Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 512 papers

Teratoma of the epididymis.

  • S Pap‎ et al.
  • International urology and nephrology‎
  • 1973‎

No abstract available


Intramedullary cervical spinal cord teratoma.

  • Lishuai Wang‎ et al.
  • Medicine‎
  • 2020‎

Intramedullary cervical spinal cord teratomas (ICTs) are extremely rare, and diagnosis and treatment are challenging. We conducted a systematic review of the literature on the diagnosis and treatment of ICT.


Parapharyngeal teratoma in the newborn.

  • H Saing‎ et al.
  • Journal of pediatric surgery‎
  • 1994‎

A parapharyngeal teratoma in a newborn was the cause of acute respiratory distress, which was relieved by tracheostomy. Subsequent investigations by soft tissue x-rays of the neck, computed tomography, and examination under anesthesia defined the anatomic location of the tumor, its extent, and its likely nature. The tumor was removed completely by the transcervical approach. Mandibulotomy was not required. Histological examination showed the presence of a large amount of mature brain tissue, a moderate amount of collagenous fibers and smooth muscle cells, and a minute amount of cartilage and epithelial structures. The postoperative course was satisfactory. No recurrence was seen 6 years after surgery. The computed tomography scan was found to be the most useful investigative method. To the authors' knowledge, this is the first comprehensive report of a teratoma occupying the parapharyngeal space in a newborn.


Carcinoid tumor occurring in a mature testicular teratoma.

  • J R Miliauskas‎
  • Pathology‎
  • 1991‎

A rare case of a primary testicular carcinoid tumor, occurring in a mature teratoma from a 33 year old man, was examined histochemically, immunohistochemically and by electron microscopy. Both argyrophil and argentaffin reactions were positive. Immunoreactive cells for 5-hydroxytryptamine (5-HT) and gastrin were present. Electron microscopy demonstrated neurosecretory-type granules. The English literature was reviewed and this revealed at least 6 similar cases.


Aneuploid embryonic stem cells drive teratoma metastasis.

  • Rong Xiao‎ et al.
  • Nature communications‎
  • 2024‎

Aneuploidy, a deviation of the chromosome number from euploidy, is one of the hallmarks of cancer. High levels of aneuploidy are generally correlated with metastasis and poor prognosis in cancer patients. However, the causality of aneuploidy in cancer metastasis remains to be explored. Here we demonstrate that teratomas derived from aneuploid murine embryonic stem cells (ESCs), but not from isogenic diploid ESCs, disseminated to multiple organs, for which no additional copy number variations were required. Notably, no cancer driver gene mutations were identified in any metastases. Aneuploid circulating teratoma cells were successfully isolated from peripheral blood and showed high capacities for migration and organ colonization. Single-cell RNA sequencing of aneuploid primary teratomas and metastases identified a unique cell population with high stemness that was absent in diploid ESCs-derived teratomas. Further investigation revealed that aneuploid cells displayed decreased proteasome activity and overactivated endoplasmic reticulum (ER) stress during differentiation, thereby restricting the degradation of proteins produced from extra chromosomes in the ESC state and causing differentiation deficiencies. Noticeably, both proteasome activator Oleuropein and ER stress inhibitor 4-PBA can effectively inhibit aneuploid teratoma metastasis.


Derivation of pluripotent stem cells from nascent undifferentiated teratoma.

  • Yuri An‎ et al.
  • Developmental biology‎
  • 2019‎

Teratomas are tumors consisting of components of the three germ layers that differentiate from pluripotent stem cells derived from germ cells. In the normal mouse testis, teratomas rarely form, but a deficiency in Dead-end1 (Dnd1) in mice with a 129/Sv genetic background greatly enhances teratoma formation. Thus, DND1 is crucial for suppression of teratoma development from germ cells. In the Dnd1 mutant testis, nascent teratoma cells emerge at E15.5. To understand the nature of early teratoma cells, we established cell lines in the presence of serum and leukemia inhibitory factor (LIF) from teratoma-forming cells in neonatal Dnd1 mutant testis. These cells, which we designated cultured Dnd1 mutant germ cells (CDGCs), were morphologically similar to embryonic stem cells (ESCs) and could be maintained in the naïve pluripotent condition. In addition, the cells expressed pluripotency genes including Oct4, Nanog, and Sox2; differentiated into cells of the three germ layers in culture; and contributed to chimeric mice. The expression levels of pluripotency genes and global transcriptomes in CDGCs as well as these cells' adaption to culture conditions for primed pluripotency suggested that their pluripotent status is intermediate between naïve and primed pluripotency. In addition, the teratoma-forming cells in the neonatal testis from which CDGCs were derived also showed gene expression profiles intermediate between naïve and primed pluripotency. The results suggested that germ cells in embryonic testes of Dnd1 mutants acquire the intermediate pluripotent status during the course of conversion into teratoma cells.


Teratoma pathology and genomics in anti-NMDA receptor encephalitis.

  • Yoonhyuk Jang‎ et al.
  • Annals of clinical and translational neurology‎
  • 2024‎

Ovarian teratoma is a common occurrence in patients with anti-NMDA receptor encephalitis (NMDARe), and its removal is crucial for a favorable prognosis. However, the initial pathogenesis of autoimmunity in the encephalitic teratoma remains unclear. In this study, we aimed to investigate the genomic landscape and microscopic findings by comparing NMDARe-associated teratomas and non-encephalitic control teratomas.


The co-injection of somatic cells with embryonic stem cells affects teratoma formation and the properties of teratoma-derived stem cell-like cells.

  • Seung Pyo Gong‎ et al.
  • PloS one‎
  • 2014‎

The aim of this study was to assess the biological reactions triggered by stem cell transplantation related to phenotypic alteration, host-to-cell response, chromosomal stability, transcriptional alteration, and stem cell-like cell re-expansion. B6CBAF1 mouse embryonic stem cells (ESCs) were injected subcutaneously into homologous or heterologous (B6D2F1) recipients, and heterologous injections were performed with or without co-injection of B6D2F1 fetal fibroblasts. All homologous injections resulted in teratoma formation, whereas a sharp decrease in formation was detected after heterologous injection (100 vs. 14%; p<0.05). The co-injection of somatic cells in heterologous injections enhanced teratoma formation significantly (14 vs. 75%; p<0.05). Next, ESC-like cell colonies with the same genotype as parental ESCs were formed by culturing teratoma-dissociated cells. Compared with parental ESCs, teratoma-derived ESC-like cells exhibited significantly increased aneuploidy, regardless of homologous or heterologous injections. Repopulation of the parental ESCs was the main factor that induced chromosomal instability, whereas the co-injection of somatic cells did not restore chromosomal normality. Different genes were expressed in the parental ESCs and teratoma-derived ESC-like cells; the difference was larger with parental vs. heterologous than parental vs. homologous co-injections. The co-injection of somatic cells decreased this difference further. In conclusion, the host-to-cell interactions triggered by ESC transplantation could be modulated by co-injection with somatic cells. A mouse model using homologous or heterologous transplantation of stem cells could help monitor cell adaptability and gene expression after injection.


Oxygen availability influences the incidence of testicular teratoma in Dnd1Ter/+ mice.

  • Ximena M Bustamante-Marin‎ et al.
  • Frontiers in genetics‎
  • 2023‎

Testicular teratomas and teratocarcinomas are the most common testicular germ cell tumors in early childhood and young men, and they are frequently found unilaterally in the left testis. In 129/SvJ mice carrying a heterozygous copy of the potent modifier of tumor incidence Ter, a point mutation in the dead-end homolog one gene (Dnd1 Ter/+), ∼70% of the unilateral teratomas arise in the left testis. We previously showed that in mice, left/right differences in vascular architecture are associated with reduced hemoglobin saturation and increased levels of the hypoxia inducible factor-1 alpha (HIF-1α) in the left compared to the right testis. To test the hypothesis that systemic reduction of oxygen availability in Dnd1 Ter/+ mice would lead to an increased incidence of bilateral tumors, we placed pregnant females from 129/SvJ Dnd1 Ter/+ intercross matings in a hypobaric chamber for 12-h intervals. Our results show that in 129/SvJ Dnd1 Ter/+ male gonads, the incidence of bilateral teratoma increased from 3.3% to 64% when fetuses were exposed to acute low oxygen conditions for 12-h between E13.8 and E14.3. The increase in tumor incidence correlated with the maintenance of high expression of pluripotency genes Oct4, Sox2 and Nanog, elevated activity of the Nodal signaling pathway, and suppression of germ cell mitotic arrest. We propose that the combination of heterozygosity for the Ter mutation and hypoxia causes a delay in male germ cell differentiation that promotes teratoma initiation.


Dnd1-mediated epigenetic control of teratoma formation in mouse.

  • Wei Gu‎ et al.
  • Biology open‎
  • 2018‎

Spontaneous testicular teratoma develops from primordial germ cells (PGCs) in embryos; however, the molecular mechanisms underlying teratoma formation are not fully understood. Mutation of the dead-end 1 (Dnd1) gene, which encodes an RNA-binding protein, drastically enhances teratoma formation in the 129/Sv mouse strain. To elucidate the mechanism of Dnd1 mutation-induced teratoma formation, we focused on histone H3 lysine 27 (H3K27) trimethylation (me3), and found that the levels of H3K27me3 and its responsible methyltransferase, enhancer of zeste homolog 2 (Ezh2), were decreased in the teratoma-forming cells of Dnd1 mutant embryos. We also showed that Dnd1 suppressed miR-26a-mediated inhibition of Ezh2 expression, and that Dnd1 deficiency resulted in decreased H3K27me3 of a cell-cycle regulator gene, Ccnd1 In addition, Ezh2 expression or Ccnd1 deficiency repressed the reprogramming of PGCs into pluripotent stem cells, which mimicked the conversion of embryonic germ cells into teratoma-forming cells. These results revealed an epigenetic molecular linkage between Dnd1 and the suppression of testicular teratoma formation.


Influence of hyperthermal regimes on experimental teratoma development in vitro.

  • Ana Katusic Bojanac‎ et al.
  • International journal of experimental pathology‎
  • 2018‎

We screened for the impact of hyperthermal regimes varying in the cumulative equivalent minutes at 43°C (CEM43°C) and media composition on tumour development using an original teratoma in vitro model. Rat embryos (three germ layers) were microsurgically isolated and cultivated at the air-liquid interface. During a two week period, ectodermal, mesodermal and endodermal derivatives developed within trilaminar teratomas. Controls were grown at 37°C. Overall growth was measured, and teratoma survival and differentiation were histologically assessed. Cell proliferation was stereologically quantified by the volume density of Proliferating Cell Nuclear Antigen. Hyperthermia of 42°C, applied for 15 minutes after plating (CEM43°C 3.75 minutes), diminished cell proliferation (P ˂ .0001) and enhanced differentiation of both myotubes (P ˂ .01) and cylindrical epithelium (P ˂ .05). Hyperthermia of 43°C applied each day for 30 minutes during the first week (CEM43°C 210 minutes) impaired overall growth (P ˂ .01) and diminished cell proliferation (P ˂ .0001). Long-term hyperthermia of 40.5°C applied for two weeks (CEM43°C 630 minutes) significantly impaired survival (P ˂ .005). Long-term hyperthermia of 40.5°C applied from the second day when differentiation of tissues begins (CEM43°C 585 minutes) impaired survival (P ˂ .0001), overall growth (P ˂ .01) and cartilage differentiation (P ˂ .05). No teratomas survived extreme regimes: 43°C for 24 hours (CEM43°C 1440 minutes), hyperthermia in the scant serum-free medium (CEM43°C 630 minutes) or treatment with an anti-HSP70 antibody before long-term hyperthermia 40.5°C from the second day (CEM43°C 585 minutes). This in vitro research provided novel insights into the impact of hyperthermia on the development of experimental teratomas from their undifferentiated sources and are thus of potential interest for future therapeutic strategies in corresponding in vivo models.


Mitotic arrest in teratoma susceptible fetal male germ cells.

  • Patrick S Western‎ et al.
  • PloS one‎
  • 2011‎

Formation of germ cell derived teratomas occurs in mice of the 129/SvJ strain, but not in C57Bl/6 inbred or CD1 outbred mice. Despite this, there have been few comparative studies aimed at determining the similarities and differences between teratoma susceptible and non-susceptible mouse strains. This study examines the entry of fetal germ cells into the male pathway and mitotic arrest in 129T2/SvJ mice. We find that although the entry of fetal germ cells into mitotic arrest is similar between 129T2/SvJ, C57Bl/6 and CD1 mice, there were significant differences in the size and germ cell content of the testis cords in these strains. In 129T2/SvJ mice germ cell mitotic arrest involves upregulation of p27(KIP1), p15(INK4B), activation of RB, the expression of male germ cell differentiation markers NANOS2, DNMT3L and MILI and repression of the pluripotency network. The germ-line markers DPPA2 and DPPA4 show reciprocal repression and upregulation, respectively, while FGFR3 is substantially enriched in the nucleus of differentiating male germ cells. Further understanding of fetal male germ cell differentiation promises to provide insight into disorders of the testis and germ cell lineage, such as testis tumour formation and infertility.


Preventing Pluripotent Cell Teratoma in Regenerative Medicine Applied to Hematology Disorders.

  • Aurelie Bedel‎ et al.
  • Stem cells translational medicine‎
  • 2017‎

Iatrogenic tumorigenesis is a major limitation for the use of human induced pluripotent stem cells (hiPSCs) in hematology. The teratoma risk comes from the persistence of hiPSCs in differentiated cell populations. Our goal was to evaluate the best system to purge residual hiPSCs before graft without compromising hematopoietic repopulation capability. Teratoma risk after systemic injection of hiPSCs expressing the reporter gene luciferase was assessed for the first time. Teratoma formation in immune-deficient mice was tracked by in vivo bioimaging. We observed that systemic injection of hiPSCs produced multisite teratoma as soon as 5 weeks after injection. To eliminate hiPSCs before grafting, we tested the embryonic-specific expression of suicide genes under the control of the pmiR-302/367 promoter. This promoter was highly active in hiPSCs but not in differentiated cells. The gene/prodrug inducible Caspase-9 (iCaspase-9)/AP20187 was more efficient and rapid than thymidine kinase/ganciclovir, fully specific, and without bystander effect. We observed that iCaspase-9-expressing hiPSCs died in a dose-dependent manner with AP20187, without reaching full eradication in vitro. Unexpectedly, nonspecific toxicity of AP20187 on iCaspase-9-negative hiPSCs and on CD34+ cells was evidenced in vitro. This toxic effect strongly impaired CD34+ -derived human hematopoiesis in adoptive transfers. Survivin inhibition is an alternative to the suicide gene approach because hiPSCs fully rely on survivin for survival. Survivin inhibitor YM155 was more efficient than AP20187/iCaspase-9 for killing hiPSCs, without toxicity on CD34+ cells, in vitro and in adoptive transfers. hiPSC purge by survivin inhibitor fully eradicated teratoma formation in immune-deficient mice. This will be useful to improve the safety management for hiPSC-based medicine. Stem Cells Translational Medicine 2017;6:382-393.


Malignant transformation arising from mature ovarian cystic teratoma: A case series.

  • Li Qin‎ et al.
  • Medicine‎
  • 2021‎

Malignant transformation arising in mature cystic teratoma (MT-MCT) is a rare neoplasm of the ovary. Herein, we aimed to evaluate the clinicopathological features and treatment outcome of the Han Chinese women with MT-MCT.In this retrospective study, the clinical data of patients who had been surgically treated from January 2000 to November 2019 and in whom the diagnosis of MCT was confirmed based on the pathology were included. Fourteen patients with MT-MCT from a total of 569 cases (2.46% incidence) of MCT were reviewed.The mean age of patients with MT-MCT was 51.3 (range, 31-71) years, while the mean age of patients with MCT was 45.3 (range, 17-62) years. Upon gross examination, the mean size of MT-MCT was 14.0 (range, 11-25) cm, whereas the mean size of MCT was 7.5 (range, 4-10) cm. Primary surgical staging was performed in all cases. Complete cytoreduction and suboptimal surgical resection were performed in 12 (85.7%) and 2 (14.3%) cases, respectively. Thirteen patients with malignant transformation of squamous cell carcinoma (SCC) whose Federation International of Gynecology and Obstetrics stage was >1 received chemotherapy, comprising carboplatin and paclitaxel. Response to the chemotherapy regimen was complete in 12 patients; 1/12 patients died within the median follow-up period of 16.5 months. The 5-year overall survival rate and disease-free survival rates were 31.2% and 31.6%, respectively.From the data generated, we conclude that the rate of MT-MCT increases with age. The MT-MCT was much higher in women of postmenopausal age than in younger women. We described our experience of successfully treating patients with malignant transformation of SCC with primary surgical staging and adjuvant chemotherapy (cisplatin, paclitaxel, bleomycin, and etoposide) that might improve survival in patients with advanced-stage disease.


Mouse dead end1 acts with Nanos2 and Nanos3 to regulate testicular teratoma incidence.

  • Atsuki Imai‎ et al.
  • PloS one‎
  • 2020‎

Spontaneous testicular teratomas (STTs) derived from primordial germ cells (PGCs) in the mouse embryonic testes predominantly develop in the 129 family inbred strain. Ter (spontaneous mutation) is a single nucleotide polymorphism that generates a premature stop codon of Dead end1 (Dnd1) and increases the incidence of STTs in the 129 genetic background. We previously found that DND1 interacts with NANOS2 or NANOS3 and that these complexes play a vital role in male embryonic germ cells and adult spermatogonia. However, the following are unclear: (a) whether DND1 works with NANOS2 or NANOS3 to regulate teratoma incidence, and (b) whether Ter simply causes Dnd1 loss or produces a short mutant DND1 protein. In the current study, we newly established a conventional Dnd1-knockout mouse line and found that these mice showed phenotypes similar to those of Ter mutant mice in spermatogenesis, oogenesis, and teratoma incidence, with a slight difference in spermiogenesis. In addition, we found that the amount of DND1 in Dnd1+/Ter embryos decreased to half of that in wild-type embryos, while the expression of the short mutant DND1 was not detected. We also found that double mutants for Dnd1 and Nanos2 or Nanos3 showed synergistic increase in the incidence of STTs. These data support the idea that Ter causes Dnd1 loss, leading to an increase in STT incidence, and that DND1 acts with NANOS2 and NANOS3 to regulate the development of teratoma from PGCs in the 129 genetic background. Thus, our results clarify the role of Dnd1 in the development of STTs and provide a novel insight into its pathogenic mechanism.


Teratoma Growth Retardation by HDACi Treatment of the Tumor Embryonal Source.

  • Jure Krasic‎ et al.
  • Cancers‎
  • 2020‎

Among testicular germ cell tumors, teratomas may often be very aggressive and therapy-resistant. Our aim was to investigate the impact of histone deacetylase inhibitors (HDACi) on the in vitro growth of experimental mouse teratoma by treating their embryonic source, the embryo-proper, composed only of the three germ layers. The growth of teratomas was measured for seven days, and histopathological analysis, IHC/morphometry quantification, gene enrichment analysis, and qPCR analysis on a selected panel of pluripotency and early differentiation genes followed. For the first time, within teratomas, we histopathologically assessed the undifferentiated component containing cancer stem cell-like cells (CSCLCs) and differentiated components containing numerous lymphocytes. Mitotic indices were higher than apoptotic indices in both components. Both HDACi treatments of the embryos-proper significantly reduced teratoma growth, although this could be related neither to apoptosis nor proliferation. Trichostatin A increased the amount of CSCLCs, and upregulated the mRNA expression of pluripotency/stemness genes as well as differentiation genes, e.g., T and Eomes. Valproate decreased the amount of CSCLCs, and downregulated the expressions of pluripotency/stemness and differentiation genes. In conclusion, both HDACi treatments diminished the inherent tumorigenic growth potential of the tumor embryonal source, although Trichostatin A did not diminish the potentially dangerous expression of cancer-related genes and the amount of CSCLC.


A huge immature cervical teratoma in a newborn: report of a case.

  • M Uchiyama‎ et al.
  • Surgery today‎
  • 1995‎

A neonate with a large cervical mass was transferred to our hospital at 4 days of age. A computed tomography scan showed a contrast-enhanced solid mass with multiple cystic elements and fine calcification. Ultrasonography also revealed a predominantly solid mass with calcification, containing multiple cysts. These studies suggested a teratoma, but could not rule out a hemangioma. The tumor was removed on the 12th day of life. A pathological study revealed an immature teratoma that demonstrated fetal type cartilage and an immature neural tube. The operative complete removal of a cervical teratoma in neonates is recommended as soon as possible. The management of a pediatric cervical teratoma should also be similar to that of a sacrococcygeal teratoma. The incidence of cervical teratoma in all pediatric teratomas ranges from 2.3%-9.3% in the West, and from 1.6%-8.3% in Japan.


Defining the Teratoma as a Model for Multi-lineage Human Development.

  • Daniella McDonald‎ et al.
  • Cell‎
  • 2020‎

We propose that the teratoma, a recognized standard for validating pluripotency in stem cells, could be a promising platform for studying human developmental processes. Performing single-cell RNA sequencing (RNA-seq) of 179,632 cells across 23 teratomas from 4 cell lines, we found that teratomas reproducibly contain approximately 20 cell types across all 3 germ layers, that inter-teratoma cell type heterogeneity is comparable with organoid systems, and teratoma gut and brain cell types correspond well to similar fetal cell types. Furthermore, cellular barcoding confirmed that injected stem cells robustly engraft and contribute to all lineages. Using pooled CRISPR-Cas9 knockout screens, we showed that teratomas can enable simultaneous assaying of the effects of genetic perturbations across all germ layers. Additionally, we demonstrated that teratomas can be sculpted molecularly via microRNA (miRNA)-regulated suicide gene expression to enrich for specific tissues. Taken together, teratomas are a promising platform for modeling multi-lineage development, pan-tissue functional genetic screening, and tissue engineering.


Role of CD133 in human embryonic stem cell proliferation and teratoma formation.

  • Hua Wang‎ et al.
  • Stem cell research & therapy‎
  • 2020‎

Pluripotent stem cells (PSCs), including human embryonic stem cells (hESCs), hold great potential for regenerative medicine and cell therapy. One of the major hurdles hindering the clinical development of PSC-based therapy is the potential risk of tumorigenesis. CD133 (Prominin 1, PROM1) is a transmembrane protein whose mRNA and glycosylated forms are highly expressed in many human cancer cell types. CD133 also serves as a cancer stem cell (CSC) marker associated with cancer progression and patient outcome. Interestingly, CD133 is highly expressed in hESCs as well as in human preimplantation embryos, but its function in hESCs has remained largely unknown.


Engineering functional BMP-2 expressing teratoma-derived fibroblasts for enhancing osteogenesis.

  • Yoon Young Go‎ et al.
  • Scientific reports‎
  • 2018‎

Bone morphogenetic protein 2 (BMP-2) is considered an effective growth factor for bone formation, and is used for making osteo-inductive scaffolds, but the related clinical investigations have shown low success rates. In this study, we genetically manipulated teratoma-derived fibroblast (TDF) cells by simultaneous introduction of BMP-2 and herpes simplex virus-thymidine kinase (HSV-tk) encoding genes. Self-production of BMP-2 in TDF cells strongly enhanced the alkaline phosphatase (ALP) activity, calcium content, and elevated the mRNA expression of osteogenic marker genes during in vitro osteogenesis. The bone formation volume was also remarkably enhanced in calvarial and femoral critical-size defect models. Ganciclovir (GCV) treatment induced apoptosis in TDF cells co-expressing HSV-tk and BMP-2, implying that HSV-tk suicide gene can modulate the side-effects of stem cell therapy, e.g., development of uncontrollable teratoma and tumor formation. Altogether, our findings revealed a safe and highly efficient technique with potential therapeutic applications for bone regeneration.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: