Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 783 papers

Therapeutic Applications of Terpenes on Inflammatory Diseases.

  • María Luisa Del Prado-Audelo‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

In the last decades, the search for natural products with biological applications as alternative treatments for several inflammatory diseases has increased. In this respect, terpenes are a family of organic compounds obtained mainly from plants and trees, such as tea, cannabis, thyme, and citrus fruits like lemon or mandarin. These molecules present attractive biological properties such as analgesic and anticonvulsant activities. Furthermore, several studies have demonstrated that certain terpenes could reduce inflammation symptoms by decreasing the release of pro-inflammatory cytokines for example, the nuclear transcription factor-kappa B, interleukin 1, and the tumor necrosis factor-alpha. Thus, due to various anti-inflammatory drugs provoking side effects, the search and analysis of novel therapeutics treatments are attractive. In this review, the analysis of terpenes' chemical structure and their mechanisms in anti-inflammatory functions are addressed. Additionally, we present a general analysis of recent investigations about their applications as an alternative treatment for inflammatory diseases. Furthermore, we focus on terpenes-based nanoformulations and employed dosages to offer a global perspective of the state-of-the-art.


Anthelmintic Activity of Yeast Particle-Encapsulated Terpenes.

  • Zeynep Mirza‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Soil-transmitted nematodes (STN) infect 1-2 billion of the poorest people worldwide. Only benzimidazoles are currently used in mass drug administration, with many instances of reduced activity. Terpenes are a class of compounds with anthelmintic activity. Thymol, a natural monoterpene phenol, was used to help eradicate hookworms in the U.S. South circa 1910. However, the use of terpenes as anthelmintics was discontinued because of adverse side effects associated with high doses and premature stomach absorption. Furthermore, the dose-response activity of specific terpenes against STNs has been understudied. Here we used hollow, porous yeast particles (YPs) to efficiently encapsulate (>95%) high levels of terpenes (52% w/w) and evaluated their anthelmintic activity on hookworms (Ancylostoma ceylanicum), a rodent parasite (Nippostrongylus brasiliensis), and whipworm (Trichuris muris). We identified YP-terpenes that were effective against all three parasites. Further, YP-terpenes overcame albendazole-resistant Caenorhabditis elegans. These results demonstrate that terpenes are broad-acting anthelmintics. Terpenes are predicted to be extremely difficult for parasites to resist, and YP encapsulation provides water-suspendable terpene materials without surfactants and sustained terpene release that could lead to the development of formulations for oral delivery that overcome fast absorption in the stomach, thus reducing dosage and toxic side effects.


New terpenes from the Egyptian soft coral Sarcophyton ehrenbergi.

  • Ahmed Elkhateeb‎ et al.
  • Marine drugs‎
  • 2014‎

Chemical investigations of the Egyptian soft coral Sarcophyton ehrenbergi have led to the isolation of compounds 1-3 as well as the previously reported marine cembranoid diterpene sarcophine (4). Structures were elucidated by comprehensive NMR and HRMS experimentation. Isolated compounds were in vitro assayed for cytotoxic activity against human hepatocarcinoma (HepG2) and breast adenocarcinoma (MCF-7) cell lines.


Five New Terpenes with Cytotoxic Activity from Pestalotiopsis sp.

  • Dan Zhao‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Five new compounds called Pestalotis A-E (1-5), comprising three monoterpene-lactone compounds (1-3), one tetrahydrobenzofuran derivative (4), and one sesquiterpene (5), were isolated from the EtOAc extract of Pestalotiopsis sp. The structures of the new compounds were elucidated by analysis of their NMR, HRMS, and ECD spectra, and the absolute configurations were established through the comparison of experimental and calculated ECD spectra. All compounds were tested for antitumor activity against SW-480, LoVo, HuH-7, and MCF-7. The results showed that compounds 2 and 4 exhibited potent antitumor activity against SW-480, LoVo, and HuH-7 cell lines. Furthermore, compound 4 was assessed against HuH-7, and the results indicated that the rate of apoptosis was dose-dependent.


Two New Terpenes Isolated from Dictyostelium Cellular Slime Molds.

  • Hitomi Sasaki‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

We report a protoilludane-type sesquiterpene, mucoroidiol, and a geranylated bicyclogermacranol, firmibasiol, isolated from Dictyostelium cellular slime molds. The methanol extracts of the fruiting bodies of cellular slime molds were separated by chromatographic methods to give these compounds. Their structures have been established by several spectral means. Mucoroidiol and firmibasiol are the first examples of more modified and oxidized terpenoids isolated from cellular slime molds. Mucoroidiol showed moderate osteoclast-differentiation inhibitory activity despite demonstrating very weak cell-proliferation inhibitory activity. Therefore, cellular slime molds produce considerably diverse secondary metabolites, and they are promising sources of new natural product chemistry.


Cannabis sativa terpenes are cannabimimetic and selectively enhance cannabinoid activity.

  • Justin E LaVigne‎ et al.
  • Scientific reports‎
  • 2021‎

Limited evidence has suggested that terpenes found in Cannabis sativa are analgesic, and could produce an "entourage effect" whereby they modulate cannabinoids to result in improved outcomes. However this hypothesis is controversial, with limited evidence. We thus investigated Cannabis sativa terpenes alone and with the cannabinoid agonist WIN55,212 using in vitro and in vivo approaches. We found that the terpenes α-humulene, geraniol, linalool, and β-pinene produced cannabinoid tetrad behaviors in mice, suggesting cannabimimetic activity. Some behaviors could be blocked by cannabinoid or adenosine receptor antagonists, suggesting a mixed mechanism of action. These behavioral effects were selectively additive with WIN55,212, suggesting terpenes can boost cannabinoid activity. In vitro experiments showed that all terpenes activated the CB1R, while some activated other targets. Our findings suggest that these Cannabis terpenes are multifunctional cannabimimetic ligands that provide conceptual support for the entourage effect hypothesis and could be used to enhance the therapeutic properties of cannabinoids.


Tropane alkaloids and terpenes synthase genes of Datura stramonium (Solanaceae).

  • Sabina Velázquez-Márquez‎ et al.
  • PeerJ‎
  • 2021‎

Plants have evolved physical-chemical defense to prevent/diminish damage by their enemies. Chemical defense involves the synthesis' pathways of specialized toxic, repellent, or anti-nutritive metabolites to herbivores. Molecular evolutionary studies have revealed the origin of new genes, acquisition and functional diversification along time in different plant lineages.


Terpenes modulate bacterial and fungal growth and sorghum rhizobiome communities.

  • Ming-Yi Chou‎ et al.
  • Microbiology spectrum‎
  • 2023‎

Terpenes are among the oldest and largest class of plant-specialized bioproducts that are known to affect plant development, adaptation, and biological interactions. While their biosynthesis, evolution, and function in aboveground interactions with insects and individual microbial species are well studied, how different terpenes impact plant microbiomes belowground is much less understood. Here we designed an experiment to assess how belowground exogenous applications of monoterpenes (1,8-cineole and linalool) and a sesquiterpene (nerolidol) delivered through an artificial root system impacted its belowground bacterial and fungal microbiome. We found that the terpene applications had significant and variable impacts on bacterial and fungal communities, depending on terpene class and concentration; however, these impacts were localized to the artificial root system and the fungal rhizosphere. We complemented this experiment with pure culture bioassays on responsive bacteria and fungi isolated from the sorghum rhizobiome. Overall, higher concentrations (200 µM) of nerolidol were inhibitory to Ferrovibrium and tested Firmicutes. While fungal isolates of Penicillium and Periconia were also more inhibited by higher concentrations (200 µM) of nerolidol, Clonostachys was enhanced at this higher level and together with Humicola was inhibited by the lower concentration tested (100 µM). On the other hand, 1,8-cineole had an inhibitory effect on Orbilia at both tested concentrations but had a promotive effect at 100 µM on Penicillium and Periconia. Similarly, linalool at 100 µM had significant growth promotion in Mortierella, but an inhibitory effect for Orbilia. Together, these results highlight the variable direct effects of terpenes on single microbial isolates and demonstrate the complexity of microbe-terpene interactions in the rhizobiome. IMPORTANCE Terpenes represent one of the largest and oldest classes of plant-specialized metabolism, but their role in the belowground microbiome is poorly understood. Here, we used a "rhizobox" mesocosm experimental set-up to supply different concentrations and classes of terpenes into the soil compartment with growing sorghum for 1 month to assess how these terpenes affect sorghum bacterial and fungal rhizobiome communities. Changes in bacterial and fungal communities between treatments belowground were characterized, followed by bioassays screening on bacterial and fungal isolates from the sorghum rhizosphere against terpenes to validate direct microbial responses. We found that microbial growth stimulatory and inhibitory effects were localized, terpene specific, dose dependent, and transient in time. This work paves the way for engineering terpene metabolisms in plant microbiomes for improved sustainable agriculture and bioenergy crop production.


Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils.

  • Aline Cristina Guimarães‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Background: The antimicrobial activity of essential oils has been reported in hundreds of studies, however, the great majority of these studies attribute the activity to the most prevalent compounds without analyzing them independently. Therefore, the aim was to investigate the antibacterial activity of 33 free terpenes commonly found in essential oils and evaluate the cellular ultrastructure to verify possible damage to the cellular membrane. Methods: Screening was performed to select substances with possible antimicrobial activity, then the minimal inhibitory concentrations, bactericidal activity and 24-h time-kill curve studies were evaluated by standard protocols. In addition, the ultrastructure of control and death bacteria were evaluated by scanning electron microscopy. Results: Only 16 of the 33 compounds had antimicrobial activity at the initial screening. Eugenol exhibited rapid bactericidal action against Salmonella enterica serovar Typhimurium (2 h). Terpineol showed excellent bactericidal activity against S. aureus strains. Carveol, citronellol and geraniol presented a rapid bactericidal effect against E. coli. Conclusions: The higher antimicrobial activity was related to the presence of hydroxyl groups (phenolic and alcohol compounds), whereas hydrocarbons resulted in less activity. The first group, such as carvacrol, l-carveol, eugenol, trans-geraniol, and thymol, showed higher activity when compared to sulfanilamide. Images obtained by scanning electron microscopy indicate that the mechanism causing the cell death of the evaluated bacteria is based on the loss of cellular membrane integrity of function. The present study brings detailed knowledge about the antimicrobial activity of the individual compounds present in essential oils, that can provide a greater understanding for the future researches.


Discovery of Terpenes as Novel HCV NS5B Polymerase Inhibitors via Molecular Docking.

  • Tomasz M Karpiński‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2023‎

Hepatitis C virus (HCV) is a dangerous virus that is responsible for a large number of infections and deaths worldwide. In the treatment of HCV, it is important that the drugs are effective and do not have additional hepatotoxic effects. The aim of this study was to test the in silico activity of 1893 terpenes against the HCV NS5B polymerase (PDB-ID: 3FQK). Two drugs, sofosbuvir and dasabuvir, were used as controls. The GOLD software (CCDC) and InstaDock were used for docking. By using the results obtained from PLP.Fitness (GOLD), pKi, and binding free energy (InstaDock), nine terpenes were finally selected based on their scores. The drug-likeness properties were calculated using Lipinski's rule of five. The ADMET values were studied using SwissADME and pkCSM servers. Ultimately, it was shown that nine terpenes have better docking results than sofosbuvir and dasabuvir. These were gniditrin, mulberrofuran G, cochlearine A, ingenol dibenzoate, mulberrofuran G, isogemichalcone C, pawhuskin B, 3-cinnamyl-4-oxoretinoic acid, DTXSID501019279, and mezerein. Each docked complex was submitted to 150 ns-long molecular dynamics simulations to ascertain the binding stability. The results show that mulberrofuran G, cochlearine A, and both stereoisomers of pawhuskin B form very stable interactions with the active site region where the reaction product should form and are, therefore, good candidates for use as effective competitive inhibitors. The other compounds identified in the docking screen either afford extremely weak (or even hardly any) binding (such as ingenol dibenzoate, gniditrin, and mezerein) or must first undergo preliminary movements in the active site before attaining their stable binding conformations, in a process which may take from 60 to 80 ns (for DTXSID501019279, 3-cinnamyl-4-oxoretinoic acid or isogemichalcone C).


Promising Terpenes as Natural Antagonists of Cancer: An In-Silico Approach.

  • Ziyad Tariq Muhseen‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Overexpression of murine double minute 2 (MDM2) results in the inactivation of p53 and causes cancer which is a leading cause of death in recent era. In recent decades, much attention has been paid to discover potential inhibitors against MDM2 in order to cure cancer. Outcomes from studies proposes that the MDM2 is a hot target to screen potent antagonists. Thus, this study aims at discovering natural compounds using several computational approaches to inhibit the MDM2 and to eliminate p53-MDM2 interaction, which would result in the reactivation of p53 activity. A library of 500 terpenes was prepared and several virtual screening approaches were employed to find out the best hits which could serve as p53-MDM2 antagonists. On the basis of the designed protocol, three terpenes were selected. In the present study, for the stability and validation of selected three protein-ligand complexes 20 ns molecular dynamics simulations and principal component analyses (PCA) were performed. Results found that the selected terpenes hits (3-trans-p-coumaroyl maslinic acid, Silvestrol and Betulonic acid) are potential inhibitors of p53-MDM2 interaction and could serve as potent antagonists.


One-Step Purification of Microbially Produced Hydrophobic Terpenes via Process Chromatography.

  • Ljubomir Grozdev‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2019‎

Novel and existing terpenes are already being produced by genetically modified microorganisms, leading to new process challenges for the isolation and purification of these terpenes. Here, eight different chromatographic resins were characterized for the packed bed adsorption of the model terpene β-caryophyllene, showing their applicability on an Escherichia coli fermentation mixture. The polystyrenic Rensa® RP (Ø 50 μm) shows the highest affinity, with a maximum capacity of >100 g L-1 and the best efficiency, with a height equivalent of a theoretical plate (HETP) of 0.022 cm. With this material, an optimized adsorption-based purification of β-caryophyllene from a fermentation mixture was developed, with the green solvent ethanol for desorption. A final yield of >80% and a purity of >99% were reached after only one process step with a total productivity of 0.83 g h-1 L-1. The product solution was loaded with a volume ratio (feed to column) of >500 and the adapted gradient elution yielded a 40 times higher concentration of β-caryophyllene. The adsorption-based chromatography represents therefore a serious alternative to the liquid-liquid extraction and achieves desired purities without the utilization of hazardous solvents.


Terpenes extracted from marine sponges with antioxidant activity: a systematic review.

  • Cintia Cristina Santi Martignago‎ et al.
  • Natural products and bioprospecting‎
  • 2023‎

Marine biodiversity has emerged as a very promising resource of bioactive compounds and secondary metabolites from different sea organisms. The sponge's secondary metabolites demonstrated various bioactivities and potential pharmacological properties. This systematic review of the literature focuses on the advances achieved in the antioxidant potential of marine sponges in vitro. The review was performed in accordance with PRISMA guidelines. The main inclusion criterion for analysis was articles with identification of compounds from terpene classes that demonstrate antioxidant activity in vitro. Searching in three different databases, two hundred articles were selected. After screening abstracts, titles and evaluating for eligibility of manuscripts 14 articles were included. The most performed analyzes to detect antioxidant activity were scavenging activity 2,2-diphenyl-1-picrylhydrazyl (DPPH) and measurement of intracellular reactive oxygen species (ROS). It was possible to identify 17 compounds of the terpene class with pronounced antioxidant activity in vitro. Scientific evidence of the studies included in this review was accessed by the GRADE analysis. Terpenes play an important ecological role, moreover these molecules have a pharmaceutical and industrial application.


In Vitro Efficacy of Terpenes from Essential Oils against Sarcoptes scabiei.

  • Meilin Li‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

The mite Sarcoptes scabiei is responsible for the emerging or re-emerging skin disease called scabies in humans and sarcoptic mange in animals. Essential oils represent an appealing alternative strategy for the control of Sarcoptes infections, but the commercial development of essential oils may be hampered by their inconsistency in efficacy due to their varied chemical compositions. In order to address this issue, we assessed the efficacy of six components (carvacrol, eugenol, geraniol, citral, terpinen-4-ol, and linalool) against S. scabiei. At a concentration of 0.5%, carvacrol presented the best miticidal efficacy, with a median lethal time (LT50) value of 6.7 min, followed by eugenol (56.3 min), geraniol (1.8 h), citral (6.1 h), terpinen-4-ol (22.3 h), and linalool (39.9 h). The LC50 values at 30 min for carvacrol, eugenol, and geraniol were 0.24, 0.79, and 0.91%, respectively. In conclusion, carvacrol, eugenol, and geraniol represent potential complementary or alternative agents for S. scabiei infections in humans or animals. Our study provides a scientific basis for the development of scabicidal products based on essential oils.


Terpenes: Effect of lipophilicity in enhancing transdermal delivery of alfuzosin hydrochloride.

  • D Prasanthi‎ et al.
  • Journal of advanced pharmaceutical technology & research‎
  • 2012‎

Transdermal drug delivery has attracted much attention as an alternative to intravenous and oral methods of delivery. But the main barrier is stratum corneum. Terpenes classes of chemical enhancers are used in transdermal formulations for facilitating penetration of drugs. The aim of the study is to evaluate terpenes as skin penetration enhancers and correlate its relationship with permeation and lipophilicity. In this study, alfuzosin hydrochloride (AH) hydrogels were prepared with terpenes using Taguchi orthogonal array experimental design. The formulations contained one of eight terpenes, based on their lipophilicity (log P 2.13-5.36). The percutaneous permeation was studied in rat skin using diffusion cell technique. Flux, cumulative amount, lag time and skin content of AH were measured over 24 hours and compared with control gels. Nerolidol with highest lipophilicity (log P 5.36 ± 0.38) showed highest cumulative amount (Q(24)) of 647.29 ± 18.76 μg/cm(2) and fluxrateof 28.16 ± 0.64 μg/cm(2)/hour. It showed decreased lag time of 0.76 ± 0.15 hours. Fenchone (2.5%) (log P 2.13 ± 0.30) produced the longest lag time 4.8 ± 0.20 hours. The rank order of enhancement effect was shown as nerolidol > farnesol > limonene > linalool > geraniol > carvone > fenchone > menthol. Lowest skin content was seen with carvone. Increase in lipophilicity of terpenes showed increase in flux, cumulative amount (Q(24)), and enhancement ratio which was significant with P < 0.000. But lag time was decreased and no correlation was found between lipophilicity and skin content. Histological studies showed changes in dermis which can be attributed to disruption of lipid packing of stratum corneum due to effect of nerolidol within lipid lamellae. It was found that small alcoholic terpenes with high degree of unsaturation enhance permeation of hydrophilic drugs, liquid terpenes enhance better than solid terpenes and terpenes with high lipophilicity are good penetration enhancers.


Efficient Capture of Cannabis Terpenes in Olive Oil during Microwave-Assisted Cannabinoid Decarboxylation.

  • Luisa Boffa‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2024‎

The development of selective extraction protocols for Cannabis-inflorescence constituents is still a significant challenge. The characteristic Cannabis fragrance can be mainly ascribed to monoterpenes, sesquiterpenes and oxygenated terpenoids. This work investigates the entrapment of Cannabis terpenes in olive oil from inflorescences via stripping under mild vacuum during the rapid microwave-assisted decarboxylation of cannabinoids (MW, 120 °C, 30 min) and after subsequent extraction of cannabinoids (60 and 100 °C). The profiles of the volatiles collected in the oil samples before and after the extraction step were evaluated using static headspace solid-phase microextraction (HS-SPME), followed by gas chromatography coupled to mass spectrometry (GC-MS). Between the three fractions obtained, the first shows the highest volatile content (~37,400 mg/kg oil), with α-pinene, β-pinene, β-myrcene, limonene and trans-β-caryophyllene as the main components. The MW-assisted extraction at 60 and 100 °C of inflorescences using the collected oil fractions allowed an increase of 70% and 86% of total terpene content, respectively. Considering the initial terpene amount of 91,324.7 ± 2774.4 mg/kg dry inflorescences, the percentage of recovery after decarboxylation was close to 58% (mainly monoterpenes), while it reached nearly 100% (including sesquiterpenes) after extraction. The selective and efficient extraction of volatile compounds, while avoiding direct contact between the matrix and extraction solvents, paves the way for specific applications in various aromatic plants. In this context, aromatized extracts can be employed to create innovative Cannabis-based products within the hemp processing industry, as well as in perfumery, cosmetics, dietary supplements, food, and the pharmaceutical industry.


Synthesis and Pharmacological Properties of Novel Esters Based on Monocyclic Terpenes and GABA.

  • Mariia Nesterkina‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2016‎

Novel esters of γ-aminobutyric acid (GABA) with monocyclic terpenes were synthesized via Steglich esterification and characterized by ¹H-NMR, IR and mass spectral studies. Their anticonvulsant, analgesic and anti-inflammatory activities were evaluated by a PTZ-induced convulsion model, AITC-induced hyperalgesia and AITC-induced paw edema, respectively. All studied esters, as well as their parent terpenes, were found to produce antinociceptive effects in the AITC-induced model and attenuate acute pain more than the reference drug benzocaine after their topical application. GABA esters of l-menthol and thymol were also shown to exceed the reference drug ibuprofen in their ability to decrease the inflammatory state induced by intraplantar injection of the TRPA1 activator AITC. The present findings indicate that GABA esters of carvacrol and guaiacol are not a classical prodrug and possess their own pharmacological activity. Prolonged antiseizure action of the ester based on the amino acid and guaiacol (200 mg/kg) was revealed at 24 h after oral administration. Furthermore, orally co-administered gidazepam (1 mg/kg) and GABA esters of l-menthol, thymol and carvacrol produce synergistic seizure prevention effects.


Antibacterial Properties of Polyurethane Foams Additivated with Terpenes from a Bio-Based Polyol.

  • Simona Tomaselli‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Water-blown polyurethane (PU) foams were prepared by bio-polyols from epoxidized linseed oils and caprylic acid in combination with toluene diisocianate (TDI). A series of terpenes (menthol, geraniol, terpineol, and borneol), natural compounds with recognized antibacterial properties, were included in the starting formulations to confer bactericidal properties to the final material. Foams additivated with Irgasan®, a broad-spectrum antimicrobial molecule, were prepared as reference. The bactericidal activity of foams against planktonic and sessile E. coli (ATCC 11229) and S. aureus (ATCC 6538) was evaluated following a modified AATCC 100-2012 static method. Menthol-additivated foams showed broad-spectrum antibacterial activity, reducing Gram+ and Gram- viability by more than 60%. Foams prepared with borneol and terpineol showed selective antibacterial activity against E. coli and S. aureus, respectively. NMR analysis of foams leaking in water supported a bactericidal mechanism mediated by contact killing rather than molecule release. The results represent the proof of concept of the possibility to develop bio-based PU foams with intrinsic bactericidal properties through a simple and innovative synthetic approach.


Olfactory Impact of Terpene Alcohol on Terpenes Aroma Expression in Chrysanthemum Essential Oils.

  • Yunwei Niu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

The key point of our work was evaluating the impact of terpene alcohols on the aroma expression of terpenes recombination in Chrysanthemum essential oils. Using pure commercial products, various aromatic recombinations were prepared, consisting of terpenes recombination and six terpene alcohols, all the concentrations found in Chrysanthemum essential oils. There were five groups of terpene alcohols mixtures performed very interesting with the addition or omission tests. The "olfactory threshold" of the terpenes recombination had a notable decrease when adding isoborneol, d-Fenchyl alcohol respectively through the Feller's additive model analysis. Furthermore, the descriptive test indicated that the addition of terpene alcohols mixture had the different effect on fruity, floral, woody, green, and herbal aroma intensity. Specifically, when isoborneol was added to the terpenes recombination in squalane solution, it was revealed that isoborneol had a synergy impact on herbal and green notes of the terpenes recombination and masked the fruity note.


Interaction of Bioactive Mono-Terpenes with Egg Yolk on Ice Cream Physicochemical Properties.

  • Mostafa Gouda‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2021‎

Using natural multi-function phytochemicals could be one of the best solutions for clean-label production. In this study, dairy ice creams were prepared containing 14% egg yolk and 0.1% of thymol (THY), trans-cinnamaldehyde (TC), menthol (MEN), or vanillin (VAN). Then, the physical, chemical, and structural characteristics were evaluated. Magnetic resonance imaging (MRI) analysis (a rapid, chemical-free, and non-invasive tool) was carried out to evaluate the water distribution. A multivariate analysis was conducted among all studied variables. According to the results, the overrun of the MEN ice cream was significantly increased as compared to the control sample. The density was also reduced in the MEN sample. Meanwhile, the spreadability (%) of VAN was significantly increased after 6 min as compared to the control treatment. MRI analysis revealed that water distribution was significantly changed in the THY group. The firmness and viscosity of THY samples were significantly increased (p < 0.05). Multivariate analysis indicated that viscosity index and consistency were the top parameters affected by THY. The authors concluded that THY and VAN are promising stabilizers for ice-cream clean production.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: