Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Influence of sodium thiosulfate on coronary artery calcification of patients on dialysis: a meta-analysis.

  • Chong Huang‎ et al.
  • Renal failure‎
  • 2023‎

Coronary artery calcification (CAC) is common in dialysis patients and is associated with a higher risk of future cardiovascular events. Sodium thiosulfate (STS) is effective for calciphylaxis in dialysis patients; however, the influence of STS on CAC in dialysis patients remains unclear. This systematic review and meta-analysis were conducted to evaluate the effects of STS on CAC in patients undergoing dialysis. PubMed, Embase, Cochrane Library, CNKI, and Wanfang databases were searched from inception to 22 March 2023 for controlled studies comparing the influence of STS versus usual care without STS on CAC scores in dialysis patients. A random effects model incorporating the potential influence of heterogeneity was used to pool the results. Nine studies, including two non-randomized studies and seven randomized controlled trials, were included in the meta-analysis. Among these, 365 patients on dialysis were included in the study. Compared with usual care without STS, intravenous STS for 3-6 months was associated with significantly reduced CAC scores (mean difference [MD] = -180.17, 95% confidence interval [CI]: -276.64 to -83.70, p < 0.001, I2 = 0%). Sensitivity analysis limited to studies of patients on hemodialysis showed similar results (MD: -167.33, 95% CI: -266.57 to -68.09, p = 0.001; I2 = 0%). Subgroup analyses according to study design, sample size, mean age, sex, dialysis vintage of the patients, and treatment duration of STS also showed consistent results (p for subgroup differences all > 0.05). In conclusion, intravenous STS may be effective in attenuating CAC in dialysis patients.


[Synthesis of 4-aryl-1-lambda-2, 2-lambda- 4-dithia-3,4-diaza-buta-1,2-dienes, a new dithiadiazabutadiene system].

  • U Hess‎ et al.
  • Die Pharmazie‎
  • 1994‎

4-Aryl-1 lambda 2, 2 lambda 4-dithia-3,4-diaza-buta-1,2-dienes 1a-12a as representatives of a dithiadiazabutadiene structure in which sulphur occupies a different oxidation number are synthesized by reaction of diazotated acceptor-substituted aryl- and hetarylamines 1-12 with thiosulfates or disodium disulfide in strong acid solution. For some examples a first pharmacological test indicate an immune-stimulating effect. Analytical examination as well as MNDO calculation which give some mechanistical insight, supplements the new synthesis.


Dicyandiamide has more inhibitory activities on nitrification than thiosulfate.

  • Jianfeng Ning‎ et al.
  • PloS one‎
  • 2018‎

Dicyandiamide (DCD) and thiosulfates are two type of nitrification inhibitors (NIs) that have been widely used in agriculture to improve nitrogen (N) fertilizer use efficiency and mitigate negative effect of N on environment. Little information is available concerning the comparison of the efficacy of DCD and thiosulfate on N transformations in soil. The aim of this study was to compare the effects of DCD and thiosulfate (K2S2O3) on changes of NH4+-N, nitrification inhibition and N recovery in a latosolic red soil. An incubation experiment was conducted with four treatments of control (CK), N, N+DCD, and N+K2S2O3. Soil samples were collected periodically over 50 d to determine concentrations of mineral N, and the amoA gene abundance of ammonia monooxygenase (AMO) for ammonia-oxidizing bacteria (AOB) was estimated by qPCR after 10 d incubation. In the N treatment, 67.8% of the applied N as NH4+-N disappeared from the mineral N pool and only 2.7% and 30.8% of the applied N was accumulated as NO2--N and NO3--N, respectively. Addition of DCD and thiosulfate to the soil prevented NH4+-N disappearance by 63.0% and 13.6%, respectively. DCD suppressed the production of NO2--N by 97.41%, whereas thiosulfate increased accumulation of NO2--N by 14.6%. Application of N along with DCD and thiosulfate inhibited nitrification, respectively, by 72.6% and 33.1%, resulting in the delay of the nitrification process for 30 days and 10 days, respectively. Apparent N recovery in N treatment was 66.2%, which increased by 55.2% and 4.8% by DCD and thiosulfate, respectively. Numbers of AOB amoA gene copy was significantly inhibited by both DCD and thiosulfate, and the stronger inhibition induced by DCD than thiosulfate was recorded. Results indicated that both DCD and thiosulfate were effective inhibitors for NH4+-N oxidation, NO3--N production, mineral N losses and AOB growth. DCD showed a more pronounced effect on nitrification inhibition than thiosulfate.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: