Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 31 papers

Thiosulfate sulfurtransferase deficiency promotes oxidative distress and aberrant NRF2 function in the brain.

  • Yang Luo‎ et al.
  • Redox biology‎
  • 2023‎

Thiosulfate sulfurtransferase (TST, EC 2.8.1.1) was discovered as an enzyme that detoxifies cyanide by conversion to thiocyanate (rhodanide) using thiosulfate as substrate; this rhodanese activity was subsequently identified to be almost exclusively located in mitochondria. More recently, the emphasis regarding its function has shifted to hydrogen sulfide metabolism, antioxidant defense, and mitochondrial function in the context of protective biological processes against oxidative distress. While TST has been described to play an important role in liver and colon, its function in the brain remains obscure. In the present study, we therefore sought to address its potential involvement in maintaining cerebral redox balance in a murine model of global TST deficiency (Tst-/- mice), primarily focusing on characterizing the biochemical phenotype of TST loss in relation to neuronal activity and sensitivity to oxidative stress under basal conditions. Here, we show that TST deficiency is associated with a perturbation of the reactive species interactome in the brain cortex secondary to altered ROS and RSS (specifically, polysulfide) generation as well as mitochondrial OXPHOS remodeling. These changes were accompanied by aberrant Nrf2-Keap1 expression and thiol-dependent antioxidant function. Upon challenging mice with the redox-active herbicide paraquat (25 mg/kg i.p. for 24 h), Tst-/- mice displayed a lower antioxidant capacity compared to wildtype controls (C57BL/6J mice). These results provide a first glimpse into the molecular and metabolic changes of TST deficiency in the brain and suggest that pathophysiological conditions associated with aberrant TST expression and/or activity renders neurons more susceptible to oxidative stress-related malfunction.


Identification and characterization of a small molecule that activates thiosulfate sulfurtransferase and stimulates mitochondrial respiration.

  • Zeyana M Al-Dahmani‎ et al.
  • Protein science : a publication of the Protein Society‎
  • 2023‎

The enzyme Thiosulfate sulfurtransferase (TST, EC 2.8.1.1), is a positive genetic predictor of diabetes type 2 and obesity. As increased TST activity protects against the development of diabetic symptoms in mice, an activating compound for TST may provide therapeutic benefits in diabetes and obesity. We identified a small molecule activator of human TST through screening of an inhouse small molecule library. Kinetic studies in vitro suggest that two distinct isomers of the compound are required for full activation as well as an allosteric mode of activation. Additionally, we studied the effect of TST protein and the activator on TST activity through mitochondrial respiration. Molecular docking and molecular dynamics (MD) approaches supports an allosteric site for the binding of the activator, which is supported by the lack of activation in the Escherichia coli. mercaptopyruvate sulfurtransferase. Finally, we show that increasing TST activity in isolated mitochondria increases mitochondrial oxygen consumption.


Genetic identification of thiosulfate sulfurtransferase as an adipocyte-expressed antidiabetic target in mice selected for leanness.

  • Nicholas M Morton‎ et al.
  • Nature medicine‎
  • 2016‎

The discovery of genetic mechanisms for resistance to obesity and diabetes may illuminate new therapeutic strategies for the treatment of this global health challenge. We used the polygenic 'lean' mouse model, which has been selected for low adiposity over 60 generations, to identify mitochondrial thiosulfate sulfurtransferase (Tst; also known as rhodanese) as a candidate obesity-resistance gene with selectively increased expression in adipocytes. Elevated adipose Tst expression correlated with indices of metabolic health across diverse mouse strains. Transgenic overexpression of Tst in adipocytes protected mice from diet-induced obesity and insulin-resistant diabetes. Tst-deficient mice showed markedly exacerbated diabetes, whereas pharmacological activation of TST ameliorated diabetes in mice. Mechanistically, TST selectively augmented mitochondrial function combined with degradation of reactive oxygen species and sulfide. In humans, TST mRNA expression in adipose tissue correlated positively with insulin sensitivity in adipose tissue and negatively with fat mass. Thus, the genetic identification of Tst as a beneficial regulator of adipocyte mitochondrial function may have therapeutic significance for individuals with type 2 diabetes.


Mycobacterium tuberculosis CysA2 is a dual sulfurtransferase with activity against thiosulfate and 3-mercaptopyruvate and interacts with mammalian cells.

  • A N Meza‎ et al.
  • Scientific reports‎
  • 2019‎

Cyanide is a toxic compound that is converted to the non-toxic thiocyanate by a rhodanese enzyme. Rhodaneses belong to the family of transferases (sulfurtransferases), which are largely studied. The sulfur donor defines the subfamily of these enzymes as thiosulfate:cyanide sulfurtransferases or rhodaneses (TSTs) or 3-mercaptopyruvate sulfurtransfeases (MSTs). In Mycobacterium tuberculosis, the causative agent of tuberculosis, the gene Rv0815c encodes the protein CysA2, a putative uncharacterized thiosulfate:cyanide sulfurtransferase that belongs to the essential sulfur assimilation pathway in the bacillus and is secreted during infection. In this work, we characterized the functional and structural properties of CysA2 and its kinetic parameters. The recombinant CysA2 is a α/β protein with two rhodanese-like domains that maintains the functional motifs and a catalytic cysteine. Sulfurtransferase activity was determined using thiosulfate and 3-mercaptopyruvate as sulfur donors. The assays showed Km values of 2.89 mM and 7.02 mM for thiosulfate and 3-mercaptopyruvate, respectively, indicating the protein has dual activity as TST and MST. Immunological assays revealed that CysA2 interacted with pulmonary cells, and it was capable to activate macrophages and dendritic cells, indicating the stimulation of the immune response, which is important for its use as an antigen for vaccine development and immunodiagnostic.


The cytosolic Arabidopsis thaliana cysteine desulfurase ABA3 delivers sulfur to the sulfurtransferase STR18.

  • Benjamin Selles‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

The biosynthesis of many sulfur-containing molecules depends on cysteine as a sulfur source. Both the cysteine desulfurase (CD) and rhodanese (Rhd) domain-containing protein families participate in the trafficking of sulfur for various metabolic pathways in bacteria and human, but their connection is not yet described in plants. The existence of natural chimeric proteins containing both CD and Rhd domains in specific bacterial genera, however, suggests a general interaction between these proteins. We report here the biochemical relationships between two cytosolic proteins from Arabidopsis thaliana, a Rhd domain-containing protein, the sulfurtransferase 18 (STR18), and a CD isoform referred to as ABA3, and compare these biochemical features to those of a natural CD-Rhd fusion protein from the bacterium Pseudorhodoferax sp. We observed that the bacterial enzyme is bifunctional exhibiting both CD and STR activities using l-cysteine and thiosulfate as sulfur donors but preferentially using l-cysteine to catalyze transpersulfidation reactions. In vitro activity assays and mass spectrometry analyses revealed that STR18 stimulates the CD activity of ABA3 by reducing the intermediate persulfide on its catalytic cysteine, thereby accelerating the overall transfer reaction. We also show that both proteins interact in planta and form an efficient sulfur relay system, whereby STR18 catalyzes transpersulfidation reactions from ABA3 to the model acceptor protein roGFP2. In conclusion, the ABA3-STR18 couple likely represents an uncharacterized pathway of sulfur trafficking in the cytosol of plant cells, independent of ABA3 function in molybdenum cofactor maturation.


Thiosulfate transfer mediated by DsrE/TusA homologs from acidothermophilic sulfur-oxidizing archaeon Metallosphaera cuprina.

  • Li-Jun Liu‎ et al.
  • The Journal of biological chemistry‎
  • 2014‎

Conserved clusters of genes encoding DsrE and TusA homologs occur in many archaeal and bacterial sulfur oxidizers. TusA has a well documented function as a sulfurtransferase in tRNA modification and molybdenum cofactor biosynthesis in Escherichia coli, and DsrE is an active site subunit of the DsrEFH complex that is essential for sulfur trafficking in the phototrophic sulfur-oxidizing Allochromatium vinosum. In the acidothermophilic sulfur (S(0))- and tetrathionate (S4O6(2-))-oxidizing Metallosphaera cuprina Ar-4, a dsrE3A-dsrE2B-tusA arrangement is situated immediately between genes encoding dihydrolipoamide dehydrogenase and a heterodisulfide reductase-like complex. In this study, the biochemical features and sulfur transferring abilities of the DsrE2B, DsrE3A, and TusA proteins were investigated. DsrE3A and TusA proved to react with tetrathionate but not with NaSH, glutathione persulfide, polysulfide, thiosulfate, or sulfite. The products were identified as protein-Cys-S-thiosulfonates. DsrE3A was also able to cleave the thiosulfate group from TusA-Cys(18)-S-thiosulfonate. DsrE2B did not react with any of the sulfur compounds tested. DsrE3A and TusA interacted physically with each other and formed a heterocomplex. The cysteine residue (Cys(18)) of TusA is crucial for this interaction. The single cysteine mutants DsrE3A-C(93)S and DsrE3A-C(101)S retained the ability to transfer the thiosulfonate group to TusA. TusA-C(18)S neither reacted with tetrathionate nor was it loaded with thiosulfate with DsrE3A-Cys-S-thiosulfonate as the donor. The transfer of thiosulfate, mediated by a DsrE-like protein and TusA, is unprecedented not only in M. cuprina but also in other sulfur-oxidizing prokaryotes. The results of this study provide new knowledge on oxidative microbial sulfur metabolism.


Biosynthesis of a central intermediate in hydrogen sulfide metabolism by a novel human sulfurtransferase and its yeast ortholog.

  • Scott L Melideo‎ et al.
  • Biochemistry‎
  • 2014‎

Human sulfide:quinone oxidoreductase (SQOR) catalyzes the conversion of H2S to thiosulfate, the first step in mammalian H2S metabolism. SQOR's inability to produce the glutathione persulfide (GSS(-)) substrate for sulfur dioxygenase (SDO) suggested that a thiosulfate:glutathione sulfurtransferase (TST) was required to provide the missing link between the SQOR and SDO reactions. Although TST could be purified from yeast, attempts to isolate the mammalian enzyme were not successful. We used bioinformatic approaches to identify genes likely to encode human TST (TSTD1) and its yeast ortholog (RDL1). Recombinant TSTD1 and RDL1 catalyze a predicted thiosulfate-dependent conversion of glutathione to GSS(-). Both enzymes contain a rhodanese homology domain and a single catalytically essential cysteine, which is converted to cysteine persulfide upon reaction with thiosulfate. GSS(-) is a potent inhibitor of TSTD1 and RDL1, as judged by initial rate accelerations and ≥25-fold lower Km values for glutathione observed in the presence of SDO. The combined action of GSS(-) and SDO is likely to regulate the biosynthesis of the reactive metabolite. SDO drives to completion p-toluenethiosulfonate:glutathione sulfurtransferase reactions catalyzed by TSTD1 and RDL1. The thermodynamic coupling of the irreversible SDO and reversible TST reactions provides a model for the physiologically relevant reaction with thiosulfate as the sulfane donor. The discovery of bacterial Rosetta Stone proteins that comprise fusions of SDO and TSTD1 provides phylogenetic evidence of the association of these enzymes. The presence of adjacent bacterial genes encoding SDO-TSTD1 fusion proteins and human-like SQORs suggests these prokaryotes and mammals exhibit strikingly similar pathways for H2S metabolism.


Novel Characterization of Antioxidant Enzyme, 3-Mercaptopyruvate Sulfurtransferase-Knockout Mice: Overexpression of the Evolutionarily-Related Enzyme Rhodanese.

  • Noriyuki Nagahara‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2019‎

The antioxidant enzyme, 3-mercaptopyruvate sulfurtransferase (MST, EC 2.8.1.2) is localized in the cytosol and mitochondria, while the evolutionarily-related enzyme, rhodanese (thiosulfate sulfurtransferase, TST, EC 2.8.1.1) is localized in the mitochondria. Recently, both enzymes have been shown to produce hydrogen sulfide and polysulfide. Subcellular fractionation of liver mitochondria revealed that the TST activity ratio of MST-knockout (KO)/wild-type mice was approximately 2.5; MST activity was detected only in wild-type mice, as expected. The ratio of TST mRNA expression of KO/wild-type mice, as measured by real-time quantitative polymerase chain reaction analysis, was approximately 3.3. It is concluded that TST is overexpressed in MST-KO mice.


Increased Urinary 3-Mercaptolactate Excretion and Enhanced Passive Systemic Anaphylaxis in Mice Lacking Mercaptopyruvate Sulfurtransferase, a Model of Mercaptolactate-Cysteine Disulfiduria.

  • Noriyuki Akahoshi‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Mercaptopyruvate sulfurtransferase (Mpst) and its homolog thiosulfate sulfurtransferase (Tst = rhodanese) detoxify cyanide to thiocyanate. Mpst is attracting attention as one of the four endogenous hydrogen sulfide (H2S)/reactive sulfur species (RSS)-producing enzymes, along with cystathionine β-synthase (Cbs), cystathionine γ-lyase (Cth), and cysteinyl-tRNA synthetase 2 (Cars2). MPST deficiency was found in 1960s among rare hereditary mercaptolactate-cysteine disulfiduria patients. Mpst-knockout (KO) mice with enhanced liver Tst expression were recently generated as its model; however, the physiological roles/significances of Mpst remain largely unknown. Here we generated three independent germ lines of Mpst-KO mice by CRISPR/Cas9 technology, all of which maintained normal hepatic Tst expression/activity. Mpst/Cth-double knockout (DKO) mice were generated via crossbreeding with our previously generated Cth-KO mice. Mpst-KO mice were born at the expected frequency and developed normally like Cth-KO mice, but displayed increased urinary 3-mercaptolactate excretion and enhanced passive systemic anaphylactic responses when compared to wild-type or Cth-KO mice. Mpst/Cth-DKO mice were also born at the expected frequency and developed normally, but excreted slightly more 3-mercaptolactate in urine compared to Mpst-KO or Cth-KO mice. Our Mpst-KO, Cth-KO, and Mpst/Cth-DKO mice, unlike semi-lethal Cbs-KO mice and lethal Cars2-KO mice, are useful tools for analyzing the unknown physiological roles of endogenous H2S/RSS production.


Transcription factor YcjW controls the emergency H2S production in E. coli.

  • Lyly Luhachack‎ et al.
  • Nature communications‎
  • 2019‎

Prokaryotes and eukaryotes alike endogenously generate the gaseous molecule hydrogen sulfide (H2S). Bacterial H2S acts as a cytoprotectant against antibiotics-induced stress and promotes redox homeostasis. In E. coli, endogenous H2S production is primarily dependent on 3-mercaptopyruvate sulfurtransferase (3MST), encoded by mstA. Here, we show that cells lacking 3MST acquire a phenotypic suppressor mutation resulting in compensatory H2S production and tolerance to antibiotics and oxidative stress. Using whole genome sequencing, we identified a non-synonymous mutation within an uncharacterized LacI-type transcription factor, ycjW. We then mapped regulatory targets of YcjW and discovered it controls the expression of carbohydrate metabolic genes and thiosulfate sulfurtransferase PspE. Induction of pspE expression in the suppressor strain provides an alternative mechanism for H2S biosynthesis. Our results reveal a complex interaction between carbohydrate metabolism and H2S production in bacteria and the role, a hitherto uncharacterized transcription factor, YcjW, plays in linking the two.


Involvement of the Azotobacter vinelandii rhodanese-like protein RhdA in the glutathione regeneration pathway.

  • William Remelli‎ et al.
  • PloS one‎
  • 2012‎

The phenotypic features of the Azotobacter vinelandii RhdA mutant MV474 (in which the rhdA gene was deleted) indicated that defects in antioxidant systems in this organism were related to the expression of the tandem-domain rhodanese RhdA. In this work, further insights on the effects of the oxidative imbalance generated by the absence of RhdA (e.g. increased levels of lipid hydroperoxides) are provided. Starting from the evidence that glutathione was depleted in MV474, and using both in silico and in vitro approaches, here we studied the interaction of wild-type RhdA and Cys(230)Ala site-directed RhdA mutant with glutathione species. We found that RhdA was able to bind in vitro reduced glutathione (GSH) and that RhdA-Cys(230) residue was mandatory for the complex formation. RhdA catalyzed glutathione-disulfide formation in the presence of a system generating the glutathione thiyl radical (GS, an oxidized form of GSH), thereby facilitating GSH regeneration. This reaction was negligible when the Cys(230)Ala RhdA mutant was used. The efficiency of RhdA as catalyst in GS-scavenging activity is discussed on the basis of the measured parameters of both interaction with glutathione species and kinetic studies.


Tum1 is involved in the metabolism of sterol esters in Saccharomyces cerevisiae.

  • Katja Uršič‎ et al.
  • BMC microbiology‎
  • 2017‎

The only hitherto known biological role of yeast Saccharomyces cerevisiae Tum1 protein is in the tRNA thiolation pathway. The mammalian homologue of the yeast TUM1 gene, the thiosulfate sulfurtransferase (a.k.a. rhodanese) Tst, has been proposed as an obesity-resistance and antidiabetic gene. To assess the role of Tum1 in cell metabolism and the putative functional connection between lipid metabolism and tRNA modification, we analysed evolutionary conservation of the rhodanese protein superfamily, investigated the role of Tum1 in lipid metabolism, and examined the phenotype of yeast strains expressing the mouse homologue of Tum1, TST.


New aspects of antiproliferative activity of 4-hydroxybenzyl isothiocyanate, a natural H2S-donor.

  • Halina Jurkowska‎ et al.
  • Amino acids‎
  • 2018‎

The effect of 4-hydroxybenzyl isothiocyanate (HBITC), a natural H2S-donor from white mustard seeds (Sinapis alba), on the proliferation of human neuroblastoma (SH-SY5Y) and glioblastoma (U87MG) cells was studied and some aspects of the mechanism of its activity were suggested. The inhibition of both SH-SY5Y and U87MG cell proliferation was associated with an increase in the thiosulfate level, the number of cells with the inactive form of Bcl-2 protein, and with a decrease of mitochondrial membrane potential. Interestingly, HBITC results in downregulation of p53 protein and upregulation of p21 protein levels in SH-SY5Y cells. In the presence of elevated levels of H2S and thiosulfate, the sulfhydryl groups of p53 protein as well as Bcl-2 protein could be modified via HBITC-induced S-sulfuration or by oxidative stress. It seems that the induction of p21 protein level is mediated in SH-SY5Y cells by p53-independent mechanisms. In addition, HBITC-treatment caused downregulation of the level of mitochondrial rhodanese and 3-mercaptopyruvate sulfurtransferase, and consequently increased the level of the reactive oxygen species in SH-SY5Y cells.


Sulfurtransferases and Cystathionine Beta-Synthase Expression in Different Human Leukemia Cell Lines.

  • Halina Jurkowska‎ et al.
  • Biomolecules‎
  • 2022‎

The studies concerned the expression of sulfurtransferases and cystathionine beta-synthase in six human leukemia cell lines: B cell acute lymphoblastic leukemia-B-ALL (REH cells), T cell acute lymphoblastic leukemia-T-ALL (DND-41 and MOLT-4 cells), acute myeloid leukemia-AML (MV4-11 and MOLM-14 cells), and chronic myeloid leukemia-CML (K562 cells). Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis were performed to determine the expression of thiosulfate sulfurtransferase, 3-mercaptopyruvate sulfurtransferase, gamma-cystathionase, and cystathionine beta-synthase on the mRNA and protein level. Interestingly, we found significant differences in the mRNA and protein levels of sulfurtransferases and cystathionine beta-synthase in the studied leukemia cells. The obtained results may contribute to elucidating the significance of the differences between the studied cells in the field of sulfur compound metabolism and finding new promising ways to inhibit the proliferation of various types of leukemic cells by modulating the activity of sulfurtransferases, cystathionine beta-synthase, and, consequently, the change of intracellular level of sulfane sulfur as well as H2S and reactive oxygen species production.


Differences in nonoxidative sulfur metabolism between normal human breast MCF-12A and adenocarcinoma MCF-7 cell lines.

  • Patrycja Bronowicka-Adamska‎ et al.
  • Analytical biochemistry‎
  • 2024‎

Recent studies have revealed the role of endogenous hydrogen sulfide (H2S) in the development of breast cancer. The capacity of cells to generate H2S and the activity and expression of the main enzymes (cystathionine beta synthase; CBS, cystathionase γ-lyase; CGL, 3-mercaptopyruvate sulfurtransferase; MPST and thiosulfate sulfurtransferase; TST) involved in H2S metabolism were analyzed using an in vitro model of a non-tumourigenic breast cell line (MCF-12A) and a human breast adenocarcinoma cell line (MCF-7). In both cell lines, MPST, CGL, and TST expression was confirmed at the mRNA (RT-PCR) and the protein (Western Blot) level, while CBS expression was detected only in MCF-7 cells. Elevated levels of GSH, sulfane sulfur and increased CBS and TST activity were presented in the MCF-7 compared to the MCF-12A cells. It appears that cysteine might be mainly a substrate for GSH synthesis in breast adenocarcinoma. Increased capacity of the cells to generate H2S was shown for MCF-12A compared to MCF-7 cell line. Results suggest an important function of CBS in H2S metabolism in breast adenocarcinoma. The presented work may contribute to further research on new therapeutic possibilities for breast cancer - one of the most frequently diagnosed types of cancer among women.


Hydrogen Sulfide Metabolizing Enzymes in the Intestinal Mucosa in Pediatric and Adult Inflammatory Bowel Disease.

  • Nathalie Stummer‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2022‎

Hydrogen sulfide (H2S) is a toxic gas that has important regulatory functions. In the colon, H2S can be produced and detoxified endogenously. Both too little and too much H2S exposure are associated with inflammatory bowel disease (IBD), a chronic intestinal disease mainly classified as Crohn's disease (CD) and ulcerative colitis (UC). As the pathogenesis of IBD remains elusive, this study's aim was to investigate potential differences in the expression of H2S-metabolizing enzymes in normal aging and IBD. Intestinal mucosal biopsies of 25 adults and 22 children with IBD along with those of 26 healthy controls were stained immunohistochemically for cystathionine-γ-lyase (CSE), 3-mercapto-sulfurtransferase (3-MST), ethylmalonic encephalopathy 1 protein (ETHE1), sulfide:quinone oxidoreductase (SQOR) and thiosulfate sulfurtransferase (TST). Expression levels were calculated by multiplication of the staining intensity and percentage of positively stained cells. Healthy adults showed an overall trend towards lower expression of H2S-metabolizing enzymes than healthy children. Adults with IBD also tended to have lower expression compared to controls. A similar trend was seen in the enzyme expression of children with IBD compared to controls. These results indicate an age-related decrease in the expression of H2S-metabolizing enzymes and a dysfunctional H2S metabolism in IBD, which was less pronounced in children.


The hepatic compensatory response to elevated systemic sulfide promotes diabetes.

  • Roderick N Carter‎ et al.
  • Cell reports‎
  • 2021‎

Impaired hepatic glucose and lipid metabolism are hallmarks of type 2 diabetes. Increased sulfide production or sulfide donor compounds may beneficially regulate hepatic metabolism. Disposal of sulfide through the sulfide oxidation pathway (SOP) is critical for maintaining sulfide within a safe physiological range. We show that mice lacking the liver- enriched mitochondrial SOP enzyme thiosulfate sulfurtransferase (Tst-/- mice) exhibit high circulating sulfide, increased gluconeogenesis, hypertriglyceridemia, and fatty liver. Unexpectedly, hepatic sulfide levels are normal in Tst-/- mice because of exaggerated induction of sulfide disposal, with associated suppression of global protein persulfidation and nuclear respiratory factor 2 target protein levels. Hepatic proteomic and persulfidomic profiles converge on gluconeogenesis and lipid metabolism, revealing a selective deficit in medium-chain fatty acid oxidation in Tst-/- mice. We reveal a critical role of TST in hepatic metabolism that has implications for sulfide donor strategies in the context of metabolic disease.


Hypertension and Aging Affect Liver Sulfur Metabolism in Rats.

  • Dominika Szlęzak‎ et al.
  • Cells‎
  • 2021‎

Hypertension and age are key risk factors for cardiovascular morbidity and mortality. Hydrogen sulfide (H2S), a gaseous transmitter, contributes significantly to regulating arterial blood pressure and aging processes. This study evaluated the effects of hypertension and aging on the hepatic metabolism of sulfur-containing compounds, the activity of the enzymes involved in sulfur homeostasis, and the liver's ability to generate H2S. Livers isolated from 16- and 60-week-old normotensive Wistar Kyoto rats (WKY) and Spontaneously Hypertensive Rats (SHR) were used to evaluate gene expression using RT-PCR, and the activity of enzymes participating in H2S metabolism, including thiosulfate sulfurtransferase (rhodanese; TST), cystathionine gamma-lyase (CTH), and 3-mercaptopyruvate sulfurtransferase (MPST). The levels of cysteine, cystine, reduced and oxidized glutathione were measured using RP-HPLC. SHR livers from both age groups showed a higher capacity to generate H2S than livers from WKY. The gene expression and activity of enzymes involved in sulfur metabolism differed between WKY and SHR, and between the age groups. For example, 16-week-old SHR had significantly higher activity of TST than 16-week-old WKY. Furthermore, differences between younger and older WKY rats in the expression and/or activity of TST and MPST were present. In conclusion, our study shows that arterial hypertension and aging affect hepatic sulfur metabolism and H2S production in rats. These findings pave the way for interventional studies evaluating a potential causal relation between liver sulfur metabolism, hypertension and aging.


CoQ deficiency causes disruption of mitochondrial sulfide oxidation, a new pathomechanism associated with this syndrome.

  • Marta Luna-Sánchez‎ et al.
  • EMBO molecular medicine‎
  • 2017‎

Coenzyme Q (CoQ) is a key component of the mitochondrial respiratory chain, but it also has several other functions in the cellular metabolism. One of them is to function as an electron carrier in the reaction catalyzed by sulfide:quinone oxidoreductase (SQR), which catalyzes the first reaction in the hydrogen sulfide oxidation pathway. Therefore, SQR may be affected by CoQ deficiency. Using human skin fibroblasts and two mouse models with primary CoQ deficiency, we demonstrate that severe CoQ deficiency causes a reduction in SQR levels and activity, which leads to an alteration of mitochondrial sulfide metabolism. In cerebrum of Coq9R239X mice, the deficit in SQR induces an increase in thiosulfate sulfurtransferase and sulfite oxidase, as well as modifications in the levels of thiols. As a result, biosynthetic pathways of glutamate, serotonin, and catecholamines were altered in the cerebrum, and the blood pressure was reduced. Therefore, this study reveals the reduction in SQR activity as one of the pathomechanisms associated with CoQ deficiency syndrome.


Serum anti‑TSTD2 antibody as a biomarker for atherosclerosis‑induced ischemic stroke and chronic kidney disease.

  • Masaaki Kubota‎ et al.
  • Medicine international‎
  • 2023‎

Autoantibodies can be used in the early diagnosis and treatment of atherosclerosis-related diseases. Using ProtoArray® screening of samples from patients with atherosclerosis, the present study identified thiosulfate sulfurtransferase-like domain-containing 2 (TSTD2) as a novel atherosclerosis antigen. The serum TSTD2 antibody levels were then quantified using an amplified luminescent proximity homogeneous assay-linked immunosorbent assay. This demonstrated the levels of TSTD2 antibodies (TSTD2-Abs) to be significantly higher in patients with acute cerebral infarction or chronic kidney disease than in healthy donors. The TSTD2-Ab levels were also found to be higher in males, older adults, smokers, in those who consumed alcohol regularly, and in those with hypertension. Furthermore, Spearman's rank correlation analysis revealed TSTD2-Ab levels to be strongly associated with measures of atherosclerosis severity, including plaque scores, intima-media thickness of the carotid artery and the cardio-ankle vascular index. Thus, TSTD2-Abs may thus be a promising novel biomarker for atherosclerosis-related cerebral infarction and kidney disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: