Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 65 papers

A standardized human embryoid body platform for the detection and analysis of teratogens.

  • Anthony Flamier‎ et al.
  • PloS one‎
  • 2017‎

Teratogens are compounds that can induce birth defects upon exposure of the developing fetus. To date, most teratogen studies utilize pregnant rodents to determine compound teratogenicity in vivo. However, this is a low throughput approach that cannot easily meet the need for comprehensive high-volume teratogen assessment, a goal of the US Environmental Protection Agency. In addition, rodent and human development differ substantially, and therefore the use of assays using relevant human cells has utility. For these reasons, interest has recently focused on the use of human embryonic stem cells for teratogen assessment. Here we present a highly standardized and quantitative system for the detection and analysis of teratogens that utilizes well-characterized and purified highly pluripotent stem cells. We have devised strategies to mass-produce thousands of uniformly sized spheroids of human ESCs (hESCs) that can be caused to undergo synchronous differentiation to yield embryoid bodies (EBs) in the presence and absence of suspected teratogens. The system uses all human cells and rigorously controlled and standardized EB culture conditions. Furthermore, the approach has been made quantitative by using high-content imaging approaches. Our system offers distinct advantages over earlier EB systems that rely heavily on the use on mouse ESCs and EB aggregates of stochastic sizes. Together, our results show that thousands of suspected teratogens could be assessed using human EB-based approaches.


Knowledge regarding teratogens among women of childbearing age at a large tertiary care center in Saudi Arabia.

  • Wejdan Alhamdan‎ et al.
  • Journal of family medicine and primary care‎
  • 2020‎

To investigate the knowledge of Saudi women regarding the teratogenic effects of environmental agents such as fever, some chronic conditions and medications and its association with certain socio-demographic factors.


Transcriptome-based prediction of drugs, inhibiting cardiomyogenesis in human induced pluripotent stem cells.

  • Anna Cherianidou‎ et al.
  • Cell death discovery‎
  • 2023‎

Animal studies for embryotoxicity evaluation of potential therapeutics and environmental factors are complex, costly, and time-consuming. Often, studies are not of human relevance because of species differences. In the present study, we recapitulated the process of cardiomyogenesis in human induced pluripotent stem cells (hiPSCs) by modulation of the Wnt signaling pathway to identify a key cardiomyogenesis gene signature that can be applied to identify compounds and/or stress factors compromising the cardiomyogenesis process. Among the 23 tested teratogens and 16 non-teratogens, we identified three retinoids including 13-cis-retinoic acid that completely block the process of cardiomyogenesis in hiPSCs. Moreover, we have identified an early gene signature consisting of 31 genes and associated biological processes that are severely affected by the retinoids. To predict the inhibitory potential of teratogens and non-teratogens in the process of cardiomyogenesis we established the "Developmental Cardiotoxicity Index" (CDI31g) that accurately differentiates teratogens and non-teratogens to do or do not affect the differentiation of hiPSCs to functional cardiomyocytes.


Effects of sub-lethal teratogen exposure during larval development on egg laying and egg quality in adult Caenorhabditis elegans.

  • Alexis Killeen‎ et al.
  • F1000Research‎
  • 2016‎

Background: Acute high dose exposure to teratogenic chemicals alters the proper development of an embryo leading to infertility, impaired fecundity, and few viable offspring. However, chronic exposure to sub-toxic doses of teratogens during early development may also have long-term impacts on egg quality and embryo viability. Methods: To test the hypothesis that low dose exposure during early development can impact long-term reproductive health, Caenorhabditis elegans larvae were exposed to 10 teratogens during larval development, and subsequently were examined for the pattern of egg-laying and egg quality (hatched larvae and embryo viability) as gravid adults.  After the exposure, adult gravid worms were transferred to untreated plates and the numbers of eggs laid were recorded every 3 hours, and the day following exposure the numbers of hatched larvae were counted. Results: While fecundity and fertility were typically impaired by teratogens, unexpectedly, many teratogens initially increased egg-laying at the earliest interval compared to control but not at later intervals. However, egg quality, as assessed by embryo viability, remained the same because many of the eggs (<50%) did not hatch. Conclusions: Chronic, low dose exposures to teratogens during early larval development have subtle, long-term effects on egg laying and egg quality.


Valproate, thalidomide and ethyl alcohol alter the migration of HTR-8/SVneo cells.

  • Ujjwal K Rout‎
  • Reproductive biology and endocrinology : RB&E‎
  • 2006‎

Valproate, thalidomide and alcohol (ethanol) exposure during the first trimester of pregnancy is known to cause several developmental disorders. All these teratogens are known to pass the placental barrier and interfere directly with the normal development of the fetus. However, these teratogens also alter the formation and function of the placenta itself which may in turn affect the proper nourishment and development of the fetus. Optimum development of the placenta requires adequate invasion of trophoblast into the maternal uterine tissues. Changes in the migratory behavior of trophoblast by maternal exposure to these teratogens during placentogenesis may therefore alter the structure and function of the placenta.


Trends in congenital anomalies in Europe from 1980 to 2012.

  • Joan K Morris‎ et al.
  • PloS one‎
  • 2018‎

Surveillance of congenital anomalies is important to identify potential teratogens.


Molecular changes associated with teratogen-induced cyclopia.

  • Evyn J Loucks‎ et al.
  • Birth defects research. Part A, Clinical and molecular teratology‎
  • 2007‎

Exposure of zebrafish embryos to a number of teratogens results in cyclopia, but little is known about the underlying molecular changes.


High Accuracy Classification of Developmental Toxicants by In Vitro Tests of Human Neuroepithelial and Cardiomyoblast Differentiation.

  • Florian Seidel‎ et al.
  • Cells‎
  • 2022‎

Human-relevant tests to predict developmental toxicity are urgently needed. A currently intensively studied approach makes use of differentiating human stem cells to measure chemically-induced deviations of the normal developmental program, as in a recent study based on cardiac differentiation (UKK2). Here, we (i) tested the performance of an assay modeling neuroepithelial differentiation (UKN1), and (ii) explored the benefit of combining assays (UKN1 and UKK2) that model different germ layers. Substance-induced cytotoxicity and genome-wide expression profiles of 23 teratogens and 16 non-teratogens at human-relevant concentrations were generated and used for statistical classification, resulting in accuracies of the UKN1 assay of 87-90%. A comparison to the UKK2 assay (accuracies of 90-92%) showed, in general, a high congruence in compound classification that may be explained by the fact that there was a high overlap of signaling pathways. Finally, the combination of both assays improved the prediction compared to each test alone, and reached accuracies of 92-95%. Although some compounds were misclassified by the individual tests, we conclude that UKN1 and UKK2 can be used for a reliable detection of teratogens in vitro, and that a combined analysis of tests that differentiate hiPSCs into different germ layers and cell types can even further improve the prediction of developmental toxicants.


Insights into Molecular Interactions of human Wnt5b and Frizzled proteins for their role in teratogenicity.

  • Sween Dahiya‎ et al.
  • Bioinformation‎
  • 2019‎

Wnt-Fzd signalling plays vital role in different physiological pathways including embryonic development and supposed to be probable target of many teratogens. The present study was done to investigate the role of human Wnt5b interaction with different isoforms of human Fzds and also the molecular interactions of their complexes with selected known teratogens [Carbamazepine (CBZ), Retinoic acid (RA), Valproic acid (VPA), Aminopterin (AMP) and Phenytoin (PHY)] using Niclosamide (NLM) as standard. The models of hWnt5b and hFzd isoforms, whose solved crystal structures were unavailable, were generated using homology modeling and hWnt5b was subjected to protein-protein docking studies against different isoforms of hFzd. The macromolecular docking studies of hWnt5b-hFzds complexes revealed that hWnt5b had highest binding affinity with hFzd8 and lowest with hFzd1, respectively. The Cysteine rich domain (CRD) of hFzds docked against hWnt5b into a palm shaped opening or near the largest binding pocket as in hWnt5b-hFzd6. The possible role of Wnt-Fzd interactions in developmental toxicity due to selected teratogens were also investigated using molecular docking studies which showed that Retinoic Acid possessed the maximum binding affinity with binding energy of for hWnt5b-hFzd8 complex while VPA was observed to have lowest binding affinity towards all the studied hWnt5b-hFzd complexes.


In Vitro Micropatterned Human Pluripotent Stem Cell Test (µP-hPST) for Morphometric-Based Teratogen Screening.

  • Jiangwa Xing‎ et al.
  • Scientific reports‎
  • 2017‎

Exposure to teratogenic chemicals during pregnancy may cause severe birth defects. Due to high inter-species variation of drug responses as well as financial and ethical burdens, despite the widely use of in vivo animal tests, it's crucial to develop highly predictive human pluripotent stem cell (hPSC)-based in vitro assays to identify potential teratogens. Previously we have shown that the morphological disruption of mesoendoderm patterns formed by geometrically-confined cell differentiation and migration using hPSCs could potentially serve as a sensitive morphological marker in teratogen detection. Here, a micropatterned human pluripotent stem cell test (µP-hPST) assay was developed using 30 pharmaceutical compounds. A simplified morphometric readout was developed to quantify the mesoendoderm pattern changes and a two-step classification rule was generated to identify teratogens. The optimized µP-hPST could classify the 30 compounds with 97% accuracy, 100% specificity and 93% sensitivity. Compared with metabolic biomarker-based hPSC assay by Stemina, the µP-hPST could successfully identify misclassified drugs Bosentan, Diphenylhydantoin and Lovastatin, and show a higher accuracy and sensitivity. This scalable µP-hPST may serve as either an independent assay or a complement assay for existing assays to reduce animal use, accelerate early discovery-phase drug screening and help general chemical screening of human teratogens.


Teratogen screening using transcriptome profiling of differentiating human embryonic stem cells.

  • Yoav Mayshar‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2011‎

Teratogens are substances that may cause defects in normal embryonic development while not necessarily being toxic in adults. Identification of possible teratogenic compounds has been historically beset by the species-specific nature of the teratogen response. To examine teratogenic effects on early human development we performed non-biased expression profiling of differentiating human embryonic and induced pluripotent stem cells treated with several drugs--ethanol, lithium, retinoic acid (RA), caffeine and thalidomide, which is known to be highly species specific. Our results point to the potency of specific teratogens and their affected tissues and pathways. Specifically, we could show that ethanol caused dramatic increase in endodermal differentiation, RA caused misregulation of neural development and thalidomide affected both these processes. We thus propose this method as a valuable addition to currently available animal screening approaches.


Assembling systems biology, embryo development and teratogenesis: What do we know so far and where to go next?

  • Thayne Woycinck Kowalski‎ et al.
  • Reproductive toxicology (Elmsford, N.Y.)‎
  • 2019‎

The recognition of molecular mechanisms of a teratogen can provide insights to understand its embryopathy, and later to plan strategies for the prevention of new exposures. In this context, experimental research is the most invested approach. Despite its relevance, these assays require financial and time investment. Hence, the evaluation of such mechanisms through systems biology rise as an alternative for this conventional methodology. Systems biology is an integrative field that connects experimental and computational analyses, assembling interaction networks between genes, proteins, and even teratogens. It is a valid strategy to generate new hypotheses, that can later be confirmed in experimental assays. Here, we present a literature review of the application of systems biology in embryo development and teratogenesis studies. We provide a glance at the data available in public databases, and evaluate common mechanisms between different teratogens. Finally, we discuss the advantages of using this strategy in future teratogenesis researches.


Identification of Novel Genomic Variations in Susceptibility to Nonsyndromic Cleft Lip and Palate Patients.

  • Kapil Kumar Avasthi‎ et al.
  • Pediatric reports‎
  • 2021‎

Nonsyndromic cleft lip with or without palate (NSCL/P) is a multifactorial and common birth malformation caused by genetic and environmental factors, as well as by teratogens. Genome-wide association studies found genetic variations with modulatory effects of NSCL/P formation in Chinese and Iranian populations. We aimed to identify the susceptibility of single-nucleotide polymorphisms (SNPs) to nonsyndromic cleft lip with or without palate in the Indian population.


Chemical-induced craniofacial anomalies caused by disruption of neural crest cell development in a zebrafish model.

  • Shujie Liu‎ et al.
  • Developmental dynamics : an official publication of the American Association of Anatomists‎
  • 2020‎

Craniofacial anomalies are among the most frequent birth defects worldwide, and are thought to be caused by gene-environment interactions. Genetically manipulated zebrafish simulate human diseases and provide great advantages for investigating the etiology and pathology of craniofacial anomalies. Although substantial advances have been made in understanding genetic factors causing craniofacial disorders, limited information about the etiology by which environmental factors, such as teratogens, induce craniofacial anomalies is available in zebrafish.


Gene expression in teratogenic exposures: a new approach to understanding individual risk.

  • Claudia Kappen‎ et al.
  • Reproductive toxicology (Elmsford, N.Y.)‎
  • 2014‎

The phenomenon of partial or incomplete penetrance is common to many paradigms of exposure to teratogens, where only some of the exposed individuals exhibit developmental defects. We here argue that the most widely used experimental approaches in reproductive toxicology do not take partial penetrance into account, and are thus likely to miss differences between affected and unaffected individuals that contribute to susceptibility for teratogenesis. We propose that focus on the variation between exposed individuals could help to discover factors that may play a causative role for abnormal developmental processes that occur with incomplete penetrance.


Developmental exposure to valproic acid alters the expression of microRNAs involved in neurodevelopment in zebrafish.

  • Neelakanteswar Aluru‎ et al.
  • Neurotoxicology and teratology‎
  • 2013‎

Congenital malformations are a prevalent cause of infant mortality in the United States and their induction has been linked to a variety of factors, including exposure to teratogens. However, the molecular mechanisms of teratogenicity are not fully understood. MicroRNAs are an important group of small, non-coding RNAs that regulate mRNA expression. MicroRNA roles in early embryonic development are well established, and their disruption during development can cause abnormalities. We hypothesized that developmental exposure to teratogens such as valproic acid alters microRNA expression profiles in developing embryos. Valproic acid is an anticonvulsant and mood-stabilizing drug used to treat epilepsy, bipolar disorder and migraines. To examine the effects of valproic acid on microRNA expression during development, we used zebrafish embryos as a model vertebrate developmental system. Zebrafish embryos were continuously exposed to valproic acid (1mM) or vehicle control (ethanol) starting from 4h post-fertilization (hpf) and sampled at 48 and 96hpf to determine the miRNA expression profiles prior to and after the onset of developmental defects. At 96hpf, 95% of the larvae showed skeletal deformities, abnormal swimming behavior, and pericardial effusion. Microarray expression profiling was done using Agilent zebrafish miRNA microarrays. Microarray results revealed changes in miRNA expression at both time points. Thirteen miRNAs were differentially expressed at 48hpf and 22 miRNAs were altered at 96hpf. Among them, six miRNAs (miR-16a, 18c, 122, 132, 457b, and 724) were common to both time points. Bioinformatic target prediction and examination of published literature revealed that these miRNAs target several genes involved in the normal functioning of the central nervous system. These results suggest that the teratogenic effects of valproic acid could involve altered miRNA expression.


Classification of Developmental Toxicants in a Human iPSC Transcriptomics-Based Test.

  • Anna Cherianidou‎ et al.
  • Chemical research in toxicology‎
  • 2022‎

Despite the progress made in developmental toxicology, there is a great need for in vitro tests that identify developmental toxicants in relation to human oral doses and blood concentrations. In the present study, we established the hiPSC-based UKK2 in vitro test and analyzed genome-wide expression profiles of 23 known teratogens and 16 non-teratogens. Compounds were analyzed at the maximal plasma concentration (Cmax) and at 20-fold Cmax for a 24 h incubation period in three independent experiments. Based on the 1000 probe sets with the highest variance and including information on cytotoxicity, penalized logistic regression with leave-one-out cross-validation was used to classify the compounds as test-positive or test-negative, reaching an area under the curve (AUC), accuracy, sensitivity, and specificity of 0.96, 0.92, 0.96, and 0.88, respectively. Omitting the cytotoxicity information reduced the test performance to an AUC of 0.94, an accuracy of 0.79, and a sensitivity of 0.74. A second method, which used the number of significantly deregulated probe sets to classify the compounds, resulted in a specificity of 1; however, the AUC (0.90), accuracy (0.90), and sensitivity (0.83) were inferior compared to those of the logistic regression-based procedure. Finally, no increased performance was achieved when the high test concentrations (20-fold Cmax) were used, in comparison to testing within the realistic clinical range (1-fold Cmax). In conclusion, although further optimization is required, for example, by including additional readouts and cell systems that model different developmental processes, the UKK2-test in its present form can support the early discovery-phase detection of human developmental toxicants.


The transformation suppressor gene Reck is required for postaxial patterning in mouse forelimbs.

  • Mako Yamamoto‎ et al.
  • Biology open‎
  • 2012‎

The membrane-anchored metalloproteinase-regulator RECK has been characterized as a tumor suppressor. Here we report that mice with reduced Reck-expression show limb abnormalities including right-dominant, forelimb-specific defects in postaxial skeletal elements. The forelimb buds of low-Reck mutants have an altered dorsal ectoderm with reduced Wnt7a and Igf2 expression, and hypotrophy in two signaling centers (i.e., ZPA and AER) that are essential for limb outgrowth and patterning. Reck is abundantly expressed in the anterior mesenchyme in normal limb buds; mesenchyme-specific Reck inactivation recapitulates the low-Reck phenotype; and some teratogens downregulate Reck in mesenchymal cells. Our findings illustrate a role for Reck in the mesenchymal-epithelial interactions essential for mammalian development.


Anticonvulsants and Chromatin-Genes Expression: A Systems Biology Investigation.

  • Thayne Woycinck Kowalski‎ et al.
  • Frontiers in neuroscience‎
  • 2020‎

Embryofetal development is a critical process that needs a strict epigenetic control, however, perturbations in this balance might lead to the occurrence of congenital anomalies. It is known that anticonvulsants potentially affect epigenetics-related genes, however, it is not comprehended whether this unbalance could explain the anticonvulsants-induced fetal syndromes. In the present study, we aimed to evaluate the expression of epigenetics-related genes in valproic acid, carbamazepine, or phenytoin exposure. We selected these three anticonvulsants exposure assays, which used murine or human embryonic stem-cells and were publicly available in genomic databases. We performed a differential gene expression (DGE) and weighted gene co-expression network analysis (WGCNA), focusing on epigenetics-related genes. Few epigenetics genes were differentially expressed in the anticonvulsants' exposure, however, the WGCNA strategy demonstrated a high enrichment of chromatin remodeling genes for the three drugs. We also identified an association of 46 genes related to Fetal Valproate Syndrome, containing SMARCA2 and SMARCA4, and nine genes to Fetal Hydantoin Syndrome, including PAX6, NEUROD1, and TSHZ1. The evaluation of stem-cells under drug exposure can bring many insights to understand the drug-induced damage to the embryofetal development. The candidate genes here presented are potential biomarkers that could help in future strategies for the prevention of congenital anomalies.


Diagnostic Gene Panel Testing in (Non)-Syndromic Patients with Cleft Lip, Alveolus and/or Palate in the Netherlands.

  • Lisca Florence Wurfbain‎ et al.
  • Molecular syndromology‎
  • 2023‎

Clefts of the lip, alveolus and/or palate (CLA/P) are the most common craniofacial congenital malformations in humans. These oral clefts can be divided into non-syndromic (isolated) and syndromic forms. Many cleft-related syndromes are clinically variable and genetically heterogeneous, making it challenging to distinguish syndromic from non-syndromic cases. Recognition of syndromic/genetic causes is important for personalized tailored care, identification of (unrecognized) comorbidities, and accurate genetic counseling. Therefore, next generation sequencing (NGS)-based targeted gene panel testing is increasingly implemented in diagnostics of CLA/P patients. In this retrospective study, we assess the yield of NGS gene panel testing in a cohort of CLA/P cases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: