Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 37 papers

Characteristics and physiological role of hyperpolarization activated currents in mouse cold thermoreceptors.

  • Patricio Orio‎ et al.
  • The Journal of physiology‎
  • 2009‎

Hyperpolarization-activated currents (I(h)) are mediated by the expression of combinations of hyperpolarization-activated, cyclic nucleotide-gated (HCN) channel subunits (HCN1-4). These cation currents are key regulators of cellular excitability in the heart and many neurons in the nervous system. Subunit composition determines the gating properties and cAMP sensitivity of native I(h) currents. We investigated the functional properties of I(h) in adult mouse cold thermoreceptor neurons from the trigeminal ganglion, identified by their high sensitivity to moderate cooling and responsiveness to menthol. All cultured cold-sensitive (CS) neurons expressed a fast activating I(h), which was fully blocked by extracellular Cs(+) or ZD7288 and had biophysical properties consistent with those of heteromeric HCN1-HCN2 channels. In CS neurons from HCN1(-/-) animals, I(h) was greatly reduced but not abolished. We find that I(h) activity is not essential for the transduction of cold stimuli in CS neurons. Nevertheless, I(h) has the potential to shape the excitability of CS neurons. First, I(h) blockade caused a membrane hyperpolarization in CS neurons of about 5 mV. Furthermore, impedance power analysis showed that all CS neurons had a prominent subthreshold membrane resonance in the 5-7 Hz range, completely abolished upon blockade of I(h) and absent in HCN1 null mice. This frequency range matches the spontaneous firing frequency of cold thermoreceptor terminals in vivo. Behavioural responses to cooling were reduced in HCN1 null mice and after peripheral pharmacological blockade of I(h) with ZD7288, suggesting that I(h) plays an important role in peripheral sensitivity to cold.


The neurochemistry and morphology of functionally identified corneal polymodal nociceptors and cold thermoreceptors.

  • Abdulhakeem S Alamri‎ et al.
  • PloS one‎
  • 2018‎

It is generally believed that the unencapsulated sensory nerve terminals of modality specific C- and Aδ-neurons lack structural specialization. Here we determined the morphology of functionally defined polymodal receptors and cold thermoreceptors in the guinea pig corneal epithelium. Polymodal receptors and cold thermoreceptors were identified by extracellular recording at the surface of the corneal epithelium. After marking the recording sites, corneas were processed to reveal immunoreactivity for the transient receptor potential channels TRPV1 (transient receptor potential cation channel, subfamily V, member 1) or TPRM8 (transient receptor potential cation channel subfamily M member 8). Polymodal receptor nerve terminals (n = 6) were TRPV1-immunoreactive and derived from an axon that ascended from the sub-basal plexus to the squamous cell layer where it branched into fibers that ran parallel to the corneal surface and terminated with small bulbar endings (ramifying endings). Cold thermoreceptor nerve terminals were TRPM8-immunoreactive (n = 6) and originated from an axon that branched as it ascended through the wing cell and squamous cell layers and terminated with large bulbar endings (complex endings). These findings indicate that modality specific corneal sensory neurons with unencapsulated nerve endings have distinct nerve terminal morphologies that are likely to relate to their function.


Abnormal activity of corneal cold thermoreceptors underlies the unpleasant sensations in dry eye disease.

  • Illés Kovács‎ et al.
  • Pain‎
  • 2016‎

Dry eye disease (DED) affects >10% of the population worldwide, and it provokes an unpleasant sensation of ocular dryness, whose underlying neural mechanisms remain unknown. Removal of the main lachrymal gland in guinea pigs caused long-term reduction of basal tearing accompanied by changes in the architecture and density of subbasal corneal nerves and epithelial terminals. After 4 weeks, ongoing impulse activity and responses to cooling of corneal cold thermoreceptor endings were enhanced. Menthol (200 μM) first excited and then inactivated this augmented spontaneous and cold-evoked activity. Comparatively, corneal polymodal nociceptors of tear-deficient eyes remained silent and exhibited only a mild sensitization to acidic stimulation, whereas mechanonociceptors were not affected. Dryness-induced changes in peripheral cold thermoreceptor responsiveness developed in parallel with a progressive excitability enhancement of corneal cold trigeminal ganglion neurons, primarily due to an increase of sodium currents and a decrease of potassium currents. In corneal polymodal nociceptor neurons, sodium currents were enhanced whereas potassium currents remain unaltered. In healthy humans, exposure of the eye surface to menthol vapors or to cold air currents evoked unpleasant sensations accompanied by increased blinking frequency that we attributed to cold thermoreceptor stimulation. Notably, stimulation with menthol reduced the ongoing background discomfort of patients with DED, conceivably due to use-dependent inactivation of cold thermoreceptors. Together, these data indicate that cold thermoreceptors contribute importantly to the detection and signaling of ocular surface wetness, and develop under chronic eye dryness conditions an injury-evoked neuropathic firing that seems to underlie the unpleasant sensations experienced by patients with DED.


Bidirectional shifts of TRPM8 channel gating by temperature and chemical agents modulate the cold sensitivity of mammalian thermoreceptors.

  • Annika Mälkiä‎ et al.
  • The Journal of physiology‎
  • 2007‎

TRPM8, a member of the melastatin subfamily of transient receptor potential (TRP) cation channels, is activated by voltage, low temperatures and cooling compounds. These properties and its restricted expression to small sensory neurons have made it the ion channel with the most advocated role in cold transduction. Recent work suggests that activation of TRPM8 by cold and menthol takes place through shifts in its voltage-activation curve, which cause the channel to open at physiological membrane potentials. By contrast, little is known about the actions of inhibitors on the function of TRPM8. We investigated the chemical and thermal modulation of TRPM8 in transfected HEK293 cells and in cold-sensitive primary sensory neurons. We show that cold-evoked TRPM8 responses are effectively suppressed by inhibitor compounds SKF96365, 4-(3-chloro-pyridin-2-yl)-piperazine-1-carboxylic acid (4-tert-butyl-phenyl)-amide (BCTC) and 1,10-phenanthroline. These antagonists exert their effect by shifting the voltage dependence of TRPM8 activation towards more positive potentials. An opposite shift towards more negative potentials is achieved by the agonist menthol. Functionally, the bidirectional shift in channel gating translates into a change in the apparent temperature threshold of TRPM8-expressing cells. Accordingly, in the presence of the antagonist compounds, the apparent response-threshold temperature of TRPM8 is displaced towards colder temperatures, whereas menthol sensitizes the response, shifting the threshold in the opposite direction. Co-application of agonists and antagonists produces predictable cancellation of these effects, suggesting the convergence on a common molecular process. The potential for half maximal activation of TRPM8 activation by cold was approximately 140 mV more negative in native channels compared to recombinant channels, with a much higher open probability at negative membrane potentials in the former. In functional terms, this difference translates into a shift in the apparent temperature threshold for activation towards higher temperatures for native currents. This difference in voltage-dependence readily explains the high threshold temperatures characteristic of many cold thermoreceptors. The modulation of TRPM8 activity by different chemical agents unveils an important flexibility in the temperature-response curve of TRPM8 channels and cold thermoreceptors.


Thermosensory processing in the Drosophila brain.

  • Wendy W Liu‎ et al.
  • Nature‎
  • 2015‎

In Drosophila, just as in vertebrates, changes in external temperature are encoded by bidirectional opponent thermoreceptor cells: some cells are excited by warming and inhibited by cooling, whereas others are excited by cooling and inhibited by warming. The central circuits that process these signals are not understood. In Drosophila, a specific brain region receives input from thermoreceptor cells. Here we show that distinct genetically identified projection neurons (PNs) in this brain region are excited by cooling, warming, or both. The PNs excited by cooling receive mainly feed-forward excitation from cool thermoreceptors. In contrast, the PNs excited by warming ('warm-PNs') receive both excitation from warm thermoreceptors and crossover inhibition from cool thermoreceptors through inhibitory interneurons. Notably, this crossover inhibition elicits warming-evoked excitation, because warming suppresses tonic activity in cool thermoreceptors. This in turn disinhibits warm-PNs and sums with feed-forward excitation evoked by warming. Crossover inhibition could cancel non-thermal activity (noise) that is positively correlated among warm and cool thermoreceptor cells, while reinforcing thermal activity which is anti-correlated. Our results show how central circuits can combine signals from bidirectional opponent neurons to construct sensitive and robust neural codes.


Evidence of viscerally-mediated cold-defence thermoeffector responses in man.

  • Nathan B Morris‎ et al.
  • The Journal of physiology‎
  • 2017‎

Visceral thermoreceptors that modify thermoregulatory responses are widely accepted in animal but not human thermoregulation models. Recently, we have provided evidence of viscerally-mediated sweating alterations in humans during exercise brought about by warm and cool fluid ingestion. In the present study, we characterize the modification of shivering and whole-body thermal sensation during cold stress following the administration of a graded thermal stimuli delivered to the stomach via fluid ingestion at 52, 37, 22 and 7°C. Despite no differences in core and skin temperature, fluid ingestion at 52°C rapidly decreased shivering and sensations of cold compared to 37°C, whereas fluid ingestion at 22 and 7°C led to equivalent increases in these responses. Warm and cold fluid ingestion independently modifies cold defence thermoeffector responses, supporting the presence of visceral thermoreceptors in humans. However, the cold-defence thermoeffector response patterns differed from previously identified hot-defence thermoeffectors.


Tear fluid hyperosmolality increases nerve impulse activity of cold thermoreceptor endings of the cornea.

  • Andres Parra‎ et al.
  • Pain‎
  • 2014‎

Dry eye disease (DED) is a multifactorial disorder affecting the composition and volume of tears. DED causes ocular surface dryness, cooling, and hyperosmolality, leading ultimately to corneal epithelium damage and reduced visual performance. Ocular discomfort is the main clinical symptom in DED. However, the peripheral neural source of such unpleasant sensations is still unclear. We analyzed in excised, superfused mouse eyes, the effect of NaCl-induced hyperosmolality (325-1005 mOsm·kg(-1)) on corneal cold thermoreceptor and polymodal nociceptor nerve terminal impulse (NTI) activity. Osmolality elevations at basal corneal temperature (33.6°C) linearly increased the ongoing NTI frequency of cold thermoreceptors, at a mean rate of 0.34 imp·s(-1)/10 mOsm. This frequency increase became significant with osmolality values greater than 340 mOsm. Comparison of cold thermoreceptor activity increase induced by a dynamic temperature reduction of 1.8°C under iso- and hyperosmolal (360-mOsm) conditions provided evidence that more than 50% of the increased firing response was attributable to hyperosmolality. Comparatively, activation of corneal polymodal nociceptor endings by hyperosmolal solutions started with values of 600 mOsm and greater. Sensitization of polymodal nociceptors by continuous perfusion with an "inflammatory soup" (bradykinin, histamine, prostaglandin E2 [PGE2], serotonin, and adenosine triphosphate [ATP]) did not enhance their activation by hyperosmolal solutions. High osmolality also altered the firing pattern and shape of cold and polymodal NTIs, possibly reflecting disturbances in local membrane currents. Results strongly suggest that tear osmolality elevations in the range observed in DED predominantly excite cold thermoreceptors, supporting the hypothesis that dryness sensations experienced by these patients are due, at least in part, to an augmented activity of corneal cold thermoreceptors.


The Contribution of TRPA1 to Corneal Thermosensitivity and Blink Regulation in Young and Aged Mice.

  • Laura Frutos-Rincón‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

The role of TRPA1 in the thermosensitivity of the corneal cold thermoreceptor nerve endings was studied in young and aged mice. The contribution of the TRPA1-dependent activity to basal tearing and thermally-evoked blink was also explored. The corneal cold thermoreceptors' activity was recorded extracellularly in young (5-month-old) and aged (18-month-old) C57BL/6WT (WT) and TRPA1-/- knockout (TRPA1-KO) mice at basal temperature (34 °C) and during cooling (15 °C) and heating (45 °C) ramps. The blink response to cold and heat stimulation of the ocular surface and the basal tearing rate were also measured in young animals using orbicularis oculi muscle electromyography (OOemg) and phenol red threads, respectively. The background activity at 34 °C and the cooling- and heating-evoked responses of the cold thermoreceptors were similar in WT and TRPA1-KO animals, no matter the age. Similar to the aged WT mice, in the young and aged TRPA1-KO mice, most of the cold thermoreceptors presented low frequency background activity, a low cooling threshold, and a sluggish response to heating. The amplitude and duration of the OOemg signals correlated with the magnitude of the induced thermal change in the WT but not in the TRPA1-KO mice. The basal tearing was similar in the TRPA1-KO and WT mice. The electrophysiological data suggest that the TRPA1-dependent nerve activity, which declines with age, contributes to detecting the warming of the ocular surface and also to integrating the thermally-evoked reflex blink.


TRPA1/M8 agonists upregulate ciliary beating through the pannexin-1 channel in the human nasal mucosa.

  • Thi Nga Nguyen‎ et al.
  • Molecular biology reports‎
  • 2023‎

Nasal breathing is important for maintaining physiological respiration. However, airflow in the nasal cavity has an inherent cooling effect and may suppress ciliary beating, an essential frontline defense in the airway. Nasal airflow is thought to be perceived by thermoreceptors for cool temperatures. We herein investigated the effect of the activation of thermosensitive transient receptor potentials (TRPs) for cool/cold temperatures on ciliary beating to search for a compensatory mechanism.


Cold Temperature Encoding by Cutaneous TRPA1 and TRPM8-Carrying Fibers in the Mouse.

  • Zoltan Winter‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2017‎

Previous research identified TRPM8 and TRPA1 cold transducers with separate functions, one being functional in the non-noxious range and the second one being a nociceptive transducer. TRPM8-deficient mice present overt deficits in the detection of environmental cool, but not a lack of cold avoidance and TRPA1-deficient mice show clear deficits in some cold nocifensive assays. The extent of TRPA1's contribution to cold sensing in vivo is still unclear, because mice lacking both TRPM8 and TRPA1 (DKO) were described with unchanged cold avoidance from TRPM8-/- based on a two-temperature-choice assay and by c-fos measurement. The present study was designed to differentiate how much TRPM8 alone and combined TRPA1 and TRPM8 contribute to cold sensing. We analyzed behavior in the thermal ring track assay adjusted between 30 and 5°C and found a large reduction in cold avoidance of the double knockout mice as compared to the TRPM8-deficient mice. We also revisited skin-nerve recordings from saphenous-nerve skin preparations with regard to nociceptors and thermoreceptors. We compared the frequency and characteristics of the cold responses of TRPM8-expressing and TRPM8-negative C-fiber nociceptors in C57BL/6J mice with nociceptors of TRPM8-deficient and DKO mice and found that TRPM8 enables nociceptors to encode cold temperatures with higher firing rates and larger responses with sustained, static component. In TRPM8-/-, C-fiber cold nociceptors were markedly reduced and appeared further reduced in DKO. Nevertheless, the remaining cold responses in both knockout strains were similar in their characteristics and they were indifferent from the TRPM8-negative cold responses found in C57BL/6J mice. TRPM8 had a comparably essential role for encoding cold in thermoreceptors and lack of TRPM8 reduced response magnitude, peak and mean firing rates and the incidence of thermoreceptors. The encoding deficits were similar in the DKO strain. Our data illustrate that lack of TRPA1 in TRPM8-deficient mice results in a disproportionately large reduction in cold avoidance behavior and also affects the incidence of cold encoding fiber types. Presumably TRPA1 compensates for lack of TRPM8 to a certain extent and both channels cooperate to cover the entire cold temperature range, making cold-temperature encoding by TRPA1-although less powerful-synergistic to TRPM8.


Chirality-Dependent Interaction of d- and l-Menthol with Biomembrane Models.

  • Pooja Gusain‎ et al.
  • Membranes‎
  • 2017‎

Chirality plays a vital role in biological membranes and has a significant effect depending on the type and arrangement of the isomer. Menthol has two typical chiral forms, d- and l-, which exhibit different behaviours. l-Menthol is known for its physiological effect on sensitivity (i.e. a cooling effect), whereas d-menthol causes skin irritation. Menthol molecules may affect not only the thermoreceptors on biomembranes, but also the membrane itself. Membrane heterogeneity (lipid rafts, phase separation) depends on lipid packing and acyl chain ordering. Our interest is to elaborate the chirality dependence of d- and l-menthol on membrane heterogeneity. We revealed physical differences between the two optical isomers of menthol on membrane heterogeneity by studying model membranes using nuclear magnetic resonance and microscopic observation.


Chronic Tear Deficiency Sensitizes Transient Receptor Potential Vanilloid 1-Mediated Responses in Corneal Sensory Nerves.

  • Takayoshi Masuoka‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2020‎

Chronic tear deficiency enhances the excitability of corneal cold-sensitive nerves that detect ocular dryness, which can lead to discomfort in patients with dry eye disease (DED). However, changes in corneal nerve excitations through the polymodal nociceptor "transient receptor potential vanilloid 1" (TRPV1) and the potential link between this receptor and symptoms of DED remain unclear. In this study, we examined the firing properties of corneal cold-sensitive nerves expressing TRPV1 and possible contributions of chronic tear deficiency to corneal nerve excitability by TRPV1 activation. The bilateral excision of lacrimal glands in guinea pigs decreased the tear volume and increased the frequency of spontaneous eyeblinks 1-4 weeks after surgery. An analysis of the firing properties of the cold-sensitive nerves was performed by single-unit recordings of corneal preparations 4 weeks after surgery in both the sham-operated and gland-excised groups. Perfusion of the TRPV1 agonist, capsaicin (1 μM), transiently increased the firing frequency in approximately 46-48% of the cold-sensitive nerves characterized by low-background activity and high threshold (LB-HT) cold thermoreceptors in both groups. Gland excision significantly decreased the latency of capsaicin-induced firing in cold-sensitive nerves; however, its magnitude was unchanged. Calcium imaging of cultured trigeminal ganglion neurons from both groups showed that intracellular calcium elevation of corneal neurons induced by a low concentration of capsaicin (0.03 μM) was significantly larger in the gland excision group, regardless of responsiveness to cold. An immunohistochemical study of the trigeminal ganglion revealed that gland excision significantly increased the proportion of corneal neurons enclosed by glial fibrillary acidic protein (GFAP)-immunopositive satellite glial cells. Topical application of the TRPV1 antagonist, A784168 (30 μM), on the ocular surface attenuated eye-blink frequency after gland excision. Furthermore, gland excision enhanced blink behavior induced by a low concentration of capsaicin (0.1 μM). These results suggest that chronic tear deficiency sensitizes the TRPV1-mediated response in the corneal LB-HT cold thermoreceptors and cold-insensitive polymodal nociceptors, which may be linked to dry eye discomfort and hyperalgesia resulting from nociceptive stimuli in aqueous-deficient dry eyes.


Non-conventional Axonal Organelles Control TRPM8 Ion Channel Trafficking and Peripheral Cold Sensing.

  • Víctor Hugo Cornejo‎ et al.
  • Cell reports‎
  • 2020‎

TRPM8 is the main ion channel responsible for cold transduction in the somatosensory system. Nerve terminal availability of TRPM8 determines cold sensitivity, but how axonal secretory organelles control channel delivery remains poorly understood. Here we examine the distribution of TRPM8 and trafficking organelles in cold-sensitive peripheral axons and disrupt trafficking by targeting the ARF-GEF GBF1 pharmacologically or the small GTPase RAB6 by optogenetics. In axons of the sciatic nerve, inhibition of GBF1 interrupts TRPM8 trafficking and increases association with the trans-Golgi network, LAMP1, and Golgi satellites, which distribute profusely along the axonal shaft. Accordingly, both TRPM8-dependent ongoing activity and cold-evoked responses reversibly decline upon GBF1 inhibition in nerve endings of corneal cold thermoreceptors. Inhibition of RAB6, which also associates to Golgi satellites, decreases cold-induced responses in vivo. Our results support a non-conventional axonal trafficking mechanism controlling the availability of TRPM8 in axons and cold sensitivity in the peripheral nervous system.


G protein-coupled receptor-based thermosensation determines temperature acclimatization of Caenorhabditis elegans.

  • Kohei Ohnishi‎ et al.
  • Nature communications‎
  • 2024‎

Animals must sense and acclimatize to environmental temperatures for survival, yet their thermosensing mechanisms other than transient receptor potential (TRP) channels remain poorly understood. We identify a trimeric G protein-coupled receptor (GPCR), SRH-40, which confers thermosensitivity in sensory neurons regulating temperature acclimatization in Caenorhabditis elegans. Systematic knockdown of 1000 GPCRs by RNAi reveals GPCRs involved in temperature acclimatization, among which srh-40 is highly expressed in the ADL sensory neuron, a temperature-responsive chemosensory neuron, where TRP channels act as accessorial thermoreceptors. In vivo Ca2+ imaging demonstrates that an srh-40 mutation reduced the temperature sensitivity of ADL, resulting in supranormal temperature acclimatization. Ectopically expressing SRH-40 in a non-warmth-sensing gustatory neuron confers temperature responses. Moreover, temperature-dependent SRH-40 activation is reconstituted in Drosophila S2R+ cells. Overall, SRH-40 may be involved in thermosensory signaling underlying temperature acclimatization. We propose a dual thermosensing machinery through a GPCR and TRP channels in a single sensory neuron.


The cation channel TRPA1 tunes mosquito thermotaxis to host temperatures.

  • Román A Corfas‎ et al.
  • eLife‎
  • 2015‎

While most animals thermotax only to regulate their temperature, female mosquitoes are attracted to human body heat during pursuit of a blood meal. Here we elucidate the basic rules of Aedes aegypti thermotaxis and test the function of candidate thermoreceptors in this important behavior. We show that host-seeking mosquitoes are maximally attracted to thermal stimuli approximating host body temperatures, seeking relative warmth while avoiding both relative cool and stimuli exceeding host body temperature. We found that the cation channel TRPA1, in addition to playing a conserved role in thermoregulation and chemosensation, is required for this specialized host-selective thermotaxis in mosquitoes. During host-seeking, AaegTRPA1(-/-) mutants failed to avoid stimuli exceeding host temperature, and were unable to discriminate between host-temperature and high-temperature stimuli. TRPA1-dependent tuning of thermotaxis is likely critical for mosquitoes host-seeking in a complex thermal environment in which humans are warmer than ambient air, but cooler than surrounding sun-warmed surfaces.


A Cross-Species Analysis Reveals a General Role for Piezo2 in Mechanosensory Specialization of Trigeminal Ganglia from Tactile Specialist Birds.

  • Eve R Schneider‎ et al.
  • Cell reports‎
  • 2019‎

A major challenge in biology is to link cellular and molecular variations with behavioral phenotypes. Here, we studied somatosensory neurons from a panel of bird species from the family Anatidae, known for their tactile-based foraging behavior. We found that tactile specialists exhibit a proportional expansion of neuronal mechanoreceptors in trigeminal ganglia. The expansion of mechanoreceptors occurs via neurons with intermediately and slowly inactivating mechanocurrent. Such neurons contain the mechanically gated Piezo2 ion channel whose expression positively correlates with the expression of factors responsible for the development and function of mechanoreceptors. Conversely, Piezo2 expression negatively correlates with expression of molecules mediating the detection of temperature and pain, suggesting that the expansion of Piezo2-containing mechanoreceptors with prolonged mechanocurrent occurs at the expense of thermoreceptors and nociceptors. Our study suggests that the trade-off between neuronal subtypes is a general mechanism of tactile specialization at the level of somatosensory system.


Molecular physiology regulating cold tolerance and acclimation of Caenorhabditis elegans.

  • Misaki Okahata‎ et al.
  • Proceedings of the Japan Academy. Series B, Physical and biological sciences‎
  • 2022‎

Many organisms can survive and proliferate in changing environmental temperatures. Here, we introduce a molecular physiological mechanism for cold tolerance and acclimation of the nematode Caenorhabditis elegans on the basis of previous reports and a new result. Three types of thermosensory neurons located in the head, ASJ, ASG, and ADL, regulate cold tolerance and acclimation. In ASJ, components of the light-signaling pathway are involved in thermosensation. In ASG, mechanoreceptor DEG-1 acts as thermoreceptor. In ADL, transient receptor potential channels are thermoreceptors; however, the presence of an additional unidentified thermoreceptor is also speculated. ADL thermoresponsivity is modulated by oxygen sensory signaling from URX oxygen sensory neurons via hub interneurons. ASJ releases insulin and steroid hormones that are received by the intestine, which results in lipid composition changing with cold tolerance. Additionally, the intestinal transcriptional alteration affects sperm functions, which in turn affects the thermosensitivity of ASJ; thus, the neuron-intestine-sperm-neuron tissue circuit is essential for cold tolerance.


The neural basis of heat seeking in a human-infective parasitic worm.

  • Astra S Bryant‎ et al.
  • Current biology : CB‎
  • 2022‎

Soil-transmitted parasitic nematodes infect over one billion people and cause devastating morbidity worldwide. Many of these parasites have infective larvae that locate hosts using thermal cues. Here, we identify the thermosensory neurons of the human threadworm Strongyloides stercoralis and show that they display unique functional adaptations that enable the precise encoding of temperatures up to human body temperature. We demonstrate that experience-dependent thermal plasticity regulates the dynamic range of these neurons while preserving their ability to encode host-relevant temperatures. We describe a novel behavior in which infective larvae spontaneously reverse attraction to heat sources at sub-body temperatures and show that this behavior is mediated by rapid adaptation of the thermosensory neurons. Finally, we identify thermoreceptors that confer parasite-specific sensitivity to body heat. Our results pinpoint the parasite-specific neural adaptations that enable parasitic nematodes to target humans and provide the foundation for drug development to prevent human infection.


Role of the Excitability Brake Potassium Current IKD in Cold Allodynia Induced by Chronic Peripheral Nerve Injury.

  • Alejandro González‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2017‎

Cold allodynia is a common symptom of neuropathic and inflammatory pain following peripheral nerve injury. The mechanisms underlying this disabling sensory alteration are not entirely understood. In primary somatosensory neurons, cold sensitivity is mainly determined by a functional counterbalance between cold-activated TRPM8 channels and Shaker-like Kv1.1-1.2 channels underlying the excitability brake current IKD Here we studied the role of IKD in damage-triggered painful hypersensitivity to innocuous cold. We found that cold allodynia induced by chronic constriction injury (CCI) of the sciatic nerve in mice, was related to both an increase in the proportion of cold-sensitive neurons (CSNs) in DRGs contributing to the sciatic nerve, and a decrease in their cold temperature threshold. IKD density was reduced in high-threshold CSNs from CCI mice compared with sham animals, with no differences in cold-induced TRPM8-dependent current density. The electrophysiological properties and neurochemical profile of CSNs revealed an increase of nociceptive-like phenotype among neurons from CCI animals compared with sham mice. These results were validated using a mathematical model of CSNs, including IKD and TRPM8, showing that a reduction in IKD current density shifts the thermal threshold to higher temperatures and that the reduction of this current induces cold sensitivity in former cold-insensitive neurons expressing low levels of TRPM8-like current. Together, our results suggest that cold allodynia is largely due to a functional downregulation of IKD in both high-threshold CSNs and in a subpopulation of polymodal nociceptors expressing TRPM8, providing a general molecular and neural mechanism for this sensory alteration.SIGNIFICANCE STATEMENT This paper unveils the critical role of the brake potassium current IKD in damage-triggered cold allodynia. Using a well-known form of nerve injury and combining behavioral analysis, calcium imaging, patch clamping, and pharmacological tools, validated by mathematical modeling, we determined that the functional expression of IKD is reduced in sensory neurons in response to peripheral nerve damage. This downregulation not only enhances cold sensitivity of high-threshold cold thermoreceptors signaling cold discomfort, but it also transforms a subpopulation of polymodal nociceptors signaling pain into neurons activated by mild temperature drops. Our results suggest that cold allodynia is linked to a reduction of IKD in both high-threshold cold thermoreceptors and nociceptors expressing TRPM8, providing a general model for this form of cold-induced pain.


Deciphering the Action of Perfluorohexyloctane Eye Drops to Reduce Ocular Discomfort and Pain.

  • Miguel Delicado-Miralles‎ et al.
  • Frontiers in medicine‎
  • 2021‎

Perfluorohexyloctane (F6H8) eyedrops have been recently introduced in Europe as a product to treat dry eye disease, based on its ability to reduce tear film instability in Meibomian gland dysfunction and evaporative dry eye disease, although its mechanism of action is still unknown. In the present pilot study, we evaluated the effects of the ocular instillation of a single drop of commercial F6H8 eyedrops in 20 healthy humans (9 women/11 men), measuring: (a) Corneal surface temperature (CST) from infrared video images; (b) tear volume using phenol red threads; (c) blinking frequency; and (d) ocular surface sensations (cold, dryness, pricking, foreign body, burning, itching, gritty, eye fatigue, watering eyes, and light-evoked discomfort sensations; scored using 10 cm Visual Analog Scales), before and 5-60 min after F6H8 or saline treatment. CST decreased and tearing and blinking frequency increased significantly after F6H8 but not after saline solution. When applied unilaterally, CST decreased only in the F6H8-treated eye. No sensations were evoked after F6H8 or saline. The corneal surface temperature reduction produced by topical F6H8 does not evoke conscious ocular sensations but is sufficient to increase the activity of corneal cold thermoreceptors, leading to an increased reflex lacrimation and blinking that may relieve dry eye condition thus reducing ocular discomfort and pain.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: