Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Retinal projection to the pretectal nucleus lentiformis mesencephali in pigeons (Columba livia).

  • Douglas R Wylie‎ et al.
  • The Journal of comparative neurology‎
  • 2014‎

In birds, the nucleus of the basal optic root (nBOR) and the nucleus lentiformis mesencephali (LM) are retinal-recipient nuclei involved in the analysis of optic flow and the generation of the optokinetic response. The nBOR receives retinal input from displaced ganglion cells (DGCs), which are found at the margin of the inner nuclear and inner plexiform layers, rather than the ganglion cell layer. The LM receives afferents from retinal ganglion cells, but whether DGCs also project to LM remains unclear. To resolve this issue, we made small injections of retrograde tracer into LM and examined horizontal sections through the retina. For comparison, we also had cases with injections in nBOR, the optic tectum, and the anterior dorsolateral thalamus (the equivalent to the mammalian lateral geniculate nucleus). From all LM injections both retinal ganglion cells and DGCs were labeled. The percentage of DGCs, as a proportion of all labeled cells, varied from 2-28%, and these were not different in morphology or size compared to those labeled from nBOR, in which the proportion of DGCs was much higher (84-93%). DGCs were also labeled after injections into the anterior dorsolateral thalamus. The proportion was small (2-3%), and these DGCs were smaller in size than those projecting to the nBOR and LM. No DGCs were labeled from an injection in the optic tectum. Based on an analysis of size, we suggest that different populations of retinal ganglion cells are involved in the projections to LM, nBOR, the optic tectum, and the anterior dorsolateral thalamus.


Immunohistochemical distribution of enkephalin, substance P, and somatostatin in the brainstem of the leopard frog, Rana pipiens.

  • S L Stuesse‎ et al.
  • Microscopy research and technique‎
  • 2001‎

The brainstems of frogs contain many of the neurochemicals that are found in mammals. However, the clustering of nuclei near the ventricles makes it difficult to distinguish individual cell groups. We addressed this problem by combining immunohistochemistry with tract tracing and an analysis of cell morphology to localize neuropeptides within the brainstem of Rana pipiens. We injected a retrograde tracer, Fluoro-Gold, into the spinal cord, and, in the same frog, processed adjacent sections for immunohistochemical location of antibodies to the neuropeptides enkephalin (ENK), substance P (SP), and somatostatin (SOM). SOM+ cells were more widespread than cells containing immunoreactivity (ir) to the other substances. Most reticular nuclei in frog brainstem contained ir to at least one of these chemicals. Cells with SOM ir were found in nucleus (n.) reticularis pontis oralis, n. reticularis magnocellularis, n. reticularis paragigantocellularis, n. reticularis dorsalis, the optic tectum, n. interpeduncularis, and n. solitarius. ENK-containing cell bodies were found in n. reticularis pontis oralis, n. reticularis dorsalis, the nucleus of the solitary tract, and the tectum. The midbrain contained most of the SP+ cells. Six nonreticular nuclei (griseum centrale rhombencephali, n. isthmi, n. profundus mesencephali, n. interpeduncularis, torus semicircularis laminaris, and the tectum) contained ir to one or more of the substances but did not project to the spinal cord. The descending tract of V, and the rubrospinal, reticulospinal, and solitary tracts contained all three peptides as did the n. profundus mesencephali, n. isthmi, and specific tectal layers. Because the distribution of neurochemicals within the frog brainstem is similar to that of amniotes, our results emphasize the large amount of conservation of structure, biochemistry, and possibly function that has occurred in the brainstem, and especially in the phylogenetically old reticular formation.


The Medial Ventrothalamic Circuitry: Cells Implicated in a Bimodal Network.

  • Tomas Vega-Zuniga‎ et al.
  • Frontiers in neural circuits‎
  • 2018‎

Previous avian thalamic studies have shown that the medial ventral thalamus is composed of several nuclei located close to the lateral wall of the third ventricle. Although the general connectivity is known, detailed morphology and connectivity pattern in some regions are still elusive. Here, using the intracellular filling technique in the chicken, we focused on two neural structures, namely, the retinorecipient neuropil of the n. geniculatus lateralis pars ventralis (GLv), and the adjacent n. intercalatus thalami (ICT). We found that the GLv-ne cells showed two different neuronal types: projection cells and horizontal interneurons. The projection cells showed variable morphologies and dendritic arborizations with axons that targeted the n. lentiformis mesencephali (LM), griseum tectale (GT), ICT, n. principalis precommissuralis (PPC), and optic tectum (TeO). The horizontal cells showed a widespread mediolateral neural process throughout the retinorecipient GLv-ne. The ICT cells, on the other hand, had multipolar somata with wide dendritic fields that extended toward the lamina interna of the GLv, and a projection pattern that targeted the n. laminaris precommissuralis (LPC). Together, these results elucidate the rich complexity of the connectivity pattern so far described between the GLv, ICT, pretectum, and tectum. Interestingly, the implication of some of these neural structures in visuomotor and somatosensory roles strongly suggests that the GLv and ICT are part of a bimodal circuit that may be involved in the generation/modulation of saccades, gaze control, and space perception.


Central connections of the trigeminal motor command system in the weakly electric Elephantnose fish (Gnathonemus petersii).

  • Monique Amey-Özel‎ et al.
  • The Journal of comparative neurology‎
  • 2019‎

The highly mobile chin appendage of Gnathonemus petersii, the Schnauzenorgan, is used to actively probe the environment and is known to be a fovea of the electrosensory system. It receives an important innervation from both the trigeminal sensory and motor systems. However, little is known about the premotor control pathways that coordinate the movements of the Schnauzenorgan, or about central pathways originating from the trigeminal motor nucleus. The present study focuses on the central connections of the trigeminal motor system to elucidate premotor centers controlling Schnauzenorgan movements, with particular interest in the possible connections between the electrosensory and trigeminal systems. Neurotracer injections into the trigeminal motor nucleus revealed bilateral, reciprocal connections between the two trigeminal motor nuclei and between the trigeminal sensory and motor nuclei by bilateral labeling of cells and terminals. Prominent afferent input to the trigeminal motor nucleus originates from the nucleus lateralis valvulae, the nucleus dorsalis mesencephali, the cerebellar corpus C1, the reticular formation, and the Raphe nuclei. Retrogradely labeled cells were also observed in the central pretectal nucleus, the dorsal anterior pretectal nucleus, the tectum, the ventroposterior nucleus of the torus semicircularis, the gustatory sensory and motor nuclei, and in the hypothalamus. Labeled terminals, but not cell bodies, were observed in the nucleus lateralis valvulae and the reticular formation. No direct connections were found between the electrosensory system and the V motor nucleus but the central connections identified would provide several multisynaptic pathways linking these two systems, including possible efference copy and corollary discharge mechanisms.


Displaced ganglion cells and the accessory optic system of pigeon.

  • K V Fite‎ et al.
  • The Journal of comparative neurology‎
  • 1981‎

The central projection and retinal distribution of displace ganglion cells (DGC's) are described for the pigeon. Discrete, localized injections of horseradish peroxidase (HRP) into the nucleus of the basal optic root (nBOR) complex labeled as many as 4,800 DGC's in the contralateral retina. The greatest densities of DGC's were observed in the more peripheral regions of the middle and inferior temporal regions of the retina, with lowest densities occurring in the inferior nasal, red field, and foveal areas. Large HRP injections of the tectal lobes, which did not include the pretectal, accessory optic (nBOR), hypothalamic, or thalamic visual nuclei, labeled only ganglion cells within the ganglion cells layer. An HRP injection centered within the nucleus lentiformis mesencephali, also including portions of the optic tectum and optic tract, labeled only ganglion cells within the ganglion cell layer of the contralateral retina. DGC's thus appear to be the primary, if not exclusive, source of retinal afferents to the nBOR complex in pigeon. The observed retinal distribution of DGC's indicates that the areas of retina with the greatest density of cells in the receptor layer, inner nuclear layer, and ganglion cell layer are relatively devoid of DGC's. Since the nBOR complex projects directly upon the vestibulocerebellum and oculomotor nuclei, DGC's would thus appear to be involved in neural circuits that mediate oculomotor reflexes and visuomotor behavior.


Topography of visual and somatosensory inputs to the pontine nuclei in zebra finches (Taeniopygia guttata).

  • Andrea H Gaede‎ et al.
  • The Journal of comparative neurology‎
  • 2024‎

Birds have a comprehensive network of sensorimotor projections extending from the forebrain and midbrain to the cerebellum via the pontine nuclei, but the organization of these circuits in the pons is not thoroughly described. Inputs to the pontine nuclei include two retinorecipient areas, nucleus lentiformis mesencephali (LM) and nucleus of the basal optic root (nBOR), which are important structures for analyzing optic flow. Other crucial regions for visuomotor control include the retinorecipient ventral lateral geniculate nucleus (GLv), and optic tectum (TeO). These visual areas, together with the somatosensory area of the anterior (rostral) Wulst, which is homologous to the primary somatosensory cortex in mammals, project to the medial and lateral pontine nuclei (PM, PL). In this study, we used injections of fluorescent tracers to study the organization of these visual and somatosensory inputs to the pontine nuclei in zebra finches. We found a topographic organization of inputs to PM and PL. The PM has a lateral subdivision that predominantly receives projections from the ipsilateral anterior Wulst. The medial PM receives bands of inputs from the ipsilateral GLv and the nucleus laminaris precommisulis, located medial to LM. We also found that the lateral PL receives a strong ipsilateral projection from TeO, while the medial PL and region between the PM and PL receive less prominent projections from nBOR, bilaterally. We discuss these results in the context of the organization of pontine inputs to the cerebellum and possible functional implications of diverse somato-motor and visuomotor inputs and parcellation in the pontine nuclei.


Anuran dorsal column nucleus: organization, immunohistochemical characterization, and fiber connections in Rana perezi and Xenopus laevis.

  • A Muñoz‎ et al.
  • The Journal of comparative neurology‎
  • 1995‎

As part of a research program on the evolution of somatosensory systems in vertebrates, the dorsal column nucleus (DCN) was studied with (immuno)histochemical and tract-tracing techniques in anurans (the large green frog, Rana perezi, and the clawed toad, Xenopus laevis). The anuran DCN contains some nicotinamide adenine dinucleotide phosphate diaphorase-positive neurons, very little calbindin D-28k, and a distinct parvalbumin-positive cell population. The anuran DCN is innervated by primary and non-primary spinal afferents, by primary afferents from cranial nerves V, VII, IX, and X, by serotonin-immunoreactive fibers, and by peptidergic fibers. Non-primary DCN afferents from the spinal cord appear to arise throughout the spinal cord, but particularly from the ipsilateral dorsal gray. The present study focused on the efferent connections of the DCN, in particular the targets of the medial lemniscus. The medial lemniscus could be traced throughout the brainstem and into the diencephalon. Along its course, the medial lemniscus gives off collaterals to various parts of the reticular formation, to the octavolateral area, and to the granular layer of the cerebellum. At mesencephalic levels, the medial lemniscus innervates the lateral part of the torus semicircularis as well as various tegmental nuclei. A striking difference between the two species studied is that while in R. perezi medial lemniscal fibers do not reach the tectum mesencephali, in X. laevis, intermediate and deep tectal layers are innervated. Beyond the midbrain, both dorsal and ventral thalamic areas are innervated by the medial lemniscus. The present study shows that the anuran "lemniscal pathway" is basically similar to that of amniotes.


Microconnectomics of the pretectum and ventral thalamus in the chicken (Gallus gallus).

  • Tomas Vega-Zuniga‎ et al.
  • The Journal of comparative neurology‎
  • 2016‎

The avian pretectal and ventrothalamic nuclei, encompassing the griseum tectale (GT), n. lentiformis mesencephali (LM), and n. geniculatus lateralis pars ventralis (GLv), are prominent retinorecipient structures related to optic flow operations and visuomotor control. Hence, a close coordination of these neural circuits is to be expected. Yet the connectivity among these nuclei is poorly known. Here, using intracellular labeling and in situ hybridization, we investigated the detailed morphology, connectivity, and neurochemical identity of neurons in these nuclei. Two different cell types exist in the GT: one that generates an axonal projection to the optic tectum (TeO), LM, GLv, and n. intercalatus thalami (ICT), and a second population that only projects to the LM and GLv. In situ hybridization revealed that most neurons in the GT express the vesicular glutamate transporter (VGluT2) mRNA, indicating a glutamatergic identity. In the LM, three morphological cell types were defined, two of which project axons towards dorsal targets. The LM neurons showed strong VGluT2 expression. Finally, the cells located in the GLv project to the TeO, LM, GT, n. principalis precommisuralis (PPC), and ICT. All neurons in the GLv showed strong expression of the vesicular inhibitory amino acid transporter (VIAAT) mRNA, suggesting a GABAergic identity. Our results show that the pretectal and ventrothalamic nuclei are highly interconnected, especially by glutamatergic and GABAergic neurons from the GT and GLv, respectively. This complex morphology and connectivity might be required to organize orienting visuomotor behaviors and coordinate the specific optic flow patterns that they induce. J. Comp. Neurol. 524:2208-2229, 2016. © 2015 Wiley Periodicals, Inc.


Autoradiographic localization of nicotinic acetylcholine receptors in the brain of the zebra finch (Poephila guttata).

  • J T Watson‎ et al.
  • The Journal of comparative neurology‎
  • 1988‎

We have localized nicotinic acetylcholine receptors in the zebra finch brain by using three 125I-labelled ligands: alpha bungarotoxin and two monoclonal antibodies to neuronal nicotinic receptors (MAb 35 of Tzardos et al., J. Biol. Chem., 250: 8635-8645, '81; and MAb 270 of Whiting and Lindstrom: J. Neurosci. 6: 3061-3069, '86). Unfixed brains from intact adult male and female zebra finches were prepared for in vitro autoradiography. Low-resolution film autoradiograms and high-resolution emulsion autoradiograms were prepared for each of the three ligands. The major brain structures that bind all three of the ligands are hippocampus; hyperstriatum dorsalis; hyperstriatum ventralis; nucleus lentiformis mesencephali; nucleus pretectalis, some layers of the optic tectum; nucleus mesencephalicus lateralis; pars dorsalis; locus ceruleus; and all cranial motor nuclei except nucleus nervi hypoglossi. The major structures labelled only by [125I]-alpha bungarotoxin binding included hyperstriatum accessorium and the nuclei: preopticus medialis, medialis hypothalami posterioris, semilunaris, olivarius inferior, and the periventricular organ. Of the song control nuclei, nucleus magnocellularis of the anterior neostriatum; hyperstriatum ventralis, pars caudalis; nucleus intercollicularis; and nucleus hypoglossus were labelled. The binding patterns of the two antibodies were similar to one another but not identical. Both labelled nucleus spiriformis lateralis and nucleus geniculatus lateralis, pars ventralis especially heavily and also labelled the nucleus habenula medialis; nucleus subpretectalis; nucleus isthmi, pars magnocellularis; nucleus reticularis gigantocellularis; nucleus reticularis lateralis; nucleus tractus solitarii; nucleus vestibularis dorsolateralis; nucleus vestibularis lateralis; nucleus descendens nervi trigemini; and the deep cerebellar nuclei. Lobus parolfactorius and nucleus vestibularis medialis were labelled by only MAb 270, whereas only MAb 35 labelled nucleus laminaris and the medial and lateral pontine nuclei. These data extend previous reports of cholinergic participation in the song system (Ryan and Arnold: J. Comp. Neurol. 202: 211-219, '81) to suggest that the zebra finch song system may contain several closely related nicotinic receptors. In several brain nuclei it appeared that certain anatomical portions of a nucleus or a certain class of neurons were specifically labelled. Furthermore, in certain cases, the labelling appeared to be clustered around Nissl-stained cell nuclei, thus suggesting that the receptors are concentrated on or in somata.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: