orientations are identified that induce proliferation and in vivo myeloproliferative and myelodysplastic disorders, indicating the receptor can signal from several dimeric interfaces. The set of dimeric thrombopoietin receptors with different TM orientations may offer new insights into the activation of distinct signalling pathways by a single receptor and suggests that subtle differences in cytokine receptor dimerization provide a new layer of signalling regulation that is relevant for disease.


Thrombopoietin Secretion by Human Ovarian Cancer Cells.

  • Samaher Besbes‎ et al.
  • International journal of cell biology‎
  • 2017‎

The thrombopoietin (TPO) gene expression in human ovary and cancer cells from patients with ovarian carcinomatosis, as well as several cancer cell lines including MDA-MB231 (breast cancer), K562 and HL60 (Leukemic cells), OVCAR-3NIH and SKOV-3 (ovarian cancer), was performed using RT PCR, real-time PCR, and gene sequencing. Human liver tissues are used as controls. The presence of TPO in the cells and its regulation by activated protein C were explored by flow cytometry. TPO content of cell extract as well as plasma of a patient with ovarian cancer was evaluated by ELISA. The functionality of TPO was performed in coculture on the basis of the viability of a TPO-dependent cell line (Ba/F3), MTT assay, and Annexin-V labeling. As in liver, ovarian tissues and all cancer cells lines except the MDA-MB231 express the three TPO-1 (full length TPO), TPO-2 (12 bp deletion), and TPO-3 (116 pb deletion) variants. Primary ovarian cancer cells as well as cancer cell lines produce TPO. The thrombopoietin production by OVCAR-3 increased when cells are stimulated by aPC. OVCAR-3 cell's supernatant can replace exogenous TPO and inhibited TPO-dependent cell line (Ba/F3) apoptosis. The thrombopoietin produced by tumor may have a direct effect on thrombocytosis/thrombosis occurrence in patients with ovarian cancer.


Thrombopoietin participates in platelet activation in COVID-19 patients.

  • Enrico Lupia‎ et al.
  • EBioMedicine‎
  • 2022‎

The pathogenesis of coronavirus disease 2019 (COVID-19) is characterized by enhanced platelet activation and diffuse hemostatic alterations, which may contribute to immunothrombosis/thromboinflammation and subsequent development of target-organ damage. Thrombopoietin (THPO), a growth factor essential to megakariocyte proliferation, is known to prime platelet activation and leukocyte-platelet interaction. In addition, THPO concentrations increase in several critical diseases, such as acute cardiac ischemia and sepsis, thus representing a potential diagnostic and prognostic biomarker. Furthermore, several data suggest that interleukin (IL)-6 is one of the most important inflammatory mediators involved in these phenomena, which led to explore the potential therapeutic role of IL-6 inhibitors. In this prospective cohort study, we aimed to study THPO and IL-6 concentrations in COVID-19 patients at the time of first clinical evaluation in the Emergency Department (ED), and to investigate their potential use as diagnostic and prognostic biomarkers. In addition, we sought to explore the role of THPO contained in plasma samples obtained from COVID-19 patients in priming in vitro platelet activation and leukocyte-platelet interaction.


Thrombopoietin mutation in congenital amegakaryocytic thrombocytopenia treatable with romiplostim.

  • Alessandro Pecci‎ et al.
  • EMBO molecular medicine‎
  • 2018‎

Congenital amegakaryocytic thrombocytopenia (CAMT) is an inherited disorder characterized at birth by thrombocytopenia with reduced megakaryocytes, which evolves into generalized bone marrow aplasia during childhood. Although CAMT is genetically heterogeneous, mutations of MPL, the gene encoding for the receptor of thrombopoietin (THPO), are the only known disease-causing alterations. We identified a family with three children affected with CAMT caused by a homozygous mutation (p.R119C) of the THPO gene. Functional studies showed that p.R119C affects not only ability of the cytokine to stimulate MPL but also its release, which is consistent with the relatively low serum THPO levels measured in patients. In all the three affected children, treatment with the THPO-mimetic romiplostim induced trilineage hematological responses, remission of bleeding and infections, and transfusion independence, which were maintained after up to 6.5 years of observation. Recognizing patients with THPO mutations among those with juvenile bone marrow failure is essential to provide them with appropriate substitutive therapy and prevent the use of invasive and unnecessary treatments, such as hematopoietic stem cell transplantation or immunosuppression.


Knowledge map of thrombopoietin receptor agonists: A bibliometric analysis.

  • Rong Hu‎ et al.
  • Heliyon‎
  • 2024‎

Thrombopoietin receptor agonists (TPO-RAs) have been widely used to treat thrombocytopenia, however, a scientometric profile of TPO-RAs research is lacking. Methods: This study uses VOSviewer, CiteSpace, and R software to provide an overview of current research, highlight study hotspots, and predict future research directions of TPO-RAs. Results: One thousand seven hundred and nineteen relevant studies from 1993 to 2022 with 43962 citations were identified from the Web of Science Core Collection. Over three decades, the USA has been leading TPO-RAs publications. Industries and academic institutions have been actively involved in TPO-RAs research, with funding provided by pharmaceutical companies and public funding bodies. The most productive and cited journals are British Journal of Hematology and Blood, respectively. When author keywords were categorised into three clusters, i.e., cluster 1 (immune thrombocytopenic purpura (ITP)), cluster 2 (avatrombopag, lusutrombopag, and thrombocytopenia), and cluster 3 (TPO-RAs for ITP and off-label drug use), ITP was found to be the current research hotspot, while oral TPO-RAs and licensed or unlicensed drug indications of thrombocytopenic diseases require further investigation. Conclusion: This study has generated the knowledge map of TPO-RAs, which provides a dynamic roadmap for future research in this field.


Thrombopoietin receptor agonist antibody for treating chemotherapy-induced thrombocytopenia.

  • Jiwon Shin‎ et al.
  • BMC cancer‎
  • 2023‎

Thrombocytopenia is a common complication in cancer patients undergoing chemotherapy. Chemotherapy-induced thrombocytopenia (CIT) leads to dose reduction and treatment delays, lowering chemotherapy efficacy and survival rate. Thus, rapid recovery and continuous maintenance of platelet count during chemotherapy cycles are crucial in patients with CIT. Thrombopoietin (TPO) and its receptor, myeloid proliferative leukemia (MPL) protein, play a major role in platelet production. Although several MPL agonists have been developed to regulate thrombopoiesis, none have been approved for the management of CIT due to concerns regarding efficacy or safety. Therefore, the development of effective MPL agonists for treating CIT needs to be further expanded.


Altered B-lymphopoiesis in mice with deregulated thrombopoietin signaling.

  • Amanda E Au‎ et al.
  • Scientific reports‎
  • 2017‎

Thrombopoietin (TPO) is the master cytokine regulator of megakaryopoiesis. In addition to regulation of megakaryocyte and platelet number, TPO is important for maintaining proper hematopoietic stem cell (HSC) function. It was previously shown that a number of lymphoid genes were upregulated in HSCs from Tpo -/- mice. We investigated if absent or enhanced TPO signaling would influence normal B-lymphopoiesis. Absent TPO signaling in Mpl -/- mice led to enrichment of a common lymphoid progenitor (CLP) signature in multipotential lineage-negative Sca-1+c-Kit+ (LSK) cells and an increase in CLP formation. Moreover, Mpl -/- mice exhibited increased numbers of PreB2 and immature B-cells in bone marrow and spleen, with an increased proportion of B-lymphoid cells in the G1 phase of the cell cycle. Conversely, elevated TPO signaling in Tpo Tg mice was associated with reduced B-lymphopoiesis. Although at steady state, peripheral blood lymphocyte counts were normal in both models, Mpl -/- Eµ-myc mice showed an enhanced preneoplastic phase with increased numbers of splenic PreB2 and immature B-cells, a reduced quiescent fraction, and augmented blood lymphocyte counts. Thus, although Mpl is not expressed on lymphoid cells, TPO signaling may indirectly influence B-lymphopoiesis and the preneoplastic state in Myc-driven B-cell lymphomagenesis by lineage priming in multipotential progenitor cells.


Thrombopoietin from hepatocytes promotes hematopoietic stem cell regeneration after myeloablation.

  • Longfei Gao‎ et al.
  • eLife‎
  • 2021‎

The bone marrow niche plays critical roles in hematopoietic recovery and hematopoietic stem cell (HSC) regeneration after myeloablative stress. However, it is not clear whether systemic factors beyond the local niche are required for these essential processes in vivo. Thrombopoietin (THPO) is a key cytokine promoting hematopoietic rebound after myeloablation and its transcripts are expressed by multiple cellular sources. The upregulation of bone marrow-derived THPO has been proposed to be crucial for hematopoietic recovery and HSC regeneration after stress. Nonetheless, the cellular source of THPO in myeloablative stress has never been investigated genetically. We assessed the functional sources of THPO following two common myeloablative perturbations: 5-fluorouracil (5-FU) administration and irradiation. Using a Thpo translational reporter, we found that the liver but not the bone marrow is the major source of THPO protein after myeloablation. Mice with conditional Thpo deletion from osteoblasts and/or bone marrow stromal cells showed normal recovery of HSCs and hematopoiesis after myeloablation. In contrast, mice with conditional Thpo deletion from hepatocytes showed significant defects in HSC regeneration and hematopoietic rebound after myeloablation. Thus, systemic THPO from the liver is necessary for HSC regeneration and hematopoietic recovery in myeloablative stress conditions.


Thrombopoietin-independent generation of platelet-like particles from megakaryoblastic cells.

  • Nuntiporn Nunthanasup‎ et al.
  • Scientific reports‎
  • 2023‎

The use of megakaryoblastic leukemia MEG-01 cells can help reveal the mechanisms of thrombopoiesis. However, conventional in vitro activation of platelet release from MEG-01 cells requires thrombopoietin, which is costly. Here, we aim to develop a more straightforward and affordable method. Synchronization of the MEG-01 cells was initially performed using serum-free culture, followed by spontaneous cell differentiation in the presence of serum. Different stages of megakaryoblast differentiation were classified based on cell morphology, DNA content, and cell cycle. The MEG-01 cells released platelet-like particles at a level comparable to that of the thrombopoietin-activated MEG-01 cells. The platelet-like particles were distinguishable from PLP-derived extracellular vesicles and could express P-selectin following ADP activation. Importantly, the platelet-like particles induced fibrin clotting in vitro using platelet-poor plasma. Therefore, this thrombopoietin-independent cell synchronization method is an effective and straightforward method for studying megakaryopoiesis and thrombopoiesis.


Serum Thrombopoietin and cMpl Expression in Thrombocytopenia of Different Etiologies.

  • Fabrizio Vianello‎ et al.
  • Hematology reports‎
  • 2014‎

The relationship between thrombopoietin (TPO) and its receptor cMpl in thrombocytopenic conditions has not been entirely clarified. To elucidate this interplay may expand the spectrum of indications of TPO mimetics. In this study we have explored the relationship between TPO and cMpl in platelets and megakaryocytes of 43 patients with thrombocytopenia due to idiopathic thrombocytopenic purpura (ITP), bone marrow hypoplasia, myelodysplastic syndromes (MDS), and familial thrombocytopenia. Data were compared to cMpl and TPO in patients with a normal platelet count and in patients with thrombocytosis due to essential thrombocythemia (ET). All but familial patients showed higher TPO compared to controls. All thrombocytopenic states were invariably associated with increased expression of platelet cMPL compared to healthy controls. ET patients showed normal TPO and a trend toward a reduced cMpl expression. Immunofluorescence of bone marrow sections from patients with ITP and MDS failed to show a peculiar pattern compared to controls. Multiple mechanisms regulate TPO and cMpl in thrombocytopenic conditions.


Expression of the thrombopoietin gene in tissues from healthy dogs.

  • A S Figueiredo‎ et al.
  • Journal of comparative pathology‎
  • 2013‎

Thrombopoietin (THPO) is the major cytokine that regulates megakaryopoiesis and platelet production. Several human and murine studies have demonstrated that THPO is primarily synthesized in the liver, but the kidney, spleen and bone marrow are also sites of expression. The aim of this study was to determine THPO mRNA levels in a range of canine tissues by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Samples of bone marrow (n = 5), liver (n = 10), lung (n = 10), renal cortex (n = 10), renal medulla (n = 5) and spleen (n = 10) were obtained from 10 healthy, hound-cross dogs aged 6-8 months. The highest THPO mRNA levels were found in the liver, followed by the bone marrow, spleen, lung and kidney. There was a 13-fold difference in expression between liver and kidney. The bone marrow showed high levels of THPO mRNA in the absence of disease. The liver and bone marrow are likely to be the major sites of THPO production in the dog.


Thrombopoietin levels increased in patients with severe acute respiratory syndrome.

  • Mo Yang‎ et al.
  • Thrombosis research‎
  • 2008‎

Hematological changes in patients with Severe Acute Respiratory Syndrome (SARS) are common and frequently include thrombocytopenia. Using a ELISA method, we found an increase in thrombopoietin (TPO) levels in the plasma of convalesced SARS patients (290+/-53 pg/ml) and active SARS patients (251+/-23 pg/ml) comparing to that from normal control patients (228+/-17 pg/ml). In addition, the plasma from active SARS patients had an inhibitory effect on CFU-MK formation, which could be neutralized by anti-TGF-beta antibodies. In the experiment to determine whether SARS-CoV can directly infect hematopoietic stem cells and megakaryocytic cells, incubation of the cells with SARS-CoV did not show active infection. Our findings of increased TPO levels in the plasma of SARS patients provide a possible explanation for the genesis of thrombocytosis, which frequently develops from thrombocytopenia in SARS patients.


Iron deficiency alters megakaryopoiesis and platelet phenotype independent of thrombopoietin.

  • Rayko Evstatiev‎ et al.
  • American journal of hematology‎
  • 2014‎

Iron deficiency is a common cause of reactive thrombocytosis, however, the exact pathways have not been revealed. Here we aimed to study the mechanisms behind iron deficiency-induced thrombocytosis. Within few weeks, iron-depleted diet caused iron deficiency in young Sprague-Dawley rats, as reflected by a drop in hemoglobin, mean corpuscular volume, hepatic iron content and hepcidin mRNA in the liver. Thrombocytosis established in parallel. Moreover, platelets produced in iron deficient animals displayed a higher mean platelet volume and increased aggregation. Bone marrow studies revealed subtle alterations that are suggestive of expansion of megakaryocyte progenitors, an increase in megakaryocyte ploidy and accelerated megakaryocyte differentiation. Iron deficiency did not alter the production of hematopoietic growth factors such as thrombopoietin, interleukin 6 or interleukin 11. Megakaryocytic cell lines grown in iron-depleted conditions exhibited reduced proliferation but increased ploidy and cell size. Our data suggest that iron deficiency increases megakaryopoietic differentiation and alters platelet phenotype without changes in megakaryocyte growth factors, specifically TPO. Iron deficiency-induced thrombocytosis may have evolved to maintain or increase the coagulation capacity in conditions with chronic bleeding.


The uORF-containing thrombopoietin mRNA escapes nonsense-mediated decay (NMD).

  • Clemens Stockklausner‎ et al.
  • Nucleic acids research‎
  • 2006‎

Platelet production is induced by the cytokine thrombopoietin (TPO). It is physiologically critical that TPO expression is tightly regulated, because lack of TPO causes life-threatening thrombocytopenia while an excess of TPO results in thrombocytosis. The plasma concentration of TPO is controlled by a negative feedback loop involving receptor-mediated uptake of TPO by platelets. Furthermore, TPO biosynthesis is limited by upstream open reading frames (uORFs) that curtail the translation of the TPO mRNA. uORFs are suggested to activate RNA degradation by nonsense-mediated decay (NMD) in a number of physiological transcripts. Here, we determine whether NMD affects TPO expression. We show that reporter mRNAs bearing the seventh TPO uORF escape NMD. Importantly, endogenously expressed TPO mRNA from HuH7 cells is unaffected by abrogation of NMD by RNAi. Thus, regulation of TPO expression is independent of NMD, implying that mRNAs bearing uORFs cannot generally be considered to represent NMD targets.


Thrombopoietin Metabolically Primes Hematopoietic Stem Cells to Megakaryocyte-Lineage Differentiation.

  • Ayako Nakamura-Ishizu‎ et al.
  • Cell reports‎
  • 2018‎

During acute myelosuppression or thrombocytopenia, bone marrow (BM) hematopoietic cells respond rapidly to replenish peripheral blood platelets. While the cytokine thrombopoietin (Thpo) both regulates platelet production and maintains HSC potential, whether Thpo controls megakaryocyte (Mk)-lineage differentiation of HSCs is unclear. Here, we show that Thpo rapidly upregulates mitochondrial activity in HSCs, an activity accompanied by differentiation to an Mk lineage. Moreover, in unperturbed hematopoiesis, HSCs with high mitochondrial activity exhibit Mk-lineage differentiation in vitro and myeloid lineage-biased reconstitution in vivo. Furthermore, Thpo skewed HSCs to express the tetraspanin CD9, a pattern correlated with mitochondrial activity. Mitochondria-active HSCs are resistant to apoptosis and oxidative stress upon Thpo stimulation. Thpo-regulated mitochondrial activity associated with mitochondrial translocation of STAT3 phosphorylated at serine 727. Overall, we report an important role for Thpo in regulating rapid Mk-lineage commitment. Thpo-dependent changes in mitochondrial metabolism prime HSCs to undergo direct differentiation to an Mk lineage.


Megakaryocytes are essential for HSC quiescence through the production of thrombopoietin.

  • Ayako Nakamura-Ishizu‎ et al.
  • Biochemical and biophysical research communications‎
  • 2014‎

Tissue homeostasis demands regulatory feedback, suggesting that hematopoietic stem cell (HSC) activity is controlled in part by HSC progeny. Yet, cell extrinsic HSC regulation has been well characterized only in niche cells of non-hematopoietic origin. Here we identify feedback regulation of HSCs by megakaryocytes (Mks), which are mature hematopoietic cells, through production of thrombopoietin (Thpo), a cytokine pertinent for HSC maintenance. Induced ablation of Mk cell population in mice perturbed quiescent HSCs in bone marrow (BM). The ablation of Mks resulted in decreased intra-BM Thpo concentration presumably due to Thpo production by Mks. Thpo administration Mk ablated mice restored HSC functions. Overall, our study establishes Mk as an essential cellular component of the HSC niche and delineates cytokine-oriented regulation of HSCs by their own progeny.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: