Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

Synthesis of C3/C1-Substituted Tetrahydroisoquinolines.

  • Mohamed Mihoubi‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2015‎

A broad biological screening of the natural alkaloid N-methylisosalsoline (2) extracted from Hammada scoparia leaves against a panel of human and parasitic proteases revealed an interesting activity profile of 2 towards human 20S proteasome. This outcome suggests that the 1,2,3,4-tetrahydroisoquinoline skeleton may be exploited as a template for the development of novel anticancer agents. In this article, we report the synthesis and chemical characterization of a new series of isosalsoline-type alkaloids (10-11) with variations at N2 and C3 positions with respect to the natural Compound 2, obtained by a synthetic strategy that involves the Bischler-Napieralski cyclization. The substrate for the condensation to the tetrahydroisoquinoline system, i.e., a functionalized β-arylethyl amine, was obtained through an original double reduction of nitroalkene. The synthetic strategy can be directed to the construction of highly substituted and functionalized 1,2,3,4-tetrahydroisoquinolines.


Synthesis and contractile activity of substituted 1,2,3,4-tetrahydroisoquinolines.

  • Iliyan Ivanov‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2011‎

A series of different 1-monosubstituted and 1,1-disubstituted 1,2,3,4-tetrahydro-isoquinolines was synthesized in high yields from different ketoamides. We have developed a convenient method for the synthesis of disubstituted derivatives by interaction of ketoamides with organomagnesium compounds, followed by cyclization in the presence of catalytic amounts of p-toluenesulfonic acid (PTSA). A number of substituents at the C-1 in the isoquinoline skeleton were introduced varying either carboxylic acid or organomagnesium compound. Some of the obtained 1,1-dialkyl-1,2,3,4-tetrahydro-isoquinolines possess contractile activity against guinea pig's gastric smooth muscle preparations.


Enzyme catalysed Pictet-Spengler formation of chiral 1,1'-disubstituted- and spiro-tetrahydroisoquinolines.

  • Benjamin R Lichman‎ et al.
  • Nature communications‎
  • 2017‎

The Pictet-Spengler reaction (PSR) involves the condensation and ring closure between a β-arylethylamine and a carbonyl compound. The combination of dopamine and ketones in a PSR leads to the formation of 1,1'-disubstituted tetrahydroisoquinolines (THIQs), structures that are challenging to synthesize and yet are present in a number of bioactive natural products and synthetic pharmaceuticals. Here we have discovered that norcoclaurine synthase from Thalictrum flavum (TfNCS) can catalyse the PSR between dopamine and unactivated ketones, thus facilitating the facile biocatalytic generation of 1,1'-disubstituted THIQs. Variants of TfNCS showing improved conversions have been identified and used to synthesize novel chiral 1,1'-disubstituted and spiro-THIQs. Enzyme catalysed PSRs with unactivated ketones are unprecedented, and, furthermore, there are no equivalent stereoselective chemical methods for these transformations. This discovery advances the utility of enzymes for the generation of diverse THIQs in vitro and in vivo.


Synthesis and Biological Evaluations of Ring Substituted Tetrahydroisoquinolines (THIQs) as Anti-Breast Cancer Agents.

  • Suresh Vk Eyunni‎ et al.
  • Journal of cancer science & therapy‎
  • 2017‎

Breast cancer is a leading cause of mortality among women, resulting in more than half a million deaths worldwide every year. Although chemotherapeutic drugs remain the main stay of cancer treatment, it is observed that toxicity to normal cells poses a limitation to their therapeutic values. Moreover, the patient recovery rate from advanced breast cancer by chemotherapy is still unacceptably low. Tetrahydroisoqinoline derivatives (THIQs) were reported to act as selective subtype estrogen receptor antagonists/agonists and may serve as potential therapeutic agents for breast cancer. In continuation of previous work we systematically synthesized and characterized the tetrahydroisoquinoline (THIQs) analogs. In-vitro antiproliferative activity of new substituted tetrahydroisoquinoline analogs were evaluated against human ER (+) MCF-7 (breast), ER (-) MDA-MB-231 (breast) and Ishikawa (endometrial) cancer cell lines using the CellTiter-Glo luminescent cell viability assay. The most active compounds obtained in this study were 2b, 2i, and 3 g as demonstrated by their activity (IC50=0.2 μg/mL, 0.08 μg/mL; 0.61 μg/mL, 0.09 μg/mL; 0.25 μg/mL, 0.11 μg/mL) against MCF-7 and Ishikawa cell lines respectively, in comparison to Tamoxifen activity (IC50=3.99 μg/mL, 7.87 μg/ml). The newly synthesized molecules were docked in the active sites of the ER-α (PDB: 3ERT), ER-β (PDB: 1QKN) and alpha-beta tubulin taxol complex (1JFF) crystal structures to determine the probable binding modes (bioactive conformations) of the active compounds.


Melanins from tetrahydroisoquinolines: spectroscopic characteristics, scavenging activity and redox transfer properties.

  • L Mosca‎ et al.
  • Free radical biology & medicine‎
  • 1998‎

Tetrahydroisoquinolines (TIQs) are endogenous compounds deriving from the nonenzymatic Pictet-Spengler condensation of catecholamines (CA) with aldehydes. TIQs have been extensively studied in the last years not only because they have been found in the brain of postmortem specimens of Parkinson's patients, but also because they are able to induce parkinsonian symptoms if injected in animals. In the present article we demonstrate that TIQs bearing a catecholic moiety (tetrahydropapaveroline, salsolinol, laudanosoline, and apomorphine) are easily oxidized in the presence of hydrogen peroxide by various enzymes--i.e., peroxidase (POD), lipoxygenase (LOX), and xanthine oxidase (XO)--into the corresponding TIQ-melanins. The kinetic parameters of the above-mentioned reactions and some spectroscopic characteristics of the synthetized pigments are reported. In particular, UV-VIS and EPR spectra emerge as very similar to those exhibited by dopa-melanin. Furthermore, TIQ-melanins appear to be similar to dopa-melanin regarding some specific physico-chemical properties: NADH-oxidizing properties, oxy-radicals scavenging activity, and ability to form soluble mixed polymers with melanins from opioid peptides.


Novel tetrahydroisoquinolines as DHFR and CDK2 inhibitors: synthesis, characterization, anticancer activity and antioxidant properties.

  • Eman M Sayed‎ et al.
  • BMC chemistry‎
  • 2024‎

In this study, we synthesized new 5,6,7,8-tetrahydroisoquinolines and 6,7,8,9-tetrahydrothieno[2,3-c]isoquinolines based on 4-(N,N-dimethylamino)phenyl moiety as expected anticancer and/or antioxidant agents. The structure of all synthesized compounds were confirmed by spectral date (FT-IR, 1H NMR, 13C NMR) and elemental analysis. We evaluated the anticancer activity of these compounds toward two cell lines: A459 cell line (lung cancer cells) and MCF7 cell line (breast cancer cells). All tested compounds showed moderate to strong anti-cancer activity towards the two cell lines. Compound 7e exhibited the most potent cytotoxic activity against A549 cell line (IC50: 0.155 µM) while compound 8d showed the most potent one against MCF7 cell line (IC50: 0.170 µM) in comparison with doxorubicin. In addition, we examined the effect of compounds 7e and 8d regarding the growth of A549 and MCF7 cell lines, employing flow cytometry and Annexin V-FITC apoptotic assay. Our results showed that compound 7e caused cell cycle arrest at the G2/M phase with a 79-fold increase in apoptosis of A459 cell line. Moreover, compound 8d caused cell cycle arrest at the S phase with a 69-fold increase in apoptosis of MCF7 cell line. Furthermore, we studied the activity of these compounds as enzyme inhibitors against several enzymes. Our findings by docking and experimental studies that compound 7e is a potent CDK2 inhibitor with IC50 of 0.149 µM, compared to the Roscovitine control drug with IC50 of 0.380 µM. We also found that compound 8d is a significant DHFR inhibitor with an IC50 of 0.199 µM, compared to Methotrexate control drug with IC50 of 0.131 µM. Evaluation of the antioxidant properties of ten compounds was also studied in comparison with Vitamin C. Compounds 1, 3, 6, 7c and 8e have higher antioxidant activity than Vitamin C which mean that these compounds can used as potent antioxidant drugs.


In Vitro Synergistic Activity of Combinations of Tetrahydroisoquinolines and Treatment Antibiotics against Multidrug-Resistant Salmonella.

  • Rita Ayuk Ndip‎ et al.
  • Advances in pharmacological and pharmaceutical sciences‎
  • 2023‎

The global burden of Salmonella infections remains high due to the emergence of multidrug resistance to all recommended treatment antibiotics. Tetrahydroisoquinolines (THIQs) have demonstrated promising activity against multidrug-resistant (MDR) Salmonella Typhi. Hence, their interaction with treatment antibiotics was investigated for possible synergy. Twenty combinations of five THIQs (1, 2, 3, 4, and 5) and four antibiotics were tested against each of 7 Salmonella isolates by the checkerboard method giving a total of 140 assays performed. Fractional inhibitory concentration indices (FICIs) were calculated, and isobolograms were plotted. In terms of FICI, synergism ranged from 0.078 to 0.5 and the highest magnitude (0.078) was recorded for chloramphenicol-THIQ 1 combination. In a total of 140 antibiotics-THIQs combination assays, 27 were synergistic (17%), 42 were additive (30%), 11 were antagonistic (7.8%), and 60 were indifferent (42%). The synergistic activity recorded for each antibiotic class in combination based on the total of 7 bacterial isolates tested ranged from 14.29% to 71.43%; the highest percentage was recorded for two combinations (chloramphenicol or sulphamethoxazole with THIQ 1). Ciprofloxacin-THIQ 1 combination showed additivity on all bacteria isolates tested (100%). Overall, THIQ 1 was the most synergistic and most additive in combination with three antibiotics (ampicillin, chloramphenicol, or sulphamethoxazole-trimethoprim). Some combinations of the THIQs and treatment antibiotics have shown high synergism which could potentially be efficacious against multidrug-resistant S. Typhi, hence this interaction should be further studied in vivo.


Tetrahydroisoquinolines affect the whole-cell phenotype of Mycobacterium tuberculosis by inhibiting the ATP-dependent MurE ligase.

  • Juan D Guzman‎ et al.
  • The Journal of antimicrobial chemotherapy‎
  • 2015‎

(S)-Leucoxine, isolated from the Colombian Lauraceae tree Rhodostemonodaphne crenaticupula Madriñan, was found to inhibit the growth of Mycobacterium tuberculosis H37Rv. A biomimetic approach for the chemical synthesis of a wide array of 1-substituted tetrahydroisoquinolines was undertaken with the aim of elucidating a common pharmacophore for these compounds with novel mode(s) of anti-TB action.


Discovery of novel N-sulfonamide-tetrahydroisoquinolines as potent retinoic acid receptor-related orphan receptor γt agonists.

  • Xiaojun Ma‎ et al.
  • European journal of medicinal chemistry‎
  • 2021‎

Cancer immunotherapy has become a research hotspot in recent years. A variety of targets were developed for small molecule immuno-oncology agents, including retinoic acid-related orphan receptor gamma t (RORγt), chemokine receptor, stimulator of interferon genes (Sting), indoleamine 2,3-dioxygenase (IDO), toll-like receptors (TLR), etc. Among them, the retinoic acid receptor-related orphan receptor γt (RORγt) has gradually attracted more attention in these years. In particular, LYC-55716 (cintirorgon), a small molecule RORγt agonist developed by Lycera, has entered the phase II clinical study. In this work, starting from compound 7, compound 28 was obtained after 4 rounds of compound design, synthesis and SAR studies, which had an EC50 of 0.021 ± 0.002 μM in dual Fluorescence Resonance Energy Transfer (dual-FRET) assay and an EC50 of 0.021 ± 0.002 μM in mouse Th17 cell differentiation assay. It indicated that compound 28 had excellent RORγt agonistic activity and was expected to be developed as a new type of small molecule drug for cancer immunotherapy. The molecular dynamic simulation revealed that the agonist 28 formed a strong HYF triplet intramolecular interaction to stabilize H12, which helped RORγt to form the protein-binding site and therefore made the receptor ready to recruit coactivator. When the inverse agonist s27 bound with RORγt, the steric hindrance between s27 and H479 caused the destruction of the HYF triplet, leading to the collapse of H12, thus the transcription function of RORγt was interrupted due to the failure of recruiting a coactivator molecule. The triplet HYF in RORγt and the rigidity of 28 and s27 were identified to be the structural determinants for the functional switch of RORγt.


Targeting Alzheimer's Disease: Evaluating the Efficacy of C-1 Functionalized N-Aryl-Tetrahydroisoquinolines as Cholinergic Enzyme Inhibitors and Promising Therapeutic Candidates.

  • Dunja Jovanović‎ et al.
  • International journal of molecular sciences‎
  • 2024‎

We have synthesized 22 C-1 functionalized-N-aryl-1,2,3,4-tetrahydroisoquinoline derivatives showing biological activities towards cholinergic enzymes. Synthesis was performed using visible-light-promoted photo-redox chemistry, starting from a common intermediate, and the application of this synthetic methodology drastically simplified synthetic routes and purification of desired compounds. All synthesized derivates were divided into four groups based on the substituents in the C-1 position, and their inhibition potencies towards two cholinergic enzymes, acetyl- and butyrylcholinesterase were evaluated. Most potent derivatives were selected, and kinetic analysis was further carried out to obtain insights into the mechanisms of inhibition of these two enzymes. Further validation of the mode of inhibition of cholinergic enzymes by the two most potent THIQ compounds, 3c and 3i, was performed using fluorescence-quenching titration studies. Molecular docking studies further confirmed the proposed mechanism of enzymes' inhibition. In silico predictions of physicochemical properties, pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of the selected most potent derivatives were performed using Swiss ADME tool. This was followed by UPLC-assisted log P determination and in vitro BBB permeability studies performed in order to assess the potential of the synthesized compounds to pass the BBB.


Nitrophenyl-Group-Containing Heterocycles. I. Synthesis, Characterization, Crystal Structure, Anticancer Activity, and Antioxidant Properties of Some New 5,6,7,8-Tetrahydroisoquinolines Bearing 3(4)-Nitrophenyl Group.

  • Eman M Sayed‎ et al.
  • ACS omega‎
  • 2022‎

Regioselective cyclocondensation of 2,4-diacetyl-5-hydroxy-5-methyl-3-(3-nitrophenyl/4-nitrophenyl)cyclohexanones 1a,b with cyanothioacetamide afforded the corresponding 7-acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8-(3- and -4-nitrophenyl)-5,6,7,8-tetrahydrosoquinoline-3(2H)-thiones 2a,b. Reaction of compounds 2a,b with ethyl iodide, 2-chloroacetamide (4a), or its N-aryl derivatives 4b-e in the presence of sodium acetate trihydrate gave 3-ethylthio-5,6,7,8-tetrahydroisoquinoline 3 and (5,6,7,8-tetrahydroisoquinolin-3-ylthio)acetamides 5a-i, respectively. Cyclization of compounds 5b-d,f,g into their isomeric 1-amino-6,7,8,9-tetrahydrothieno[2,3-c]isoquinoline-2-carboxamides 6b-d,f,g was achieved by heating in ethanol containing a catalytic amount of sodium carbonate. Structures of all synthesized compounds were characterized on the basis of their elemental analyses and spectroscopic data. The crystal structure of 5,6,7,8-tetrahydroisoquinoline 5d was determined by X-ray diffraction analysis. In addition, the biological evaluation of some synthesized compounds as anticancer agents was performed, and only six compounds showed moderate to strong activity against PACA2 (pancreatic cancer cell line) and A549 (lung carcinoma cell line). Moreover, the antioxidant properties of most synthesized compounds were examined. The results revealed high antioxidant activity for the most tested compounds.


N-Substituted Auxiliaries for Aerobic Dehydrogenation of Tetrahydro-isoquinoline: A Theory-Guided Photo-Catalytic Design.

  • Savithra Jayaraj‎ et al.
  • Scientific reports‎
  • 2019‎

Visible-light mediated aerobic dehydrogenation of N-heterocyclic compounds is a reaction with enormous potential for application. Herein, we report the first complete aerobic dehydrogenation pathway to large-scale production of isoquinolines. The discovery of this visible light photoredox reaction was enabled through the combination of mathematical simulations and real-time quantitative mass spectrometry screening. The theoretical calculations showed that hyper-conjugation, the main underlying factor hindering the aerobic oxidation of tetrahydroisoquinolines, is relieved both by π- and σ-donating substituents. This mechanistic insight provided a novel photocatalytic route based on N-substituted auxiliaries that facilitated the conversion of tetrahydroisoquinolines into the corresponding isoquinolines in just three simple steps (yield 71.7% in bulk-solution phase), using unmodified Ru(bpy)3Cl2 photocatalyst, sun energy, atmospheric O2, and at ambient temperature.


Evaluation of the Local Anesthetic Activity, Acute Toxicity, and Structure-Toxicity Relationship in Series of Synthesized 1-Aryltetrahydroisoquinoline Alkaloid Derivatives In Vivo and In Silico.

  • Azizbek A Azamatov‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Isoquinoline alkaloids constitute one of the most common classes of alkaloids that have shown a pronounced role in curing various diseases. Finding ways to reduce the toxicity of these molecules and to increase their therapeutic margin is an urgent matter. Here, a one-step method for the synthesis of a series of 1-aryl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolines was performed in 85-98% yield by the Pictet-Spengler reaction. This was accomplished using the reaction between 3,4-dimethoxyphenylethylamine and substituted benzaldehydes boiling in trifluoroacetic acid. Furthermore, 1-(3'-amino-, 4'-aminophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolines were obtained in 94% and 97% yield by reduction in 1-(3'-nitro-, 4'-nitrophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolines with SnCl2 × 2H2O. The structures of the substances obtained were confirmed by infrared (IR) and nuclear magnetic resonance (1H and 13C NMR) spectra. ADMET/TOPKAT in silico study concluded that the synthesized compounds exhibited acceptable pharmacodynamic and pharmacokinetic properties without carcinogenic or mutagenic potential but with variable hepatotoxicity. The acute toxicity and structure-toxicity relationship (STR) in the series of 20 derivatives of 1-aryl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolines (3a-r, 4a, b) was studied via determination of acute toxicity and resorptive action in white mice employing intragastric step-by-step administration. The first compound, 1-phenyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride (3a), showed the highest toxicity with LD50 of 280 mg/kg in contrast to 1-(3'-bromo -4'-hydroxyphenyl)-6,7-methylenedioxy-1,2,3,4-tetrahydroisoquinoline hydrochloride (3e) which proved to be the safest of the compounds studied. Its toxicity was 13.75 times lower than that of the parent compound 3a. All compounds investigated showed high local anesthetic activity on rabbit eyes in the concentrations studied. Only 3r, 3n, and 4a caused eye irritation and redness. All investigated derivatives (except 4b) in 1% concentration were more active than lidocaine, providing longer duration of complete anesthesia. Therefore, based on the obtained results of in silico tests, local anesthesia, and acute toxicity, a conclusion can be drawn that the experimental compounds need further extensive future investigations and possible modifications so that they can act as promising drug candidates.


Discovery and Optimization of Highly Potent and Selective AT2R Antagonists to Relieve Peripheral Neuropathic Pain.

  • Yanghui Guo‎ et al.
  • ACS omega‎
  • 2021‎

The angiotensin II type 2 receptor (AT2R) has attracted much attention as a potential target for the relief of neuropathic pain, which represents an area of unmet clinical need. A series of 1,2,3,4-tetrahydroisoquinolines with a benzoxazole side-chain were discovered as potent AT2R antagonists. Rational optimization resulted in compound 15, which demonstrated both excellent antagonistic activity against AT2R in vitro and analgesic efficacy in a rat chronic constriction injury model. Its favorable physicochemical properties and oral bioavailability make it a promising therapeutic candidate for neuropathic pain.


Accessing simply-substituted 4-hydroxytetrahydroisoquinolines via Pomeranz-Fritsch-Bobbitt reaction with non-activated and moderately-activated systems.

  • Marco Mottinelli‎ et al.
  • Beilstein journal of organic chemistry‎
  • 2017‎

Background: 1,2,3,4-Tetrahydroisoquinolines (THIQs) are common motifs in alkaloids and in medicinal chemistry. Synthetic access to THIQs via the Pomeranz-Fritsch-Bobbit (PFB) methodology using mineral acids for deactivated, electron-poor aromatic systems, is scarcely represented in the literature. Here, the factors controlling the regiochemical outcome of cyclization are evaluated. Results: A double reductive alkylation was telescoped into a one-pot reaction delivering good to excellent yields of desired aminoacetals for cyclization. Cyclization of activated systems proceeded smoothly under standard PFB conditions, but for non-activated systems the use of HClO4 alone was effective. When cyclization was possible in both para- and ortho-positions to the substituent, 7-substituted derivatives were formed with significant amounts of 5-substituted byproduct. The formation of the 4-hydroxy-THIQs vs the 4-methoxy-THIQ products could be controlled through modification of the reaction concentration. In addition, while a highly-activated system exclusively cyclized to the indole, this seems generally highly disfavored. When competition between 6- and 7-ring formation was investigated in non-activated systems, 5,7,8,13-tetrahydro-6,13-methanodibenzo[c,f]azonine was exclusively obtained. Furthermore, selective ring closure in the para-position could be achieved under standard PFB conditions, while a double ring closure could be obtained utilizing HClO4. Conclusion: Reactivity differences in aminoacetal precursors can be employed to control cyclization using the PFB methodology. It is now possible to select confidently the right conditions for the synthesis of N-aryl-4-hydroxy-1,2,3,4-tetrahydroisoquinolines.


Synthesis and antimicrobial activity of chiral quaternary N-spiro ammonium bromides with 3',4'-dihydro-1'H-spiro[isoindoline-2,2'-isoquinoline] skeleton.

  • Krzysztof Bielawski‎ et al.
  • Drug design, development and therapy‎
  • 2017‎

A new class of highly functionalized tetrahydroisoquinolines with a quaternary carbon stereocenter was synthesized starting from an easily accessible L-tartaric acid. Nine strains of bacteria (Staphylococcus aureus, Streptococcus pyogenes, Streptococcus mutans, Streptococcus salivarius, Bacillus subtilis, Enterococcus faecalis, Moraxella catarrhalis, Escherichia coli, Campylobacter jejuni) were used for the determination of minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of synthesized compounds. The influence of analyzed compounds on viability and induction of apoptosis in human skin fibroblasts was determined. A majority of the synthesized compounds showed the strongest antibacterial properties toward some gram-negative bacteria (M. catarrhalis and C. jejuni) with a high level of selectivity. High antibacterial compounds have bactericidal activity ratio MBC/MIC ≤4. Our studies also proved that the novel compounds do not possess cytotoxic and proapoptotic potential in normal cells.


3',4'-Dihydro-2'H-spiro[indoline-3,1'-isoquinolin]-2-ones as potential anti-cancer agents: synthesis and preliminary screening.

  • Maloba M M Lobe‎ et al.
  • Royal Society open science‎
  • 2020‎

Both tetrahydroisoquinolines (THIQs) and oxindoles (OXs) display a broad range of biological activities including anti-cancer activity, and are therefore recognized as two privileged scaffolds in drug discovery. In the present study, 24 3',4'-dihydro-2'H-spiro[indoline-3,1'-isoquinolin]-2-ones, designed as molecular hybrids of THIQ and OX, were synthesized and screened in vitro against 59 cell lines in the NCI-60 screen. Twenty compounds displayed weak to moderate inhibition of cell proliferation; among them, three compounds displayed at least 50% inhibition of cell proliferation. The compounds appeared to target primarily renal cell cancer lines; however, leukaemia, melanoma, non-small cell lung cancer, prostate, ovarian and even breast cancer cell lines were also affected. Therefore, this class of spirooxindoles may provide useful leads in the search for new anti-cancer agents.


Design, synthesis and molecular docking studies of novel N-benzenesulfonyl-1,2,3,4-tetrahydroisoquinoline-based triazoles with potential anticancer activity.

  • Ratchanok Pingaew‎ et al.
  • European journal of medicinal chemistry‎
  • 2014‎

A novel series of N-benzenesulfonyl-1,2,3,4-tetrahydroisoquinolines (14-33) containing triazole moiety were designed and synthesized through rational cycloadditions using the modified Pictet-Spengler reaction and the Click chemistry. Antiproliferative activity against four cancer cell lines (e.g., HuCCA-1, HepG2, A549 and MOLT-3) revealed that many substituted triazole analogs of benzoates (20, 29) and benzaldehydes (30, 32) exhibited anticancer activity against all of the tested cancer cell lines in which the ester analog 20 was shown to be the most potent compound against HuCCA-1 (IC50 = 0.63 μM) and A549 (IC50 = 0.57 μM) cell lines. Triazoles bearing phenyl (15, 24), tolyl (26, 27), acetophenone (19), benzoate (20, 29), benzaldehyde (21, 30) and naphthalenyl (25) substituents showed stronger anticancer activity against HepG2 cells than that of the etoposide. Interestingly, the p-tolyl analog (27) displayed the most potent inhibitory activity (IC50 = 0.56 μM) against HepG2 cells without affecting normal cells. Of the investigated tetrahydroisoquinoline-triazoles, the promising compounds 20 and 27 were selected for molecular docking against AKR1C3, which was identified to be a plausible target site.


Pharmacokinetic Study and Metabolite Identification of 1-(3'-bromophenyl)-heliamine in Rats.

  • Ruqi Xi‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2022‎

Tetrahydroisoquinolines have been widely investigated for the treatment of arrhythmias. 1-(3'-bromophenyl)-heliamine (BH), an anti-arrhythmias agent, is a synthetic tetrahydroisoquinoline. This study focuses on the pharmacokinetic characterization of BH, as well as the identification of its metabolites, both in vitro and in vivo. A UHPLC-MS/MS method was developed and validated to quantify BH in rat plasma with a linear range of 1-1000 ng/mL. The validated method was applied to a pharmacokinetic study in rats. The maximum concentration Cmax (568.65 ± 122.14 ng/mL) reached 1.00 ± 0.45 h after oral administration. The main metabolic pathways appeared to be phase-I of demethylation, dehydrogenation, and epoxidation, and phase II of glucuronide and sulfate metabolites. Finally, a total of 18 metabolites were characterized, including 10 phase I metabolites and 8 phase II metabolites. Through the above studies, we have gained a better understanding of the absorption and metabolism of BH in vitro and in vivo, which will provide us with guidance for future in-depth studies on this compound.


Temperature-induced melting of double-stranded DNA in the absence and presence of covalently bonded antitumour drugs: insight from molecular dynamics simulations.

  • Juan A Bueren-Calabuig‎ et al.
  • Nucleic acids research‎
  • 2011‎

The difference in melting temperature of a double-stranded (ds) DNA molecule in the absence and presence of bound ligands can provide experimental information about the stabilization brought about by ligand binding. By simulating the dynamic behaviour of a duplex of sequence 5'-d(TAATAACGGATTATT)·5'-d(AATAATCCGTTATTA) in 0.1 M NaCl aqueous solution at 400 K, we have characterized in atomic detail its complete thermal denaturation profile in <200 ns. A striking asymmetry was observed on both sides of the central CGG triplet and the strand separation process was shown to be strongly affected by bonding in the minor groove of the prototypical interstrand crosslinker mitomycin C or the monofunctional tetrahydroisoquinolines trabectedin (Yondelis), Zalypsis and PM01183. Progressive helix unzipping was clearly interspersed with some reannealing events, which were most noticeable in the oligonucleotides containing the monoadducts, which maintained an average of 6 bp in the central region at the end of the simulations. These significant differences attest to the demonstrated ability of these drugs to stabilize dsDNA, stall replication and transcription forks, and recruit DNA repair proteins. This stabilization, quantified here in terms of undisrupted base pairs, supports the view that these monoadducts can functionally mimic a DNA interstrand crosslink.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: