Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,011 papers

Statistical thermodynamics of biomembranes.

  • Ram V Devireddy‎
  • Cryobiology‎
  • 2010‎

An overview of the major issues involved in the statistical thermodynamic treatment of phospholipid membranes at the atomistic level is summarized: thermodynamic ensembles, initial configuration (or the physical system being modeled), force field representation as well as the representation of long-range interactions. This is followed by a description of the various ways that the simulated ensembles can be analyzed: area of the lipid, mass density profiles, radial distribution functions (RDFs), water orientation profile, deuterium order parameter, free energy profiles and void (pore) formation; with particular focus on the results obtained from our recent molecular dynamic (MD) simulations of phospholipids interacting with dimethylsulfoxide (Me(2)SO), a commonly used cryoprotective agent (CPA).


Thermodynamics of ABC transporters.

  • Xuejun C Zhang‎ et al.
  • Protein & cell‎
  • 2016‎

ABC transporters form the largest of all transporter families, and their structural study has made tremendous progress over recent years. However, despite such advances, the precise mechanisms that determine the energy-coupling between ATP hydrolysis and the conformational changes following substrate binding remain to be elucidated. Here, we present our thermodynamic analysis for both ABC importers and exporters, and introduce the two new concepts of differential-binding energy and elastic conformational energy into the discussion. We hope that the structural analysis of ABC transporters will henceforth take thermodynamic aspects of transport mechanisms into account as well.


Thermodynamics of CuPt nanoalloys.

  • K Rossi‎ et al.
  • Scientific reports‎
  • 2018‎

The control of structural and chemical transitions in bimetallic nanoalloys at finite temperatures is one of the challenges for their use in advanced applications. Comparing Nested Sampling and Molecular Dynamics simulations, we investigate the phase changes of CuPt nanoalloys with the aim to elucidate the role of kinetic effects during their solidification and melting processes. We find that the quasi-thermodynamic limit for the nucleation of (CuPt)309 is 965 ± 10 K, but its prediction is increasingly underestimated when the system is cooled faster than 109 K/s. The solidified nanoparticles, classified following a novel tool based on Steinhardt parameters and the relative orientation of characteristic atomic environments, are then heated back to their liquid phase. We demonstrate the kinetic origin of the hysteresis in the caloric curve as (i) it closes for rates slower than 108 K/s, with a phase change temperature of 970 K ± 25 K, in very good agreement with its quasi-thermodynamic limit; (ii) the process happens simultaneously in the inner and outer layers; (iii) an onion-shell chemical order - Cu-rich surface, Pt-rich sub-surface, and mixed core - is always preserved.


eQuilibrator--the biochemical thermodynamics calculator.

  • Avi Flamholz‎ et al.
  • Nucleic acids research‎
  • 2012‎

The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like 'how much Gibbs energy is released by ATP hydrolysis at pH 5?' are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use.


Hybridization thermodynamics of NimbleGen microarrays.

  • Ulrike Mueckstein‎ et al.
  • BMC bioinformatics‎
  • 2010‎

While microarrays are the predominant method for gene expression profiling, probe signal variation is still an area of active research. Probe signal is sequence dependent and affected by probe-target binding strength and the competing formation of probe-probe dimers and secondary structures in probes and targets.


Information Thermodynamics of Cytosine DNA Methylation.

  • Robersy Sanchez‎ et al.
  • PloS one‎
  • 2016‎

Cytosine DNA methylation (CDM) is a stable epigenetic modification to the genome and a widespread regulatory process in living organisms that involves multicomponent molecular machines. Genome-wide cytosine methylation patterning participates in the epigenetic reprogramming of a cell, suggesting that the biological information contained within methylation positions may be amenable to decoding. Adaptation to a new cellular or organismal environment also implies the potential for genome-wide redistribution of CDM changes that will ensure the stability of DNA molecules. This raises the question of whether or not we would be able to sort out the regulatory methylation signals from the CDM background ("noise") induced by thermal fluctuations. Here, we propose a novel statistical and information thermodynamic description of the CDM changes to address the last question. The physical basis of our statistical mechanical model was evaluated in two respects: 1) the adherence to Landauer's principle, according to which molecular machines must dissipate a minimum energy ε = kBT ln2 at each logic operation, where kB is the Boltzmann constant, and T is the absolute temperature and 2) whether or not the binary stretch of methylation marks on the DNA molecule comprise a language of sorts, properly constrained by thermodynamic principles. The study was performed for genome-wide methylation data from 152 ecotypes and 40 trans-generational variations of Arabidopsis thaliana and 93 human tissues. The DNA persistence length, a basic mechanical property altered by CDM, was estimated with values from 39 to 66.9 nm. Classical methylome analysis can be retrieved by applying information thermodynamic modelling, which is able to discriminate signal from noise. Our finding suggests that the CDM signal comprises a language scheme properly constrained by molecular thermodynamic principles, which is part of an epigenomic communication system that obeys the same thermodynamic rules as do current human communication systems.


Bioengineering thermodynamics of biological cells.

  • Umberto Lucia‎
  • Theoretical biology & medical modelling‎
  • 2015‎

Cells are open complex thermodynamic systems. They can be also regarded as complex engines that execute a series of chemical reactions. Energy transformations, thermo-electro-chemical processes and transports phenomena can occur across the cells membranes. Moreover, cells can also actively modify their behaviours in relation to changes in their environment.


Nonequilibrium statistical thermodynamics of multicomponent interfaces.

  • Phillip M Rauscher‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

Nonequilibrium interfacial thermodynamics has important implications for crucial biological, physical, and industrial-scale transport processes. Here, we discuss a theory of local equilibrium for multiphase multicomponent interfaces that builds upon the "sharp" interface concept first introduced by Gibbs, allowing for a description of nonequilibrium interfacial processes such as those arising in evaporation, condensation, adsorption, etc. By requiring that the thermodynamics be insensitive to the precise location of the dividing surface, one can identify conditions for local equilibrium and develop methods for measuring the values of intensive variables at the interface. We then use extensive, high-precision nonequilibrium molecular dynamics (NEMD) simulations to verify the theory and establish the validity of the local equilibrium hypothesis. In particular, we demonstrate that equilibrium equations of state are also valid out of equilibrium, and can be used to determine interfacial temperature and chemical potential(s) that are consistent with nonequilibrium generalizations of the Clapeyron and Gibbs adsorption equations. We also show, for example, that, far from equilibrium, temperature or chemical potential differences need not be uniform across an interface and may instead exhibit pronounced discontinuities. However, even in these circumstances, we demonstrate that the local equilibrium hypothesis and its implications remain valid. These results provide a thermodynamic foundation and computational tools for studying or revisiting a wide variety of interfacial transport phenomena.


Common force field thermodynamics of cholesterol.

  • Francesco Giangreco‎ et al.
  • TheScientificWorldJournal‎
  • 2013‎

Four different force fields are examined for dynamic characteristics using cholesterol as a case study. The extent to which various types of internal degrees of freedom become thermodynamically relevant is evaluated by means of principal component analysis. More complex degrees of freedom (angle bending, dihedral rotations) show a trend towards force field independence. Moreover, charge assignments for membrane-embedded compounds are revealed to be critical with significant impact on biological reasoning.


On the thermodynamics of DNA methylation process.

  • Robersy Sanchez‎ et al.
  • Scientific reports‎
  • 2023‎

DNA methylation is an epigenetic mechanism that plays important roles in various biological processes including transcriptional and post-transcriptional regulation, genomic imprinting, aging, and stress response to environmental changes and disease. Consistent with thermodynamic principles acting within living systems and the application of maximum entropy principle, we propose a theoretical framework to understand and decode the DNA methylation process. A central tenet of this argument is that the probability density function of DNA methylation information-divergence summarizes the statistical biophysics underlying spontaneous methylation background and implicitly bears on the channel capacity of molecular machines conforming to Shannon's capacity theorem. On this theoretical basis, contributions from the molecular machine (enzyme) logical operations to Gibb entropy (S) and Helmholtz free energy (F) are intrinsic. Application to the estimations of S on datasets from Arabidopsis thaliana suggests that, as a thermodynamic state variable, individual methylome entropy is completely determined by the current state of the system, which in biological terms translates to a correspondence between estimated entropy values and observable phenotypic state. In patients with different types of cancer, results suggest that a significant information loss occurs in the transition from differentiated (healthy) tissues to cancer cells. This type of analysis may have important implications for early-stage diagnostics. The analysis of entropy fluctuations on experimental datasets revealed existence of restrictions on the magnitude of genome-wide methylation changes originating by organismal response to environmental changes. Only dysfunctional stages observed in the Arabidopsis mutant met1 and in cancer cells do not conform to these rules.


Thermodynamics and Kinetics of Glycolytic Reactions. Part I: Kinetic Modeling Based on Irreversible Thermodynamics and Validation by Calorimetry.

  • Kristina Vogel‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

In systems biology, material balances, kinetic models, and thermodynamic boundary conditions are increasingly used for metabolic network analysis. It is remarkable that the reversibility of enzyme-catalyzed reactions and the influence of cytosolic conditions are often neglected in kinetic models. In fact, enzyme-catalyzed reactions in numerous metabolic pathways such as in glycolysis are often reversible, i.e., they only proceed until an equilibrium state is reached and not until the substrate is completely consumed. Here, we propose the use of irreversible thermodynamics to describe the kinetic approximation to the equilibrium state in a consistent way with very few adjustable parameters. Using a flux-force approach allowed describing the influence of cytosolic conditions on the kinetics by only one single parameter. The approach was applied to reaction steps 2 and 9 of glycolysis (i.e., the phosphoglucose isomerase reaction from glucose 6-phosphate to fructose 6-phosphate and the enolase-catalyzed reaction from 2-phosphoglycerate to phosphoenolpyruvate and water). The temperature dependence of the kinetic parameter fulfills the Arrhenius relation and the derived activation energies are plausible. All the data obtained in this work were measured efficiently and accurately by means of isothermal titration calorimetry (ITC). The combination of calorimetric monitoring with simple flux-force relations has the potential for adequate consideration of cytosolic conditions in a simple manner.


Binding thermodynamics of a glutamate transporter homolog.

  • Nicolas Reyes‎ et al.
  • Nature structural & molecular biology‎
  • 2013‎

Glutamate transporters catalyze concentrative uptake of the neurotransmitter into glial cells and neurons. Their transport cycle involves binding and release of the substrate on the extra- and intracellular sides of the plasma membranes and translocation of the substrate-binding site across the lipid bilayers. The energy of the ionic gradients, mainly sodium, fuels the cycle. Here, we used a cross-linking approach to trap a glutamate transporter homolog from Pyrococcus horikoshii in key conformational states with the substrate-binding site facing either the extracellular or the intracellular side of the membrane to study binding thermodynamics. We show that the chemical potential of sodium ions in solution is exclusively coupled to substrate binding and release, not to substrate translocation. Despite the transporter's structural symmetry, the binding mechanisms are distinct on the opposite sides of the membrane and more complex than the current models suggest.


Kinetics and thermodynamics of membrane protein folding.

  • Ernesto A Roman‎ et al.
  • Biomolecules‎
  • 2014‎

Understanding protein folding has been one of the great challenges in biochemistry and molecular biophysics. Over the past 50 years, many thermodynamic and kinetic studies have been performed addressing the stability of globular proteins. In comparison, advances in the membrane protein folding field lag far behind. Although membrane proteins constitute about a third of the proteins encoded in known genomes, stability studies on membrane proteins have been impaired due to experimental limitations. Furthermore, no systematic experimental strategies are available for folding these biomolecules in vitro. Common denaturing agents such as chaotropes usually do not work on helical membrane proteins, and ionic detergents have been successful denaturants only in few cases. Refolding a membrane protein seems to be a craftsman work, which is relatively straightforward for transmembrane β-barrel proteins but challenging for α-helical membrane proteins. Additional complexities emerge in multidomain membrane proteins, data interpretation being one of the most critical. In this review, we will describe some recent efforts in understanding the folding mechanism of membrane proteins that have been reversibly refolded allowing both thermodynamic and kinetic analysis. This information will be discussed in the context of current paradigms in the protein folding field.


T-cell receptor specificity maintained by altered thermodynamics.

  • Florian Madura‎ et al.
  • The Journal of biological chemistry‎
  • 2013‎

The T-cell receptor (TCR) recognizes peptides bound to major histocompatibility molecules (MHC) and allows T-cells to interrogate the cellular proteome for internal anomalies from the cell surface. The TCR contacts both MHC and peptide in an interaction characterized by weak affinity (KD = 100 nM to 270 μM). We used phage-display to produce a melanoma-specific TCR (α24β17) with a 30,000-fold enhanced binding affinity (KD = 0.6 nM) to aid our exploration of the molecular mechanisms utilized to maintain peptide specificity. Remarkably, although the enhanced affinity was mediated primarily through new TCR-MHC contacts, α24β17 remained acutely sensitive to modifications at every position along the peptide backbone, mimicking the specificity of the wild type TCR. Thermodynamic analyses revealed an important role for solvation in directing peptide specificity. These findings advance our understanding of the molecular mechanisms that can govern the exquisite peptide specificity characteristic of TCR recognition.


Machine learning coarse-grained potentials of protein thermodynamics.

  • Maciej Majewski‎ et al.
  • Nature communications‎
  • 2023‎

A generalized understanding of protein dynamics is an unsolved scientific problem, the solution of which is critical to the interpretation of the structure-function relationships that govern essential biological processes. Here, we approach this problem by constructing coarse-grained molecular potentials based on artificial neural networks and grounded in statistical mechanics. For training, we build a unique dataset of unbiased all-atom molecular dynamics simulations of approximately 9 ms for twelve different proteins with multiple secondary structure arrangements. The coarse-grained models are capable of accelerating the dynamics by more than three orders of magnitude while preserving the thermodynamics of the systems. Coarse-grained simulations identify relevant structural states in the ensemble with comparable energetics to the all-atom systems. Furthermore, we show that a single coarse-grained potential can integrate all twelve proteins and can capture experimental structural features of mutated proteins. These results indicate that machine learning coarse-grained potentials could provide a feasible approach to simulate and understand protein dynamics.


Thermodynamics of Deca-alanine Folding in Water.

  • Anthony Hazel‎ et al.
  • Journal of chemical theory and computation‎
  • 2014‎

The determination of the folding dynamics of polypeptides and proteins is critical in characterizing their functions in biological systems. Numerous computational models and methods have been developed for studying structure formation at the atomic level. Due to its small size and simple structure, deca-alanine is used as a model system in molecular dynamics (MD) simulations. The free energy of unfolding in vacuum has been studied extensively using the end-to-end distance of the peptide as the reaction coordinate. However, few studies have been conducted in the presence of explicit solvent. Previous results show a significant decrease in the free energy of extended conformations in water, but the α-helical state is still notably favored over the extended state. Although sufficient in vacuum, we show that end-to-end distance is incapable of capturing the full complexity of deca-alanine folding in water. Using α-helical content as a second reaction coordinate, we deduce a more descriptive free-energy landscape, one which reveals a second energy minimum in the extended conformations that is of comparable free energy to the α-helical state. Equilibrium simulations demonstrate the relative stability of the extended and α-helical states in water as well as the transition between the two states. This work reveals both the necessity and challenge of determining a proper reaction coordinate to fully characterize a given process.


Modified RNA triplexes: Thermodynamics, structure and biological potential.

  • Marta Szabat‎ et al.
  • Scientific reports‎
  • 2018‎

The occurrence of triplexes in vivo has been well documented and is determined by the presence of long homopurine-homopyrimidine tracts. The formation of these structures is the result of conformational changes that occur in the duplex, which allow the binding of a third strand within the major groove of the helix. Formation of these noncanonical forms by introducing synthetic triplex-forming oligonucleotides (TFOs) into the cell may have applications in molecular biology, diagnostics and therapy. This study focused on the formation of RNA triplexes as well as their thermal stability and biological potential in the HeLa cell line. Thermodynamics studies revealed that the incorporation of multiple locked nucleic acid (LNA) and 2-thiouridine (2-thioU) residues increased the stability of RNA triplexes. These data suggest that the number and position of the modified nucleotides within TFOs significantly stabilize the formed structures. Moreover, specificity of the interactions between the modified TFOs and the RNA hairpin was characterized using electrophoretic mobility-shift assay (EMSA), and triplex dissociation constants have been also determined. Finally, through quantitative analysis of GFP expression, the triplex structures were shown to regulate GFP gene silencing. Together, our data provide a first glimpse into the thermodynamic, structural and biological properties of LNA- and 2-thioU modified RNA triplexes.


Pathway thermodynamics highlights kinetic obstacles in central metabolism.

  • Elad Noor‎ et al.
  • PLoS computational biology‎
  • 2014‎

In metabolism research, thermodynamics is usually used to determine the directionality of a reaction or the feasibility of a pathway. However, the relationship between thermodynamic potentials and fluxes is not limited to questions of directionality: thermodynamics also affects the kinetics of reactions through the flux-force relationship, which states that the logarithm of the ratio between the forward and reverse fluxes is directly proportional to the change in Gibbs energy due to a reaction (ΔrG'). Accordingly, if an enzyme catalyzes a reaction with a ΔrG' of -5.7 kJ/mol then the forward flux will be roughly ten times the reverse flux. As ΔrG' approaches equilibrium (ΔrG' = 0 kJ/mol), exponentially more enzyme counterproductively catalyzes the reverse reaction, reducing the net rate at which the reaction proceeds. Thus, the enzyme level required to achieve a given flux increases dramatically near equilibrium. Here, we develop a framework for quantifying the degree to which pathways suffer these thermodynamic limitations on flux. For each pathway, we calculate a single thermodynamically-derived metric (the Max-min Driving Force, MDF), which enables objective ranking of pathways by the degree to which their flux is constrained by low thermodynamic driving force. Our framework accounts for the effect of pH, ionic strength and metabolite concentration ranges and allows us to quantify how alterations to the pathway structure affect the pathway's thermodynamics. Applying this methodology to pathways of central metabolism sheds light on some of their features, including metabolic bypasses (e.g., fermentation pathways bypassing substrate-level phosphorylation), substrate channeling (e.g., of oxaloacetate from malate dehydrogenase to citrate synthase), and use of alternative cofactors (e.g., quinone as an electron acceptor instead of NAD). The methods presented here place another arrow in metabolic engineers' quiver, providing a simple means of evaluating the thermodynamic and kinetic quality of different pathway chemistries that produce the same molecules.


Thermodynamics of RNA structures by Wang-Landau sampling.

  • Feng Lou‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2010‎

Thermodynamics-based dynamic programming RNA secondary structure algorithms have been of immense importance in molecular biology, where applications range from the detection of novel selenoproteins using expressed sequence tag (EST) data, to the determination of microRNA genes and their targets. Dynamic programming algorithms have been developed to compute the minimum free energy secondary structure and partition function of a given RNA sequence, the minimum free-energy and partition function for the hybridization of two RNA molecules, etc. However, the applicability of dynamic programming methods depends on disallowing certain types of interactions (pseudoknots, zig-zags, etc.), as their inclusion renders structure prediction an nondeterministic polynomial time (NP)-complete problem. Nevertheless, such interactions have been observed in X-ray structures.


Bayesian analysis of isothermal titration calorimetry for binding thermodynamics.

  • Trung Hai Nguyen‎ et al.
  • PloS one‎
  • 2018‎

Isothermal titration calorimetry (ITC) is the only technique able to determine both the enthalpy and entropy of noncovalent association in a single experiment. The standard data analysis method based on nonlinear regression, however, provides unrealistically small uncertainty estimates due to its neglect of dominant sources of error. Here, we present a Bayesian framework for sampling from the posterior distribution of all thermodynamic parameters and other quantities of interest from one or more ITC experiments, allowing uncertainties and correlations to be quantitatively assessed. For a series of ITC measurements on metal:chelator and protein:ligand systems, the Bayesian approach yields uncertainties which represent the variability from experiment to experiment more accurately than the standard data analysis. In some datasets, the median enthalpy of binding is shifted by as much as 1.5 kcal/mol. A Python implementation suitable for analysis of data generated by MicroCal instruments (and adaptable to other calorimeters) is freely available online.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: