Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 22 papers

Thermosensing mechanisms and their impairment by high-fat diet in orexin neurons.

  • N Belanger-Willoughby‎ et al.
  • Neuroscience‎
  • 2016‎

In homeotherms, the hypothalamus controls thermoregulatory and adaptive mechanisms in energy balance, sleep-wake and locomotor activity to maintain optimal body temperature. Orexin neurons may be involved in these functions as they promote thermogenesis, food intake and behavioral arousal, and are sensitive to temperature and metabolic status. How thermal and energy balance signals are integrated in these neurons is unknown. Thus, we investigated the cellular mechanisms of thermosensing in orexin neurons and their response to a change in energy status using whole-cell patch clamp on rat brain slices. We found that warming induced an increase in miniature excitatory postsynaptic current (EPSC) frequency, which was blocked by the transient receptor potential vanilloid-1 (TRPV1) receptor antagonist AMG9810 and mimicked by its agonist capsaicin, suggesting that the synaptic effect is mediated by heat-sensitive TRPV1 channels. Furthermore, warming inhibits orexin neurons by activating ATP-sensitive potassium (KATP) channels, an effect regulated by uncoupling protein 2 (UCP2), as the UCP2 inhibitor genipin abolished this response. These properties are unique to orexin neurons in the lateral hypothalamus, as neighboring melanin-concentrating hormone neurons showed no response to warming within the physiological temperature range. Interestingly, in rats fed with western diet for 1 or 11weeks, orexin neurons had impaired synaptic and KATP response to warming. In summary, this study reveals several mechanisms underlying thermosensing in orexin neurons and their attenuation by western diet. Overeating induced by western diet may in part be due to impaired orexin thermosensing, as post-prandial thermogenesis may promote satiety and lethargy by inhibiting orexin neurons.


Evidence that the TRPV1 S1-S4 membrane domain contributes to thermosensing.

  • Minjoo Kim‎ et al.
  • Nature communications‎
  • 2020‎

Sensing and responding to temperature is crucial in biology. The TRPV1 ion channel is a well-studied heat-sensing receptor that is also activated by vanilloid compounds, including capsaicin. Despite significant interest, the molecular underpinnings of thermosensing have remained elusive. The TRPV1 S1-S4 membrane domain couples chemical ligand binding to the pore domain during channel gating. Here we show that the S1-S4 domain also significantly contributes to thermosensing and couples to heat-activated gating. Evaluation of the isolated human TRPV1 S1-S4 domain by solution NMR, far-UV CD, and intrinsic fluorescence shows that this domain undergoes a non-denaturing temperature-dependent transition with a high thermosensitivity. Further NMR characterization of the temperature-dependent conformational changes suggests the contribution of the S1-S4 domain to thermosensing shares features with known coupling mechanisms between this domain with ligand and pH activation. Taken together, this study shows that the TRPV1 S1-S4 domain contributes to TRPV1 temperature-dependent activation.


Photosensing and Thermosensing by Phytochrome B Require Both Proximal and Distal Allosteric Features within the Dimeric Photoreceptor.

  • E Sethe Burgie‎ et al.
  • Scientific reports‎
  • 2017‎

Phytochromes (Phys) encompass a diverse collection of bilin-containing photoreceptors that help plants and microorganisms perceive light through photointerconversion between red light (Pr) and far-red light (Pfr)-absorbing states. In addition, Pfr reverts thermally back to Pr via a highly enthalpic process that enables temperature sensation in plants and possibly other organisms. Through domain analysis of the Arabidopsis PhyB isoform assembled recombinantly, coupled with measurements of solution size, photoconversion, and thermal reversion, we identified both proximal and distal features that influence all three metrics. Included are the downstream C-terminal histidine kinase-related domain known to promote dimerization and a conserved patch just upstream of an N-terminal Period/Arnt/Sim (PAS) domain, which upon removal dramatically accelerates thermal reversion. We also discovered that the nature of the bilin strongly influences Pfr stability. Whereas incorporation of the native bilin phytochromobilin into PhyB confers robust Pfr → Pr thermal reversion, that assembled with the cyanobacterial version phycocyanobilin, often used for optogenetics, has a dramatically stabilized Pfr state. Taken together, we conclude that Pfr acquisition and stability are impacted by a collection of opposing allosteric features that inhibit or promote photoconversion and reversion of Pfr back to Pr, thus allowing Phys to dynamically measure light, temperature, and possibly time.


Ionotropic Receptors Specify the Morphogenesis of Phasic Sensors Controlling Rapid Thermal Preference in Drosophila.

  • Gonzalo Budelli‎ et al.
  • Neuron‎
  • 2019‎

Thermosensation is critical for avoiding thermal extremes and regulating body temperature. While thermosensors activated by noxious temperatures respond to hot or cold, many innocuous thermosensors exhibit robust baseline activity and lack discrete temperature thresholds, suggesting they are not simply warm and cool detectors. Here, we investigate how the aristal Cold Cells encode innocuous temperatures in Drosophila. We find they are not cold sensors but cooling-activated and warming-inhibited phasic thermosensors that operate similarly at warm and cool temperatures; we propose renaming them "Cooling Cells." Unexpectedly, Cooling Cell thermosensing does not require the previously reported Brivido Transient Receptor Potential (TRP) channels. Instead, three Ionotropic Receptors (IRs), IR21a, IR25a, and IR93a, specify both the unique structure of Cooling Cell cilia endings and their thermosensitivity. Behaviorally, Cooling Cells promote both warm and cool avoidance. These findings reveal a morphogenetic role for IRs and demonstrate the central role of phasic thermosensing in innocuous thermosensation. VIDEO ABSTRACT.


Daytime temperature is sensed by phytochrome B in Arabidopsis through a transcriptional activator HEMERA.

  • Yongjian Qiu‎ et al.
  • Nature communications‎
  • 2019‎

Ambient temperature sensing by phytochrome B (PHYB) in Arabidopsis is thought to operate mainly at night. Here we show that PHYB plays an equally critical role in temperature sensing during the daytime. In daytime thermosensing, PHYB signals primarily through the temperature-responsive transcriptional regulator PIF4, which requires the transcriptional activator HEMERA (HMR). HMR does not regulate PIF4 transcription, instead, it interacts directly with PIF4, to activate the thermoresponsive growth-relevant genes and promote warm-temperature-dependent PIF4 accumulation. A missense allele hmr-22, which carries a loss-of-function D516N mutation in HMR's transcriptional activation domain, fails to induce the thermoresponsive genes and PIF4 accumulation. Both defects of hmr-22 could be rescued by expressing a HMR22 mutant protein fused with the transcriptional activation domain of VP16, suggesting a causal relationship between HMR-mediated activation of PIF4 target-genes and PIF4 accumulation. Together, this study reveals a daytime PHYB-mediated thermosensing mechanism, in which HMR acts as a necessary activator for PIF4-dependent induction of temperature-responsive genes and PIF4 accumulation.


G protein-coupled receptor-based thermosensation determines temperature acclimatization of Caenorhabditis elegans.

  • Kohei Ohnishi‎ et al.
  • Nature communications‎
  • 2024‎

Animals must sense and acclimatize to environmental temperatures for survival, yet their thermosensing mechanisms other than transient receptor potential (TRP) channels remain poorly understood. We identify a trimeric G protein-coupled receptor (GPCR), SRH-40, which confers thermosensitivity in sensory neurons regulating temperature acclimatization in Caenorhabditis elegans. Systematic knockdown of 1000 GPCRs by RNAi reveals GPCRs involved in temperature acclimatization, among which srh-40 is highly expressed in the ADL sensory neuron, a temperature-responsive chemosensory neuron, where TRP channels act as accessorial thermoreceptors. In vivo Ca2+ imaging demonstrates that an srh-40 mutation reduced the temperature sensitivity of ADL, resulting in supranormal temperature acclimatization. Ectopically expressing SRH-40 in a non-warmth-sensing gustatory neuron confers temperature responses. Moreover, temperature-dependent SRH-40 activation is reconstituted in Drosophila S2R+ cells. Overall, SRH-40 may be involved in thermosensory signaling underlying temperature acclimatization. We propose a dual thermosensing machinery through a GPCR and TRP channels in a single sensory neuron.


A proteinaceous gene regulatory thermometer in Salmonella.

  • R Hurme‎ et al.
  • Cell‎
  • 1997‎

Novel utilization of the coiled-coil motif is presented that enables TlpA, an autoregulatory repressor protein in Salmonella, to sense temperature shifts directly and thereby to modulate the extent of transcription repression. Salmonella cells shifted to higher temperatures, such as those encountered at host entry, showed derepressed tlpA activity. tlpA::lacZ fusions indicated that the promoter itself is insensitive to thermal shifts and that transcription control was exerted by the autorepressor TlpA only. In vitro studies with highly purified TlpA showed concentration and temperature dependence for both fully folded conformation and function, indicating that the thermosensing in TlpA is based on monomer-to-coiled-coil equilibrium.


Fluorescent nanodiamonds as a robust temperature sensor inside a single cell.

  • Takeharu Sekiguchi‎ et al.
  • Biophysics and physicobiology‎
  • 2018‎

Thermometers play an important role to study the biological significance of temperature. Fluorescent nanodiamonds (FNDs) with negatively-charged nitrogen-vacancy centers, a novel type of fluorescence-based temperature sensor, have physicochemical inertness, low cytotoxicity, extremely stable fluorescence, and unique magneto-optical properties that allow us to measure the temperature at the nanoscale level inside single cells. Here, we demonstrate that the thermosensing ability of FNDs is hardly influenced by environmental factors, such as pH, ion concentration, viscosity, molecular interaction, and organic solvent. This robustness renders FNDs reliable thermometers even under complex biological cellular environment. Moreover, the simple protocol developed here for measuring the absolute temperature inside a single cell using a single FND enables successful temperature measurement in a cell with an accuracy better than ±1°C.


Temperature Sensing Is Distributed throughout the Regulatory Network that Controls FLC Epigenetic Silencing in Vernalization.

  • Rea L Antoniou-Kourounioti‎ et al.
  • Cell systems‎
  • 2018‎

Many organisms need to respond to complex, noisy environmental signals for developmental decision making. Here, we dissect how Arabidopsis plants integrate widely fluctuating field temperatures over month-long timescales to progressively upregulate VERNALIZATION INSENSITIVE3 (VIN3) and silence FLOWERING LOCUS C (FLC), aligning flowering with spring. We develop a mathematical model for vernalization that operates on multiple timescales-long term (month), short term (day), and current (hour)-and is constrained by experimental data. Our analysis demonstrates that temperature sensing is not localized to specific nodes within the FLC network. Instead, temperature sensing is broadly distributed, with each thermosensory process responding to specific features of the plants' history of exposure to warm and cold. The model accurately predicts FLC silencing in new field data, allowing us to forecast FLC expression in changing climates. We suggest that distributed thermosensing may be a general property of thermoresponsive regulatory networks in complex natural environments.


Molecular basis for temperature sensing by an RNA thermometer.

  • Saheli Chowdhury‎ et al.
  • The EMBO journal‎
  • 2006‎

Regulatory RNA elements, like riboswitches, respond to intracellular signals by three-dimensional (3D) conformational changes. RNA thermometers employ a similar strategy to sense temperature changes in the cell and regulate the translational machinery. We present here the first 3D NMR structure of the functional domain of a highly conserved bacterial RNA thermometer containing the ribosome binding site that remains occluded at normal temperatures (30 degrees C). We identified a region adjacent to the Shine-Dalgarno sequence that has a network of weak hydrogen bonds within the RNA helix. With the onset of heat shock at 42 degrees C, destabilisation of the RNA structure initiates at this region and favours the release of the ribosome binding site and of the start codon. Deletion of a highly conserved G residue leads to the formation of a stable regular RNA helix that loses thermosensing ability. Our results indicate that RNA thermometers are able to sense temperature changes without the aid of accessory factors.


Dual impact of elevated temperature on plant defence and bacterial virulence in Arabidopsis.

  • Bethany Huot‎ et al.
  • Nature communications‎
  • 2017‎

Environmental conditions profoundly affect plant disease development; however, the underlying molecular bases are not well understood. Here we show that elevated temperature significantly increases the susceptibility of Arabidopsis to Pseudomonas syringae pv. tomato (Pst) DC3000 independently of the phyB/PIF thermosensing pathway. Instead, elevated temperature promotes translocation of bacterial effector proteins into plant cells and causes a loss of ICS1-mediated salicylic acid (SA) biosynthesis. Global transcriptome analysis reveals a major temperature-sensitive node of SA signalling, impacting ~60% of benzothiadiazole (BTH)-regulated genes, including ICS1 and the canonical SA marker gene, PR1. Remarkably, BTH can effectively protect Arabidopsis against Pst DC3000 infection at elevated temperature despite the lack of ICS1 and PR1 expression. Our results highlight the broad impact of a major climate condition on the enigmatic molecular interplay between temperature, SA defence and function of a central bacterial virulence system in the context of a widely studied susceptible plant-pathogen interaction.


RNA thermosensors facilitate Streptococcus pneumoniae and Haemophilus influenzae immune evasion.

  • Hannes Eichner‎ et al.
  • PLoS pathogens‎
  • 2021‎

Bacterial meningitis is a major cause of death and disability in children worldwide. Two human restricted respiratory pathogens, Streptococcus pneumoniae and Haemophilus influenzae, are the major causative agents of bacterial meningitis, attributing to 200,000 deaths annually. These pathogens are often part of the nasopharyngeal microflora of healthy carriers. However, what factors elicit them to disseminate and cause invasive diseases, remain unknown. Elevated temperature and fever are hallmarks of inflammation triggered by infections and can act as warning signals to pathogens. Here, we investigate whether these respiratory pathogens can sense environmental temperature to evade host complement-mediated killing. We show that productions of two vital virulence factors and vaccine components, the polysaccharide capsules and factor H binding proteins, are temperature dependent, thus influencing serum/opsonophagocytic killing of the bacteria. We identify and characterise four novel RNA thermosensors in S. pneumoniae and H. influenzae, responsible for capsular biosynthesis and production of factor H binding proteins. Our data suggest that these bacteria might have independently co-evolved thermosensing abilities with different RNA sequences but distinct secondary structures to evade the immune system.


Rhodopsin and melanopsin coexist in mammalian sperm cells and activate different signaling pathways for thermotaxis.

  • Debarun Roy‎ et al.
  • Scientific reports‎
  • 2020‎

Recently, various opsin types, known to be involved in vision, were demonstrated to be present in human and mouse sperm cells and to be involved there in thermosensing for thermotaxis. In vision, each opsin type is restricted to specific cells. The situation in this respect in sperm cells is not known. It is also not known whether or not both signaling pathways, found to function in sperm thermotaxis, are each activated by specific opsins, as in vision. Here we addressed these questions. Choosing rhodopsin and melanopsin as test cases and employing immunocytochemical analysis with antibodies against these opsins, we found that the majority of sperm cells were stained by both antibodies, indicating that most of the cells contained both opsins. By employing mutant mouse sperm cells that do not express melanopsin combined with specific signaling inhibitors, we furthermore demonstrated that rhodopsin and melanopsin each activates a different pathway. Thus, in mammalian sperm thermotaxis, as in vision, rhodopsin and melanopsin each triggers a different signaling pathway but, unlike in vision, both opsin types coexist in the same sperm cells.


Understanding thermosensitive transient receptor potential channels as versatile polymodal cellular sensors.

  • Jacob K Hilton‎ et al.
  • Biochemistry‎
  • 2015‎

Transient receptor potential (TRP) ion channels are eukaryotic polymodal sensors that function as molecular cellular signal integrators. TRP family members sense and are modulated by a wide array of inputs, including temperature, pressure, pH, voltage, chemicals, lipids, and other proteins. These inputs induce signal transduction events mediated by nonselective cation passage through TRP channels. In this review, we focus on the thermosensitive TRP channels and highlight the emerging view that these channels play a variety of significant roles in physiology and pathophysiology in addition to sensory biology. We attempt to use this viewpoint as a framework to understand the complexity and controversy of TRP channel modulation and ultimately suggest that the complex functional behavior arises inherently because this class of protein is exquisitely sensitive to many diverse and distinct signal inputs. To illustrate this idea, we primarily focus on TRP channel thermosensing. We also offer a structural, biochemical, biophysical, and computational perspective that may help to bring more coherence and consensus in understanding the function of this important class of proteins.


ATP-sensitive potassium channels mediate the thermosensory response of orexin neurons.

  • Matthew P Parsons‎ et al.
  • The Journal of physiology‎
  • 2012‎

High body temperatures are generally associated with somnolence, lethargy, hypophagia and anhedonia. Orexin neurons have been suggested to play a role in such sickness behaviours due to their known functions in appetite, behavioural and autonomic activation. Furthermore, the activity of orexin neurons is inhibited by lipopolysaccharide that induces fever. However, the cellular mechanism(s) underlying this suppression of orexin neurons was unknown. We used patch-clamp recordings in acute rat brain slices to demonstrate that orexin neurons, including those projecting to the wake-promoting locus coeruleus, are inhibited by increasing the ambient temperature by a 2-4°C increment between 26 and 40°C. This effect was not mediated by conventional thermosensing mechanisms but instead involved the activation of ATP-sensitive potassium (KATP) channels. Since KATP channels can also sense energy substrate levels and cellular metabolism, our results suggest that orexin neurons can integrate the state of energy balance and body temperature, and adjust their output accordingly. Thus, the thermosensitivity of orexin neurons may be an important part of maintaining energy homeostasis during hyperthermia and fever.


Volume Transitions of Isolated Cell Nuclei Induced by Rapid Temperature Increase.

  • Chii J Chan‎ et al.
  • Biophysical journal‎
  • 2017‎

Understanding the physical mechanisms governing nuclear mechanics is important as it can impact gene expression and development. However, how cell nuclei respond to external cues such as heat is not well understood. Here, we studied the material properties of isolated nuclei in suspension using an optical stretcher. We demonstrate that isolated nuclei regulate their volume in a highly temperature-sensitive manner. At constant temperature, isolated nuclei behaved like passive, elastic and incompressible objects, whose volume depended on the pH and ionic conditions. When the temperature was increased suddenly by even a few degrees Kelvin, nuclei displayed a repeatable and reversible temperature-induced volume transition, whose sign depended on the valency of the solvent. Such phenomenon is not observed for nuclei subjected to slow heating. The transition temperature could be shifted by adiabatic changes of the ambient temperature, and the magnitude of temperature-induced volume transition could be modulated by modifying the chromatin compaction state and remodeling processes. Our findings reveal that the cell nucleus can be viewed as a highly charged polymer gel with intriguing thermoresponsive properties, which might play a role in nuclear volume regulation and thermosensing in living cells.


Characterization of a temperature-responsive two component regulatory system from the Antarctic archaeon, Methanococcoides burtonii.

  • T Najnin‎ et al.
  • Scientific reports‎
  • 2016‎

Cold environments dominate the Earth's biosphere and the resident microorganisms play critical roles in fulfilling global biogeochemical cycles. However, only few studies have examined the molecular basis of thermosensing; an ability that microorganisms must possess in order to respond to environmental temperature and regulate cellular processes. Two component regulatory systems have been inferred to function in thermal regulation of gene expression, but biochemical studies assessing these systems in Bacteria are rare, and none have been performed in Archaea or psychrophiles. Here we examined the LtrK/LtrR two component regulatory system from the Antarctic archaeon, Methanococcoides burtonii, assessing kinase and phosphatase activities of wild-type and mutant proteins. LtrK was thermally unstable and had optimal phosphorylation activity at 10 °C (the lowest optimum activity for any psychrophilic enzyme), high activity at 0 °C and was rapidly thermally inactivated at 30 °C. These biochemical properties match well with normal environmental temperatures of M. burtonii (0-4 °C) and the temperature this psychrophile is capable of growing at in the laboratory (-2 to 28 °C). Our findings are consistent with a role for LtrK in performing phosphotransfer reactions with LtrR that could lead to temperature-dependent gene regulation.


Temperature-dependent growth contributes to long-term cold sensing.

  • Yusheng Zhao‎ et al.
  • Nature‎
  • 2020‎

Temperature is a key factor in the growth and development of all organisms1,2. Plants have to interpret temperature fluctuations, over hourly to monthly timescales, to align their growth and development with the seasons. Much is known about how plants respond to acute thermal stresses3,4, but the mechanisms that integrate long-term temperature exposure remain unknown. The slow, winter-long upregulation of VERNALIZATION INSENSITIVE 3 (VIN3)5-7, a PHD protein that functions with Polycomb repressive complex 2 to epigenetically silence FLOWERING LOCUS C (FLC) during vernalization, is central to plants interpreting winter progression5,6,8-11. Here, by a forward genetic screen, we identify two dominant mutations of the transcription factor NTL8 that constitutively activate VIN3 expression and alter the slow VIN3 cold induction profile. In the wild type, the NTL8 protein accumulates slowly in the cold, and directly upregulates VIN3 transcription. Through combining computational simulation and experimental validation, we show that a major contributor to this slow accumulation is reduced NTL8 dilution due to slow growth at low temperatures. Temperature-dependent growth is thus exploited through protein dilution to provide the long-term thermosensory information for VIN3 upregulation. Indirect mechanisms involving temperature-dependent growth, in addition to direct thermosensing, may be widely relevant in long-term biological sensing of naturally fluctuating temperatures.


A Precise Temperature-Responsive Bistable Switch Controlling Yersinia Virulence.

  • Aaron Mischa Nuss‎ et al.
  • PLoS pathogens‎
  • 2016‎

Different biomolecules have been identified in bacterial pathogens that sense changes in temperature and trigger expression of virulence programs upon host entry. However, the dynamics and quantitative outcome of this response in individual cells of a population, and how this influences pathogenicity are unknown. Here, we address these questions using a thermosensing virulence regulator of an intestinal pathogen (RovA of Yersinia pseudotuberculosis) as a model. We reveal that this regulator is part of a novel thermoresponsive bistable switch, which leads to high- and low-invasive subpopulations within a narrow temperature range. The temperature range in which bistability is observed is defined by the degradation and synthesis rate of the regulator, and is further adjustable via a nutrient-responsive regulator. The thermoresponsive switch is also characterized by a hysteretic behavior in which activation and deactivation occurred on vastly different time scales. Mathematical modeling accurately mirrored the experimental behavior and predicted that the thermoresponsiveness of this sophisticated bistable switch is mainly determined by the thermo-triggered increase of RovA proteolysis. We further observed RovA ON and OFF subpopulations of Y. pseudotuberculosis in the Peyer's patches and caecum of infected mice, and that changes in the RovA ON/OFF cell ratio reduce tissue colonization and overall virulence. This points to a bet-hedging strategy in which the thermoresponsive bistable switch plays a key role in adapting the bacteria to the fluctuating conditions encountered as they pass through the host's intestinal epithelium and suggests novel strategies for the development of antimicrobial therapies.


Relaxed tarantula skeletal muscle has two ATP energy-saving mechanisms.

  • Weikang Ma‎ et al.
  • The Journal of general physiology‎
  • 2021‎

Myosin molecules in the relaxed thick filaments of striated muscle have a helical arrangement in which the heads of each molecule interact with each other, forming the interacting-heads motif (IHM). In relaxed mammalian skeletal muscle, this helical ordering occurs only at temperatures >20°C and is disrupted when temperature is decreased. Recent x-ray diffraction studies of live tarantula skeletal muscle have suggested that the two myosin heads of the IHM (blocked heads [BHs] and free heads [FHs]) have very different roles and dynamics during contraction. Here, we explore temperature-induced changes in the BHs and FHs in relaxed tarantula skeletal muscle. We find a change with decreasing temperature that is similar to that in mammals, while increasing temperature induces a different behavior in the heads. At 22.5°C, the BHs and FHs containing ADP.Pi are fully helically organized, but they become progressively disordered as temperature is lowered or raised. Our interpretation suggests that at low temperature, while the BHs remain ordered the FHs become disordered due to transition of the heads to a straight conformation containing Mg.ATP. Above 27.5°C, the nucleotide remains as ADP.Pi, but while BHs remain ordered, half of the FHs become progressively disordered, released semipermanently at a midway distance to the thin filaments while the remaining FHs are docked as swaying heads. We propose a thermosensing mechanism for tarantula skeletal muscle to explain these changes. Our results suggest that tarantula skeletal muscle thick filaments, in addition to having a superrelaxation-based ATP energy-saving mechanism in the range of 8.5-40°C, also exhibit energy saving at lower temperatures (<22.5°C), similar to the proposed refractory state in mammals.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: