Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,527 papers

Chewing increases postprandial diet-induced thermogenesis.

  • Yuka Hamada‎ et al.
  • Scientific reports‎
  • 2021‎

Slow eating, which involves chewing food slowly and thoroughly, is an effective strategy for controlling appetite in order to avoid being overweight or obese. Slow eating also has the effect of increasing postprandial energy expenditure (diet-induced thermogenesis). It is still unclear whether this is due to oral stimuli; that is, the duration of tasting food in the mouth and the duration of chewing. To investigate the effects of oral stimuli on diet-induced thermogenesis in 11 healthy normal weight males, we conducted a randomized crossover study comprising three trials: (1) drinking liquid food normally, (2) drinking liquid food after tasting, and (3) adding chewing while tasting. Oral stimuli (i.e., the duration of tasting liquid food in the mouth and the duration of chewing) significantly increased diet-induced thermogenesis after drinking liquid food. This result demonstrates that the increase in diet-induced thermogenesis is due to oral stimuli rather than the influence of the food bolus. Increased diet-induced thermogenesis induced by chewing and taste stimuli may help to prevent overweight and obesity.


Brown fat fuel utilization and thermogenesis.

  • Kristy L Townsend‎ et al.
  • Trends in endocrinology and metabolism: TEM‎
  • 2014‎

Brown adipose tissue (BAT) dissipates energy as heat to maintain optimal thermogenesis and to contribute to energy expenditure in rodents and possibly humans. The energetic processes executed by BAT require a readily-available fuel supply, which includes glucose and fatty acids (FAs). FAs become available by cellular uptake, de novo lipogenesis, and multilocular lipid droplets in brown adipocytes. BAT also possesses a great capacity for glucose uptake and metabolism, and an ability to regulate insulin sensitivity. These properties make BAT an appealing target for the treatment of obesity, diabetes, and other metabolic disorders. Recent research has provided a better understanding of the processes of fuel utilization carried out by brown adipocytes, which is the focus of the current review.


Pinealectomy increases thermogenesis and decreases lipogenesis.

  • Mikyung Kim‎ et al.
  • Molecular medicine reports‎
  • 2020‎

The present study was designed to determine the effects of pineal gland‑derived melatonin on obesity by employing a rat pinealectomy (Pnx) model. After 10 weeks of a high‑fat diet, rats received sham or Pnx surgery followed by a normal chow diet for 10 weeks. Reverse transcription‑quantitative PCR, western blotting analysis, immunohistochemistry and ELISA were used to determine the effects of Pnx. Pnx decreased the expression of melatonin receptor (MTNR)1A and MTNR1B, in brown adipose tissues (BAT) and white adipose tissues (WAT). Pnx rats showed increased insulin sensitivity compared with those that received sham surgery. Leptin levels were significantly decreased in the serum of the Pnx group. In addition, Pnx stimulated thermogenic genes in BAT and attenuated lipogenic genes in both WAT and the liver. Histological analyses revealed a marked decrease in the size of lipid droplets and increased expression of uncoupling protein 1 in BAT. In the liver of the Pnx group, the size and number of lipid droplets had also decreased. In conclusion, the results presented in the current study suggested that Pnx increases thermogenesis in BAT and decreases lipogenesis in WAT and the liver.


Lipid Transport in Brown Adipocyte Thermogenesis.

  • Gina Wade‎ et al.
  • Frontiers in physiology‎
  • 2021‎

Non-shivering thermogenesis is an energy demanding process that primarily occurs in brown and beige adipose tissue. Beyond regulating body temperature, these thermogenic adipocytes regulate systemic glucose and lipid homeostasis. Historically, research on thermogenic adipocytes has focused on glycolytic metabolism due to the discovery of active brown adipose tissue in adult humans through glucose uptake imaging. The importance of lipids in non-shivering thermogenesis has more recently been appreciated. Uptake of circulating lipids into thermogenic adipocytes is necessary for body temperature regulation and whole-body lipid homeostasis. A wide array of circulating lipids contribute to thermogenic potential including free fatty acids, triglycerides, and acylcarnitines. This review will summarize the mechanisms and regulation of lipid uptake into brown adipose tissue including protein-mediated uptake, lipoprotein lipase activity, endocytosis, vesicle packaging, and lipid chaperones. We will also address existing gaps in knowledge for cold induced lipid uptake into thermogenic adipose tissue.


α2 Adrenergic receptor-mediated inhibition of thermogenesis.

  • Christopher J Madden‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2013‎

α2 adrenergic receptor (α2-AR) agonists have been used as antihypertensive agents, in the management of drug withdrawal, and as sedative analgesics. Since α2-AR agonists also influence the regulation of body temperature, we explored their potential as antipyretic agents. This study delineates the central neural substrate for the inhibition of rat brown adipose tissue (BAT) and shivering thermogenesis by α2-AR agonists. Nanoinjection of the α2-AR agonist clonidine (1.2 nmol) into the rostral raphe pallidus area (rRPa) inhibited BAT sympathetic nerve activity (SNA) and BAT thermogenesis. Subsequent nanoinjection of the α2-AR antagonist idazoxan (6 nmol) into the rRPa reversed the clonidine-evoked inhibition of BAT SNA and BAT thermogenesis. Systemic administration of the α2-AR agonists dexmedetomidine (25 μg/kg, i.v.) and clonidine (100 μg/kg, i.v.) inhibited shivering EMGs, BAT SNA, and BAT thermogenesis, effects that were reversed by nanoinjection of idazoxan (6 nmol) into the rRPa. Dexmedetomidine (100 μg/kg, i.p.) prevented and reversed lipopolysaccharide-evoked (10 μg/kg, i.p.) thermogenesis in free-behaving rats. Cholera toxin subunit b retrograde tracing from rRPa and pseudorabies virus transynaptic retrograde tracing from BAT combined with immunohistochemistry for catecholaminergic biosynthetic enzymes revealed the ventrolateral medulla as the source of catecholaminergic input to the rRPa and demonstrated that these catecholaminergic neurons are synaptically connected to BAT. Photostimulation of ventrolateral medulla neurons expressing the PRSx8-ChR2-mCherry lentiviral vector inhibited BAT SNA via activation of α2-ARs in the rRPa. These results indicate a potent inhibition of BAT and shivering thermogenesis by α2-AR activation in the rRPa, and suggest a therapeutic potential of α2-AR agonists for reducing potentially lethal elevations in body temperature during excessive fever.


ACE2 pathway regulates thermogenesis and energy metabolism.

  • Xi Cao‎ et al.
  • eLife‎
  • 2022‎

Identification of key regulators of energy homeostasis holds important therapeutic promise for metabolic disorders, such as obesity and diabetes. ACE2 cleaves angiotensin II (Ang II) to generate Ang-(1-7) which acts mainly through the Mas1 receptor. Here, we identify ACE2 pathway as a critical regulator in the maintenance of thermogenesis and energy expenditure. We found that ACE2 is highly expressed in brown adipose tissue (BAT) and that cold stimulation increases ACE2 and Ang-(1-7) levels in BAT and serum. Ace2 knockout mice (Ace2-/y) and Mas1 knockout mice (Mas1-/-) displayed impaired thermogenesis. Mice transplanted with brown adipose tissue from Mas1-/- display metabolic abnormalities consistent with those seen in the Ace2 and Mas1 knockout mice. In contrast, impaired thermogenesis of Leprdb/db obese diabetic mice and high-fat diet-induced obese mice were ameliorated by overexpression of Ace2 or continuous infusion of Ang-(1-7). Activation of ACE2 pathway was associated with improvement of metabolic parameters, including blood glucose, lipids, and energy expenditure in multiple animal models. Consistently, ACE2 pathway remarkably enhanced the browning of white adipose tissue. Mechanistically, we showed that ACE2 pathway activated Akt/FoxO1 and PKA pathway, leading to induction of UCP1 and activation of mitochondrial function. Our data propose that adaptive thermogenesis requires regulation of ACE2 pathway and highlight novel potential therapeutic targets for the treatment of metabolic disorders.


Electrical Neurostimulation Promotes Brown Adipose Tissue Thermogenesis.

  • Zhuang Li‎ et al.
  • Frontiers in endocrinology‎
  • 2020‎

Brown adipose tissue (BAT) is present in humans and rodents, and contributes to energy expenditure by converting energy stored in lipids and glucose into heat. Beta adrenergic receptor (β-AR) agonists have been proposed as pharmacological tools to activate BAT, but they lack selectivity for this tissue. This study aimed to investigate the possibility to apply electrical neurostimulation as a novel approach to activate BAT by promoting the sympathetic outflow towards BAT.


Muscle nonshivering thermogenesis in a feral mammal.

  • Julia Nowack‎ et al.
  • Scientific reports‎
  • 2019‎

Muscle nonshivering thermogenesis (NST) was recently suggested to play an important role in thermoregulation of species lacking brown adipose tissue (BAT). The mechanism, which is independent of muscle contractions, produces heat based on the activity of an ATPase pump in the sarcoplasmic reticulum (SERCA1a) and is controlled by the protein sarcolipin. To evaluate whether muscle NST could indeed play an important role in thermoregulation in species lacking BAT, we investigated the thermogenic capacities of newborn wild boar piglets. During cold exposure over the first 5 days of life, total heat production was improved while shivering intensity decreased, indicating an increasing contribution of NST. Sampling skeletal muscle tissue for analyses of SERCA activity as well as gene expression of SERCA1a and sarcolipin, we found an age-related increase in all three variables as well as in body temperature. Hence, the improved thermogenesis during the development of wild boars is not due to shivering but explained by the observed increase in SERCA activity. Our results suggest that muscle NST may be the primary mechanism of heat production during cold stress in large mammals lacking BAT, strengthening the hypothesis that muscle NST has likely played an important role in the evolution of endothermy.


Ferritin regulates organismal energy balance and thermogenesis.

  • Birte Blankenhaus‎ et al.
  • Molecular metabolism‎
  • 2019‎

The ferritin heavy/heart chain (FTH) gene encodes the ferroxidase component of the iron (Fe) sequestering ferritin complex, which plays a central role in the regulation of cellular Fe metabolism. Here we tested the hypothesis that ferritin regulates organismal Fe metabolism in a manner that impacts energy balance and thermal homeostasis.


The secreted peptide BATSP1 promotes thermogenesis in adipocytes.

  • Xianwei Cui‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2023‎

Although brown adipose tissue (BAT) has historically been viewed as a major site for energy dissipation through thermogenesis, its endocrine function has been increasingly recognized. However, the circulating factors in BAT that play a key role in controlling systemic energy homeostasis remain largely unexplored. Here, we performed a peptidomic analysis to profile the extracellular peptides released from human brown adipocytes upon exposure to thermogenic stimuli. Specifically, we identified a secreted peptide that modulates adipocyte thermogenesis in a cell-autonomous manner, and we named it BATSP1. BATSP1 promoted BAT thermogenesis and induced browning of white adipose tissue in vivo, leading to increased energy expenditure under cold stress. BATSP1 treatment in mice prevented high-fat diet-induced obesity and improved glucose tolerance and insulin resistance. Mechanistically, BATSP1 facilitated the nucleocytoplasmic shuttling of forkhead transcription factor 1 (FOXO1) and released its transcriptional inhibition of uncoupling protein 1 (UCP1). Overall, we provide a comprehensive analysis of the human brown adipocyte extracellular peptidome following acute forskolin (FSK) stimulation and identify BATSP1 as a novel regulator of thermogenesis that may offer a potential approach for obesity treatment.


Impairment of adrenergically-regulated thermogenesis in brown fat of obesity-resistant mice is compensated by non-shivering thermogenesis in skeletal muscle.

  • Petra Janovska‎ et al.
  • Molecular metabolism‎
  • 2023‎

Non-shivering thermogenesis (NST) mediated by uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) can be activated via the adrenergic system in response to cold or diet, contributing to both thermal and energy homeostasis. Other mechanisms, including metabolism of skeletal muscle, may also be involved in NST. However, relative contribution of these energy dissipating pathways and their adaptability remain a matter of long-standing controversy.


Leptin Raises Defended Body Temperature without Activating Thermogenesis.

  • Alexander W Fischer‎ et al.
  • Cell reports‎
  • 2016‎

Leptin has been believed to exert its weight-reducing action not only by inducing hypophagia but also by increasing energy expenditure/thermogenesis. Leptin-deficient ob/ob mice have correspondingly been thought to be thermogenically limited and to show hypothermia, mainly due to atrophied brown adipose tissue (BAT). In contrast to these established views, we found that BAT is fully functional and that leptin treatment did not increase thermogenesis in wild-type or in ob/ob mice. Rather, ob/ob mice showed a decreased but defended body temperature (i.e., were anapyrexic, not hypothermic) that was normalized to wild-type levels after leptin treatment. This was not accompanied by increased energy expenditure or BAT recruitment but, instead, was mediated by decreased tail heat loss. The weight-reducing hypophagic effects of leptin are, therefore, not augmented through a thermogenic effect of leptin; leptin is, however, pyrexic, i.e., it alters centrally regulated thresholds of thermoregulatory mechanisms, in parallel to effects of other cytokines.


An alternative splicing program promotes adipose tissue thermogenesis.

  • Santiago Vernia‎ et al.
  • eLife‎
  • 2016‎

Alternative pre-mRNA splicing expands the complexity of the transcriptome and controls isoform-specific gene expression. Whether alternative splicing contributes to metabolic regulation is largely unknown. Here we investigated the contribution of alternative splicing to the development of diet-induced obesity. We found that obesity-induced changes in adipocyte gene expression include alternative pre-mRNA splicing. Bioinformatics analysis associated part of this alternative splicing program with sequence specific NOVA splicing factors. This conclusion was confirmed by studies of mice with NOVA deficiency in adipocytes. Phenotypic analysis of the NOVA-deficient mice demonstrated increased adipose tissue thermogenesis and improved glycemia. We show that NOVA proteins mediate a splicing program that suppresses adipose tissue thermogenesis. Together, these data provide quantitative analysis of gene expression at exon-level resolution in obesity and identify a novel mechanism that contributes to the regulation of adipose tissue function and the maintenance of normal glycemia.


Fish Oil Increases Diet-Induced Thermogenesis in Mice.

  • Tomomi Yamazaki‎ et al.
  • Marine drugs‎
  • 2021‎

Increasing energy expenditure (EE) is beneficial for preventing obesity. Diet-induced thermogenesis (DIT) is one of the components of total EE. Therefore, increasing DIT is effective against obesity. We examined how much fish oil (FO) increased DIT by measuring absolute values of DIT in mice. C57BL/6J male mice were given diets of 30 energy% fat consisting of FO or safflower oil plus butter as control oil (Con). After administration for 9 days, respiration in mice was monitored, and then the data were used to calculate DIT and EE. DIT increased significantly by 1.2-fold in the FO-fed mice compared with the Con-fed mice. Body weight gain was significantly lower in the FO-fed mice. FO increased the levels of uncoupling protein 1 (Ucp1) mRNA and UCP1 protein in brown adipose tissue (BAT) by 1.5- and 1.2-fold, respectively. In subcutaneous white adipose tissue (subWAT), the levels of Ucp1 mRNA and UCP1 protein were increased by 6.3- and 2.7-fold, respectively, by FO administration. FO also significantly increased the expression of markers of browning in subWAT such as fibroblast growth factor 21 and cell death-inducing DNA fragmentation factor α-like effector a. Thus, dietary FO seems to increase DIT in mice via the increased expressions of Ucp1 in BAT and induced browning of subWAT. FO might be a promising dietary fat in the prevention of obesity by upregulation of energy metabolism.


Cbx4 Sumoylates Prdm16 to Regulate Adipose Tissue Thermogenesis.

  • Qingbo Chen‎ et al.
  • Cell reports‎
  • 2018‎

Transcriptional co-activator Prdm16 controls brown fat development and white fat browning, but how this thermogenic function is modulated post-translationally is poorly understood. Here, we report that Cbx4, a Polycomb group protein, is a SUMO E3 ligase for Prdm16 and that Cbx4-mediated sumoylation of Prdm16 is required for thermogenic gene expression. Cbx4 expression is enriched in brown fat and is induced in adipose tissue by acute cold exposure. Sumoylation of Prdm16 at lysine 917 by Cbx4 blocks its ubiquitination-mediated degradation, thereby augmenting its stability and thermogenic function. Moreover, this sumoylation event primes Prdm16 to be further stabilized by methyltransferase Ehmt1. Heterozygous Cbx4-knockout mice develop metabolic phenotypes resembling those of Prdm16-knockout mice. Furthermore, fat-specific Cbx4 knockdown and overexpression produce remarkable, opposite effects on white fat remodeling. Our results identify a modifying enzyme for Prdm16, and they demonstrate a central role of Cbx4 in the control of Prdm16 stability and white fat browning.


Outdoor Temperature Influences Cold Induced Thermogenesis in Humans.

  • Jaël R Senn‎ et al.
  • Frontiers in physiology‎
  • 2018‎

Objective: Energy expenditure (EE) increases in response to cold exposure, which is called cold induced thermogenesis (CIT). Brown adipose tissue (BAT) has been shown to contribute significantly to CIT in human adults. BAT activity and CIT are acutely influenced by ambient temperature. In the present study, we investigated the long-term effect of seasonal temperature variation on human CIT. Materials and Methods: We measured CIT in 56 healthy volunteers by indirect calorimetry. CIT was determined as difference between EE during warm conditions (EEwarm) and after a defined cold stimulus (EEcold). We recorded skin temperatures at eleven anatomically predefined locations, including the supraclavicular region, which is adjacent to the main human BAT depot. We analyzed the relation of EE, CIT and skin temperatures to the daily minimum, maximum and mean outdoor temperature averaged over 7 or 30 days, respectively, prior to the corresponding study visit by linear regression. Results: We observed a significant inverse correlation between outdoor temperatures and EEcold and CIT, respectively, while EEwarm was not influenced. The daily maximum temperature averaged over 7 days correlated best with EEcold (R2 = 0.123, p = 0.008) and CIT (R2 = 0.200, p = 0.0005). The mean skin temperatures before and after cold exposure were not related to outdoor temperatures. However, the difference between supraclavicular and parasternal skin temperature after cold exposure was inversely related to the average maximum temperature during the preceding 7 days (R2 = 0.07575, p = 0.0221). Conclusion: CIT is significantly related to outdoor temperatures indicating dynamic adaption of thermogenesis and BAT activity to environmental stimuli in adult humans. Clinical Trial Registration: www.ClinicalTrials.gov, Identifier NCT02682706.


Central angiotensin 1-7 triggers brown fat thermogenesis.

  • F S Evangelista‎ et al.
  • Physiological reports‎
  • 2023‎

We tested the hypothesis that third ventricular (3V) injections of angiotensin 1-7 (Ang 1-7) increases thermogenesis in brown adipose tissue (BAT), and whether the Mas receptor mediates this response. First, in male Siberian hamsters (n = 18), we evaluated the effect of Ang 1-7 in the interscapular BAT (IBAT) temperature and, using selective Mas receptor antagonist A-779, the role of Mas receptor in this response. Each animal received 3V injections (200 nL), with 48 h intervals: saline; Ang 1-7 (0.03, 0.3, 3, and 30 nmol); A-779 (3 nmol); and Ang 1-7 (0.3 nmol) + A-779 (3 nmol). IBAT temperature increased after 0.3 nmol Ang 1-7 compared with Ang 1-7 + A-779 at 20, 30, and 60 min. Also, 0.3 nmol Ang 1-7 increased IBAT temperature at 10 and 20 min, and decreased at 60 min compared with pretreatment. IBAT temperature decreased after A-779 at 60 min and after Ang 1-7 + A-779 at 30 and 60 min compared with the respective pretreatment. A-779 and Ang 1-7 + A-779 decreased core temperature at 60 min compared with 10 min. Then, we evaluated blood and tissue Ang 1-7 levels, and the expression of hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) in IBAT. Male Siberian hamsters (n = 36) were killed 10 min after one of the injections. No changes were observed in blood glucose, serum and IBAT Ang 1-7 levels, and ATGL. Ang 1-7 (0.3 nmol) increased p-HSL expression compared with A-779 and increased p-HSL/HSL ration compared with other injections. Ang 1-7 and Mas receptor immunoreactive cells were found in brain regions that coincide with the sympathetic nerves outflow to BAT. In conclusion, 3V injection of Ang 1-7 induced thermogenesis in IBAT in a Mas receptor-dependent manner.


Nicotine increases thermogenesis in brown adipose tissue in rats.

  • J R Lupien‎ et al.
  • Pharmacology, biochemistry, and behavior‎
  • 1988‎

This study has tested the hypothesis that nicotine might increase thermogenesis in rats by activating the sympathetic nervous system which supplies brown adipose tissue. Three hours after a single injection of nicotine, both the turnover of norepinephrine and the binding of the purine nucleotide, guanosine 5'-diphosphate (GDP) to mitochondria from brown adipose tissue were significantly increased. After 11 days of treatment with nicotine, the turnover of norepinephrine and the GDP binding to mitochondria from brown adipose tissue both remained elevated but weight gain was not different. These data are consistent with the hypothesis that nicotine may have part of its effect through changes in thermogenesis involving sympathetic nervous activation of peripheral thermogenic tissues such as brown adipose tissue.


p38α blocks brown adipose tissue thermogenesis through p38δ inhibition.

  • Nuria Matesanz‎ et al.
  • PLoS biology‎
  • 2018‎

Adipose tissue has emerged as an important regulator of whole-body metabolism, and its capacity to dissipate energy in the form of heat has acquired a special relevance in recent years as potential treatment for obesity. In this context, the p38MAPK pathway has arisen as a key player in the thermogenic program because it is required for the activation of brown adipose tissue (BAT) thermogenesis and participates also in the transformation of white adipose tissue (WAT) into BAT-like depot called beige/brite tissue. Here, using mice that are deficient in p38α specifically in adipose tissue (p38αFab-KO), we unexpectedly found that lack of p38α protected against high-fat diet (HFD)-induced obesity. We also showed that p38αFab-KO mice presented higher energy expenditure due to increased BAT thermogenesis. Mechanistically, we found that lack of p38α resulted in the activation of the related protein kinase family member p38δ. Our results showed that p38δ is activated in BAT by cold exposure, and lack of this kinase specifically in adipose tissue (p38δ Fab-KO) resulted in overweight together with reduced energy expenditure and lower body and skin surface temperature in the BAT region. These observations indicate that p38α probably blocks BAT thermogenesis through p38δ inhibition. Consistent with the results obtained in animals, p38α was reduced in visceral and subcutaneous adipose tissue of subjects with obesity and was inversely correlated with body mass index (BMI). Altogether, we have elucidated a mechanism implicated in physiological BAT activation that has potential clinical implications for the treatment of obesity and related diseases such as diabetes.


The glycoprotein follistatin-like 1 promotes brown adipose thermogenesis.

  • Dongliang Fang‎ et al.
  • Metabolism: clinical and experimental‎
  • 2019‎

The thermogenic brown adipose tissue (BAT) has been proposed as a potential target to prevent or treat obesity and related metabolic diseases. BAT secretes adipokines to regulate the thermogenic program in an autocrine or paracrine manner. Follistatin-like 1 (FSTL1), a glycoprotein involved in adipogenesis and obesity, however, the function of FSTL1 in BAT thermogenesis and in the regulation of systemic energy homeostasis are not fully understood.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: