Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 175 papers

KSRP silencing favors neural differentiation of P19 teratocarcinoma cells.

  • Matteo Giovarelli‎ et al.
  • Biochimica et biophysica acta‎
  • 2013‎

Understanding the molecular mechanisms that control the balance between multipotency and differentiation is of great importance to elucidate the genesis of both developmental disorders and cell transformation events. To investigate the role of the RNA binding protein KSRP in controlling neural differentiation, we used the P19 embryonal carcinoma cell line that is able to differentiate into neuron-like cells under appropriate culture conditions. We have recently reported that KSRP controls the differentiative fate of multipotent mesenchymal cells owing to its ability to promote decay of unstable transcripts and to favor maturation of selected micro-RNAs (miRNAs) from precursors. Here we report that KSRP silencing in P19 cells favors neural differentiation increasing the expression of neuronal markers. Further, the expression of two master transcriptional regulators of neurogenesis, ASCL1 and JMJD3, was enhanced while the maturation of miR-200 family members from precursors was impaired in KSRP knockdown cells. These molecular changes can contribute to the reshaping of P19 cells transcriptome that follows KSRP silencing. Our data suggests that KSRP function is required to maintain P19 cells in a multipotent undifferentiated state and that its inactivation can orient cells towards neural differentiation.


Polyoma virus infection of retinoic acid-induced differentiated teratocarcinoma cells.

  • F K Fujimura‎ et al.
  • Journal of virology‎
  • 1981‎

The mouse teratocarcinoma stem cell line, F9, becomes permissive for productive polyoma infection upon treatment with retinoic acid. Through the use of M13-polyoma recombinant single-stranded DNA probes, spliced and unspliced early viral RNA were detected after polyoma infection of retinoic acid-treated and untreated F9 cultures.


New histone demethylase LSD1 inhibitor selectively targets teratocarcinoma and embryonic carcinoma cells.

  • Nam Hoang‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2018‎

LSD1/KDM1 is a histone demethylase that preferentially removes methyl groups from the mono- and di-methylated lysine 4 in histone H3 (H3K4), key marks for active chromatin for transcriptional activation. LSD1 is essential for pluripotent embryonic stem cells and embryonic teratocarcinoma/carcinoma cells and its expression is often elevated in various cancers. We developed a new LSD1 inhibitor, CBB3001, which potently inhibited LSD1 activity both in vitro and in vivo. CBB3001 also selectively inhibited the growth of human ovarian teratocarcinoma PA-1 and mouse embryonic carcinoma F9 cells, caused the downregulation of pluripotent stem cell proteins SOX2 and OCT4. However, CBB3001 does not have significant inhibition on the growth of human colorectal carcinoma HCT116 cells or mouse fibroblast NIH3T3 cells that do not express these stem cell proteins. Our studies strongly indicate that CBB3001 is a specific LSD1 inhibitor that selectively inhibits teratocarcinoma and embryonic carcinoma cells that express SOX2 and OCT4.


The HERV-K accessory protein Np9 controls viability and migration of teratocarcinoma cells.

  • Susana M Chan‎ et al.
  • PloS one‎
  • 2019‎

Human endogenous retroviruses are remnants of ancient germline infections that make up approximately 8% of the modern human genome. The HERV-K (HML-2) family is one of the most recent entrants into the human germline, these viruses appear to be transcriptionally active, and HERV-K viral like particles (VLPs) are found in cell lines from a number of human malignancies. HERV-K VLPs were first found to be produced in teratocarcinoma cell lines, and since then teratocarcinoma has been thought of as the classical model for HERV-Ks, with the NCCIT teratocarcinoma cell line particularly known to produce VLPs. Treatment for teratocarcinoma has progressed since its discovery, with improved prognosis for patients. Since the introduction of platinum based therapy, first year survival has greatly improved even with disseminated disease; however, it is estimated that 20% to 30% of patients present with metastatic germ cell tumor relapse following initial treatments. Also, the toxicity associated with the use of chemotherapeutic agents used to treat germ cell tumors is still a major concern. In this study, we show that the depletion of the HERV-K accessory protein Np9 increases the sensitivity of NCCIT teratocarcinoma cells to bleomycin and cisplatin. While decreasing the expression of Np9 had only a modest effect on the baseline viability of the cells, the reduced expression of Np9 increased the sensitivity of the teratocarcinoma cells to environmental (serum starvation) and chemical (chemotherapeutic) stresses. Np9 is also essential to the migration of NCCIT teratocarcinoma cells: in a wound closure assay, reduced expression of Np9 resulted in cells migrating into the wound at a slower rate, whereas reintroduction of Np9 resulted in NCCIT cells migrating back into the wound in a manner similar to the control. These findings support the implication that the HERV-K accessory protein Np9 has oncogenic potential.


Inhibition of gap junctional intercellular communication in human teratocarcinoma cells by organochlorine pesticides.

  • Z X Lin‎ et al.
  • Toxicology and applied pharmacology‎
  • 1986‎

Inhibition of intercellular communication, as measured by metabolic cooperation between 6-thioguanine-sensitive and 6-thioguanine-resistant Chinese hamster V79 cells, has been previously shown to be correlated with a large variety of known tumor promoters, including some of the organochlorine pesticides. Since further evidence concerning the effects of those known or suspected animal tumor promoters on human cells is needed, three organochlorine pesticides, dieldrin, aldrin, and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), were tested for their ability to inhibit metabolic cooperation between 6-thioguanine-sensitive (6TGs, HTP3-4) and 6-thioguanine-resistant (6TGr, HTXTG-1) human teratocarcinoma cells. Similar to the effect of the known mouse skin tumor promoter 12-tetradecanoyl phorbol-13-acetate (TPA), all three pesticides inhibited gap junctional intercellular communication within a noncytotoxic dose range. The dose-response curves of these chemicals were similar to those of other known tumor promoters on Chinese hamster V79 cells. In addition, the transfer of [3H]uridine between teratocarcinoma cells in contact was reduced after pesticide treatment.


A blockade in Wnt signaling is activated following the differentiation of F9 teratocarcinoma cells.

  • Sayumi Shibamoto‎ et al.
  • Experimental cell research‎
  • 2004‎

Aberrant activation of the Wnt signaling pathway is a common event in human tumor progression. Wnt signaling has also been implicated in maintaining a variety of adult and embryonic stem cells by imposing a restraint to differentiation. To understand the effect of Wnt signaling on the differentiation of epithelial cells, we used mouse teratocarcinoma F9 cells as a model. The F9 cells can be differentiated into visceral endoderm (VE) resembling absorptive columnar epithelial cells. We performed comparative gene expression analysis on retinoic acid-differentiated and undifferentiated F9 cells and confirmed that markers of VE and intestinal epithelium were induced upon differentiation. The induction of these markers by retinoic acid was reduced in the presence of Wnt, although Wnt alone did not change their expression. This suggests that Wnt signaling inhibited the differentiation of F9 cells by altering gene expression. This inhibition was also reflected in the morphology of the F9 cells as their apical-basal polarity was disrupted by inclusion of Wnt during differentiation. These results support a model in which Wnt modulates the expression of genes required for normal terminal differentiation of the stem cells. However, it follows that progenitor cells must escape from Wnt signaling to attain the differentiated state. Accordingly, we found that differentiated F9 cells no longer responded to Wnt and that a blockade in Wnt signaling occurred upstream of Axin. Consistent with this, Wnt negative regulators, such as Dickkopf-1 and Disabled-2, were induced upon the differentiation of F9 cells. We propose that a similar system to produce Wnt inhibitors regulates homeostasis of certain stem cell compartments in vivo.


MicroRNA-21 promotes the ovarian teratocarcinoma PA1 cell line by sustaining cancer stem/progenitor populations in vitro.

  • Wei-Min Chung‎ et al.
  • Stem cell research & therapy‎
  • 2013‎

Resistance of cancer stem/progenitor cells (CSPCs) to chemotherapy can lead to cancer relapse. Ovarian teratocarcinoma (OVTC) arises from germ cells and comprises pluripotent cells that can be used to study cancer cell stemness. In this study, we evaluated whether microRNA-21 (miR-21) promotes ovarian teratocarcinoma by maintaining cancer stem/progenitor populations.


Cytotoxic targeting of F9 teratocarcinoma tumours with anti-ED-B fibronectin scFv antibody modified liposomes.

  • C Marty‎ et al.
  • British journal of cancer‎
  • 2002‎

We prepared small unilamellar liposomes derivatised with single chain antibody fragments specific for the ED-B domain of B-fibronectin. This extracellular matrix associated protein is expressed around newly forming blood vessels in the vicinity of many types of tumours. The single chain antibody fragments were functionalised by introduction of C-terminal cysteines and linked to liposomes via maleimide groups located at the terminal ends of poly(ethylene glycol) modified phospholipids. The properties of these anti-ED-B single chain antibody fragments-liposomes were analysed in vitro on ED-B fibronectin expressing Caco-2 cells and in vivo by studying their biodistribution and their therapeutic potential in mice bearing subcutanous F9 teratocarcinoma tumours. Radioactively labelled ((114m)Indium) single chain antibody fragments-liposomes accumulated in the tumours at 2-3-fold higher concentrations during the first 2 h after i.v. injection compared to unmodified liposomes. After 6-24 h both liposome types were found in similar amounts (8-10% injected dose g(-1)) in the tumours. Animals treated i.v. with single chain antibody fragments-liposomes containing the new cytotoxic agent 2'-deoxy-5-fluorouridylyl-N(4)-octadecyl-1-beta-D-arabinofuranosylcytosine (30 mg kg(-1) per dose, five times every 24 h) showed a reduction of tumour growth by 62-90% determined on days 5 and 8, respectively, compared to animals receiving control liposomes. Histological analysis revealed a marked reduction of F9 tumour cells and excessive deposition of fibronectin in the extracellular matrix after treatment with single chain antibody fragments-2-dioxy-5-fluorouridylyl-N(4)-octadecyl-1-beta-D-arabinofuranosylcytosine-liposomes. Single chain antibody fragments-liposomes targeted to ED-B fibronectin positive tumours therefore represent a promising and versatile novel drug delivery system for the treatment of tumours.


Expression dynamics of Mage family genes during self-renewal and differentiation of mouse pluripotent stem and teratocarcinoma cells.

  • Olga Gordeeva‎ et al.
  • Oncotarget‎
  • 2019‎

The biological roles of cancer-testis antigens of the Melanoma antigen (Mage) family in mammalian development, stem cell differentiation and carcinogenesis are largely unknown. In order to understand the involvement of the Mage family genes in maintenance of normal and cancer stem cells, the expression patterns of Mage-a, Mage-b, Mage-d, Mage-e, Mage-h and Mage-l gene subfamilies were analyzed during the self-renewal and differentiation of mouse pluripotent stem and teratocarcinoma cells. Clustering analysis based on the gene expression profiles of undifferentiated and differentiating cell populations revealed strong correlations between Mage expression patterns and differentiation and malignant states. Gene co-expression analysis disclosed the potential contributions of Mage family members in self-renewal and differentiation of pluripotent stem and teratocarcinoma cells. Two gene clusters including Mage-a4 and Mage-a8, Mageb1, Mage-d1, Mage-d2, Mage-e1, Mage-l2 were identified as functional antagonists with opposing roles in the regulation of proliferation and differentiation of mouse pluripotent stem and teratocarcinoma cells. The identified aberrant expression patterns of Mage-a2, Mage-a6, Mage-b4, Mageb-16 and Mage-h1 in teratocarcinoma cells can be considered as specific teratocarcinoma biomarkers promoted the malignant phenotype. Our study first provides a model for the involvement of Mage family members in regulatory networks during the self-renewal and early differentiation of normal and cancerous stem cells for further research of the predicted functional modules and the development of new cancer treatment strategies.


A teratocarcinoma-like human embryonic stem cell (hESC) line and four hESC lines reveal potentially oncogenic genomic changes.

  • Outi Hovatta‎ et al.
  • PloS one‎
  • 2010‎

The first Swiss human embryonic stem cell (hESC) line, CH-ES1, has shown features of a malignant cell line. It originated from the only single blastomere that survived cryopreservation of an embryo, and it more closely resembles teratocarcinoma lines than other hESC lines with respect to its abnormal karyotype and its formation of invasive tumors when injected into SCID mice. The aim of this study was to characterize the molecular basis of the oncogenicity of CH-ES1 cells, we looked for abnormal chromosomal copy number (by array Comparative Genomic Hybridization, aCGH) and single nucleotide polymorphisms (SNPs). To see how unique these changes were, we compared these results to data collected from the 2102Ep teratocarcinoma line and four hESC lines (H1, HS293, HS401 and SIVF-02) which displayed normal G-banding result. We identified genomic gains and losses in CH-ES1, including gains in areas containing several oncogenes. These features are similar to those observed in teratocarcinomas, and this explains the high malignancy. The CH-ES1 line was trisomic for chromosomes 1, 9, 12, 17, 19, 20 and X. Also the karyotypically (based on G-banding) normal hESC lines were also found to have several genomic changes that involved genes with known roles in cancer. The largest changes were found in the H1 line at passage number 56, when large 5 Mb duplications in chromosomes 1q32.2 and 22q12.2 were detected, but the losses and gains were seen already at passage 22. These changes found in the other lines highlight the importance of assessing the acquisition of genetic changes by hESCs before their use in regenerative medicine applications. They also point to the possibility that the acquisition of genetic changes by ESCs in culture may be used to explore certain aspects of the mechanisms regulating oncogenesis.


Biocompatible Gold Nanoparticles Ameliorate Retinoic Acid-Induced Cell Death and Induce Differentiation in F9 Teratocarcinoma Stem Cells.

  • Sangiliyandi Gurunathan‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2018‎

The unique properties of gold nanoparticles (AuNPs) have attracted much interest for a range of applications, including biomedical applications in the cosmetic industry. The current study assessed the anti-oxidative effect of AuNPs against retinoic acid (RA)-induced loss of cell viability; cell proliferation; expression of oxidative and anti-oxidative stress markers, pro- and anti-apoptotic genes, and differentiation markers; and mitochondrial dysfunction in F9 teratocarcinoma stem cells. AuNPs were prepared by reduction of gold salts using luteolin as a reducing and stabilizing agent. The prepared AuNPs were spherical in shape with an average diameter of 18 nm. F9 cells exposed to various concentrations of these AuNPs were not harmed, whereas cells exposed to RA exhibited a dose-dependent change in cell viability and cell proliferation. The RA-mediated toxicity was associated with increased leakage of lactate dehydrogenase, reactive oxygen species, increased levels of malondialdehyde and nitric oxide, loss of mitochondrial membrane potential, and a reduced level of ATP. Finally, RA increased the level of pro-apoptotic gene expression and decreased the expression of anti-apoptotic genes. Interestingly, the toxic effect of RA appeared to be decreased in cells treated with RA in the presence of AuNPs, which was coincident with the increased levels of anti-oxidant markers including thioredoxin, glutathione peroxidases, glutathione, glutathione disulfide, catalase, and superoxide dismutase. Concomitantly, AuNPs ameliorated the apoptotic response by decreasing the mRNA expression of p53, p21, Bax, Bak, caspase-3, caspase-9, and increasing the expressions of Bcl-2 and Bcl-Xl. Interestingly, AuNPs not only ameliorated oxidative stress but also induced differentiation in F9 cells by increasing the expression of differentiation markers including retinoic acid binding protein, laminin 1, collagen type IV, and Gata 6 and decreasing the expressions of markers of stem cell pluripotency including Nanog, Rex1, octamer-binding transcription factor 4, and Sox-2. These consistent cellular and biochemical data suggest that AuNPs could ameliorate RA-induced cell death and facilitate F9 cell differentiation. AuNPs could be suitable therapeutic agents for the treatment of oxidative stress-related diseases such as atherosclerosis, cancer, diabetes, rheumatoid arthritis, and neurodegenerative diseases.


Differential expression of HERV-K (HML-2) proviruses in cells and virions of the teratocarcinoma cell line Tera-1.

  • Neeru Bhardwaj‎ et al.
  • Viruses‎
  • 2015‎

Human endogenous retrovirus (HERV-K (HML-2)) proviruses are among the few endogenous retroviral elements in the human genome that retain coding sequence. HML-2 expression has been widely associated with human disease states, including different types of cancers as well as with HIV-1 infection. Understanding of the potential impact of this expression requires that it be annotated at the proviral level. Here, we utilized the high throughput capabilities of next-generation sequencing to profile HML-2 expression at the level of individual proviruses and secreted virions in the teratocarcinoma cell line Tera-1. We identified well-defined expression patterns, with transcripts emanating primarily from two proviruses located on chromosome 22, only one of which was efficiently packaged. Interestingly, there was a preference for transcripts of recently integrated proviruses, over those from other highly expressed but older elements, to be packaged into virions. We also assessed the promoter competence of the 5' long terminal repeats (LTRs) of expressed proviruses via a luciferase assay following transfection of Tera-1 cells. Consistent with the RNASeq results, we found that the activity of most LTRs corresponded to their transcript levels.


Ligand-independent androgen receptors promote ovarian teratocarcinoma cell growth by stimulating self-renewal of cancer stem/progenitor cells.

  • Wei-Min Chung‎ et al.
  • Stem cell research‎
  • 2014‎

Ovarian teratocarcinoma (OVTC) arises from germ cells and contains a high percentage of cancer stem/progenitor cells (CSPCs), which promote cancer development through their ability to self-renew. Androgen and androgen receptor (androgen/AR) signaling has been reported to participate in cancer stemness in some types of cancer; however, this phenomenon has never been studied in OVTC.


Vitamin D3 stimulates embryonic stem cells but inhibits migration and growth of ovarian cancer and teratocarcinoma cell lines.

  • Ahmed Abdelbaset-Ismail‎ et al.
  • Journal of ovarian research‎
  • 2016‎

Deficiency in Vitamin D3 (cholecalciferol) may predispose to some malignancies, including gonadal tumors and in experimental models vitamin D3 has been proven to inhibit the growth of cancer cells. To learn more about the potential role of vitamin D3 in cancerogenesis, we evaluated the expression and functionality of the vitamin D receptor (VDR) and its role in metastasis of ovarian cancer cells and of murine and human teratocarcinoma cell lines.


Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy.

  • Jae Woong Han‎ et al.
  • International journal of nanomedicine‎
  • 2017‎

Silver nanoparticles (AgNPs) exhibit strong antibacterial and anticancer activity owing to their large surface-to-volume ratios and crystallographic surface structure. Owing to their various applications, understanding the mechanisms of action, biological interactions, potential toxicity, and beneficial effects of AgNPs is important. Here, we investigated the toxicity and differentiation-inducing effects of AgNPs in teratocarcinoma stem cells.


A Comprehensive Analysis of Human Endogenous Retroviruses HERV-K (HML.2) from Teratocarcinoma Cell Lines and Detection of Viral Cargo in Microvesicles.

  • Vladimir A Morozov‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

About 8% of our genome is composed of sequences from Human Endogenous Retroviruses (HERVs). The HERV-K (HML.2) family, here abbreviated HML.2, is able to produce virus particles that were detected in cell lines, malignant tumors and in autoimmune diseases. Parameters and properties of HML.2 released from teratocarcinoma cell lines GH and Tera-1 were investigated in detail. In most experiments, analyzed viruses were purified by density gradient centrifugation. HML.2 structural proteins, reverse transcriptase (RT) activity, viral RNA (vRNA) and particle morphology were analyzed. The HML.2 markers were predominantly detected in fractions with a buoyant density of 1.16 g/cm3. Deglycosylation of TM revealed truncated forms of transmembrane (TM) protein. Free virions and extracellular vesicles (presumably microvesicles-MVs) with HML.2 elements, including budding intermediates, were detected by electron microscopy. Viral elements and assembled virions captured and exported by MVs can boost specific immune responses and trigger immunomodulation in recipient cells. Sequencing of cDNA clones demonstrated exclusive presence of HERV-K108 env in HML.2 from Tera-1 cells. Not counting two recombinant variants, four known env sequences were found in HML.2 from GH cells. Obtained results shed light on parameters and morphology of HML.2. A possible mechanism of HML.2-induced diseases is discussed.


Tumorigenic and Differentiation Potentials of Embryonic Stem Cells Depend on TGFβ Family Signaling: Lessons from Teratocarcinoma Cells Stimulated to Differentiate with Retinoic Acid.

  • Olga Gordeeva‎ et al.
  • Stem cells international‎
  • 2017‎

A significant challenge for the development of safe pluripotent stem cell-based therapies is the incomplete in vitro differentiation of the pluripotent stem cells and the presence of residual undifferentiated cells initiating teratoma development after transplantation in recipients. To understand the mechanisms of incomplete differentiation, a comparative study of retinoic acid-induced differentiation of mouse embryonic stem (ES) and teratocarcinoma (EC) cells was conducted. The present study identified differences in proliferative activity, differentiation, and tumorigenic potentials between ES and EC cells. Higher expression of Nanog and Mvh, as well as Activin A and BMP4, was found in undifferentiated ES cells than in EC cells. However, the expression levels of Activin A and BMP4 increased more sharply in the EC cells during retinoic acid-induced differentiation. Stimulation of the Activin/Nodal and BMP signaling cascades and inhibition of the MEK/ERK and PI3K/Act signaling pathways resulted in a significant decrease in the number of Oct4-expressing ES cells and a loss of tumorigenicity, similar to retinoic acid-stimulated EC cells. Thus, this study demonstrates that a differentiation strategy that modulates prodifferentiation and antiproliferative signaling in ES cells may be effective for eliminating tumorigenic cells and may represent a valuable tool for the development of safe stem cell therapeutics.


Establishment of mouse teratocarcinomas stem cells line and screening genes responsible for malignancy.

  • Tao Liu‎ et al.
  • PloS one‎
  • 2012‎

The sequential transplantation of embryonal carcinoma cells in vivo can accelerate the growth and malignancy of teratocarcinomas. However, the possible molecular mechanisms in this process that reflect cancer formation in the early stage are largely unknown and. To identify which genes are associated with the changes of malignancy of teratocarcinomas, we established a tumorigenesis model in which teratocarcinoma were induced via injecting embryonic stem cells into immuno-deficiency mice, isolating teratocarcinoma stem cell from a teratocarcinoma in serum-free culture medium and injecting teratocarcinoma stem cells into immune-deficient mice continuously. By using high-throughput deep sequence technology, we identified 26 differentially expressed genes related to the changes of characteristics of teratocarcinoma stem cell in which 18 out of 26 genes were down-regulated and 8 genes were up-regulated. Among these genes, several tumor-related genes such as Gata3, Arnt and Tdgf1, epigenetic associated genes such as PHC1 and Uty were identified. Pathway enrichment analysis result revealed that Wnt signaling pathway, primary immunodeficiency pathway, antigen processing and presentation pathway and allograft rejection pathway were involved in the teratocarcinoma tumorigenesis (corrected p value<0.05). In summary, our study established a tumorigenesis model and proposed some candidate genes and signaling pathways that may play a key role in the early stage of cancer occurrence.


Luteolin Suppresses Teratoma Cell Growth and Induces Cell Apoptosis via Inhibiting Bcl-2.

  • Teng Liu‎ et al.
  • Oncology research‎
  • 2019‎

Luteolin, which is found in plant foods, has a range of therapeutic applications. In order to examine the potential roles of luteolin in ovarian teratocarcinoma, the human ovarian teratocarcinoma cell line PA-1 was selected for functional experiments in vitro and in vivo. We demonstrated that luteolin inhibited the proliferation and colony formation of PA-1 cells in vitro. The flow cytometry results suggested that luteolin induced apoptosis of PA-1 cells in a dose-dependent manner. Immunofluorescence and qRT-PCR results showed that the expression of B-cell lymphoma-2 (Bcl-2) was decreased in luteolin-treated cells, whereas the expression of Bcl-2-associated X (Bax) was increased compared with that in the control group. In addition, luteolin inhibited the tumor growth of ovarian teratocarcinoma cells in a xenograft model. All the results suggested that luteolin induced cell apoptosis and inhibited tumor growth of PA-1 cells.


Long non-coding RNAs as targets for cytosine methylation.

  • Thomas Amort‎ et al.
  • RNA biology‎
  • 2013‎

Post-synthetic modifications of nucleic acids have long been known to affect their functional and structural properties. For instance, numerous different chemical modifications modulate the structural organization, stability or translation efficiency of tRNAs and rRNAs. In contrast, little is known about modifications of poly(A)RNAs. Here, we demonstrate for the first time that the two well-studied regulatory long non-coding RNAs HOTAIR and XIST are targets of site-specific cytosine methylation. In both XIST and HOTAIR, we found methylated cytosines located within or near functionally important regions that are known to mediate interaction with chromatin-associated protein complexes. We show that cytosine methylation in the XIST A structure strongly affects binding to the chromatin-modifying complex PRC2 in vitro. These results suggest that cytosine methylation may serve as a general strategy to regulate the function of long non-coding RNAs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: