Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 982 papers

Dysregulation of RNA Splicing in Tauopathies.

  • Daniel J Apicco‎ et al.
  • Cell reports‎
  • 2019‎

Pathological aggregation of RNA binding proteins (RBPs) is associated with dysregulation of RNA splicing in PS19 P301S tau transgenic mice and in Alzheimer's disease brain tissues. The dysregulated splicing particularly affects genes involved in synaptic transmission. The effects of neuroprotective TIA1 reduction on PS19 mice are also examined. TIA1 reduction reduces disease-linked alternative splicing events for the major synaptic mRNA transcripts examined, suggesting that normalization of RBP functions is associated with the neuroprotection. Use of the NetDecoder informatics algorithm identifies key upstream biological targets, including MYC and EGFR, underlying the transcriptional and splicing changes in the protected compared to tauopathy mice. Pharmacological inhibition of MYC and EGFR activity in neuronal cultures tau recapitulates the neuroprotective effects of TIA1 reduction. These results demonstrate that dysfunction of RBPs and RNA splicing processes are major elements of the pathophysiology of tauopathies, as well as potential therapeutic targets for tauopathies.


Acetylated tau neuropathology in sporadic and hereditary tauopathies.

  • David J Irwin‎ et al.
  • The American journal of pathology‎
  • 2013‎

We have recently shown acetylation of tau at lysine residue 280 (AC-K280) to be a disease-specific modification in Alzheimer disease (AD), corticobasal degeneration, and progressive supranuclear palsy, likely representing a major regulatory tau modification. Herein, we extend our observations using IHC with a polyclonal antibody specific for AC-K280. Thirty brain regions were examined in argyrophilic grain disease (AGD; n = 5), tangle-predominant senile dementia (TPSD; n = 5), Pick disease (n = 4), familial AD (FAD; n = 2; PSEN1 p.G206A and p.S170P), and frontotemporal dementia with parkinsonism linked to chromosome-17 (FTDP-17; n = 2; MAPT p.P301L and IVS10 + 16). All AGD, TPSD, FAD, and FTDP-17 cases had significant AC-K280 reactivity that was similar in severity and distribution to phosphorylated tau. AC-K280 robustly labeled grain pathological characteristics in AGD and was predominantly associated with thioflavin-S-positive neurofibrillary tangles and less reactive in neuropil threads and extracellular tangles in TPSD and FAD. Thioflavin-S-negative neuronal and glial inclusions of patients with FTDP-17 were robustly AC-K280 reactive. A low degree of AC-K280 was found in a subset of 4-repeat tau-containing lesions in Pick disease. AC-K280 is a prominent feature of both neuronal and glial tau aggregations in tauopathies of various etiologies. The close association of AC-K280 with amyloid and pre-amyloid conformations of tau suggests a potential role in tangle maturation and, thus, could serve as a useful biomarker or therapeutic target in a variety of tauopathies.


The therapeutic landscape of tauopathies: challenges and prospects.

  • Jeffrey L Cummings‎ et al.
  • Alzheimer's research & therapy‎
  • 2023‎

Tauopathies are a group of neurodegenerative disorders characterized by the aggregation of the microtubule-associated protein tau. Aggregates of misfolded tau protein are believed to be implicated in neuronal death, which leads to a range of symptoms including cognitive decline, behavioral change, dementia, and motor deficits. Currently, there are no effective treatments for tauopathies. There are four clinical candidates in phase III trials and 16 in phase II trials. While no effective treatments are currently approved, there is increasing evidence to suggest that various therapeutic approaches may slow the progression of tauopathies or improve symptoms. This review outlines the landscape of therapeutic drugs (indexed through February 28, 2023) that target tau pathology and describes drug candidates in clinical development as well as those in the discovery and preclinical phases. The review also contains information on notable therapeutic programs that are inactive or that have been discontinued from development.


Colocalization of BRCA1 with Tau Aggregates in Human Tauopathies.

  • Masanori Kurihara‎ et al.
  • Brain sciences‎
  • 2019‎

The mechanism of neuronal dysfunction via tau aggregation in tauopathy patients is controversial. In Alzheimer's disease (AD), we previously reported mislocalization of the DNA repair nuclear protein BRCA1, its coaggregation with tau, and the possible importance of the subsequent DNA repair dysfunction. However, whether this dysfunction in BRCA1 also occurs in other tauopathies is unknown. The aim of this study was to evaluate whether BRCA1 colocalizes with tau aggregates in the cytoplasm in the brains of the patients with tauopathy. We evaluated four AD, two Pick's disease (PiD), three progressive supranuclear palsy (PSP), three corticobasal degeneration (CBD), four normal control, and four disease control autopsy brains. Immunohistochemistry was performed using antibodies against BRCA1 and phosphorylated tau (AT8). Colocalization was confirmed by immunofluorescence double staining. Colocalization of BRCA1 with tau aggregates was observed in neurofibrillary tangles and neuropil threads in AD, pick bodies in PiD, and globose neurofibrillary tangles and glial coiled bodies in PSP. However, only partial colocalization was observed in tuft-shaped astrocytes in PSP, and no colocalization was observed in CBD. Mislocalization of BRCA1 was not observed in disease controls. BRCA1 was mislocalized to the cytoplasm and colocalized with tau aggregates in not only AD but also in PiD and PSP. Mislocalization of BRCA1 by tau aggregates may be involved in the pathogenesis of PiD and PSP.


MicroRNA-132 provides neuroprotection for tauopathies via multiple signaling pathways.

  • Rachid El Fatimy‎ et al.
  • Acta neuropathologica‎
  • 2018‎

MicroRNAs (miRNA) regulate fundamental biological processes, including neuronal plasticity, stress response, and survival. Here, we describe a neuroprotective function of miR-132, the miRNA most significantly downregulated in neurons in Alzheimer's disease. We demonstrate that miR-132 protects primary mouse and human wild-type neurons and more vulnerable Tau-mutant neurons against amyloid β-peptide (Aβ) and glutamate excitotoxicity. It lowers the levels of total, phosphorylated, acetylated, and cleaved forms of Tau implicated in tauopathies, promotes neurite elongation and branching, and reduces neuronal death. Similarly, miR-132 attenuates PHF-Tau pathology and neurodegeneration, and enhances long-term potentiation in the P301S Tau transgenic mice. The neuroprotective effects are mediated by direct regulation of the Tau modifiers acetyltransferase EP300, kinase GSK3β, RNA-binding protein Rbfox1, and proteases Calpain 2 and Caspases 3/7. These data suggest miR-132 as a master regulator of neuronal health and indicate that miR-132 supplementation could be of therapeutic benefit for the treatment of Tau-associated neurodegenerative disorders.


RT-QuIC detection of tauopathies using full-length tau substrates.

  • Joanne M Tennant‎ et al.
  • Prion‎
  • 2020‎

Early detection and diagnosis of neurodegenerative diseases has been hampered by the lack of sensitive testing. Real-time quaking induced conversion (RT-QuIC) has been used for the early and sensitive detection of prion-induced neurologic disease, and has more recently been adapted to detect misfolded alpha-synuclein and tau as biomarkers for neurodegenerative disease. Here we use full-length recombinant tau substrates to detect tau seeding activity in Alzheimer's disease and other human tauopathies.


Can accelerated ageing models inform us on age-related tauopathies?

  • Zhuang Zhuang Han‎ et al.
  • Aging cell‎
  • 2023‎

Ageing is the greatest risk factor of late-onset neurodegenerative diseases. In the realm of sporadic tauopathies, modelling the process of biological ageing in experimental animals forms the foundation of searching for the molecular origin of pathogenic tau and developing potential therapeutic interventions. Although prior research into transgenic tau models offers valuable lessons for studying how tau mutations and overexpression can drive tau pathologies, the underlying mechanisms by which ageing leads to abnormal tau accumulation remains poorly understood. Mutations associated with human progeroid syndromes have been proposed to be able to mimic an aged environment in animal models. Here, we summarise recent attempts in modelling ageing in relation to tauopathies using animal models that carry mutations associated with human progeroid syndromes, or genetic elements unrelated to human progeroid syndromes, or have exceptional natural lifespans, or a remarkable resistance to ageing-related disorders.


New insights into the therapeutic approaches for the treatment of tauopathies.

  • Himanshi Singh‎ et al.
  • Neural regeneration research‎
  • 2024‎

Tauopathies are a group of neurological disorders, including Alzheimer's disease and frontotemporal dementia, which involve progressive neurodegeneration, cognitive deficits, and aberrant tau protein accumulation. The development of tauopathies cannot currently be stopped or slowed down by treatment measures. Given the significant contribution of tau burden in primary tauopathies and the strong association between pathogenic tau accumulation and cognitive deficits, there has been a lot of interest in creating therapies that can alleviate tau pathology and render neuroprotective effects. Recently, small molecules, immunotherapies, and gene therapy have been used to reduce the pathological tau burden and prevent neurodegeneration in animal models of tauopathies. However, the major pitfall of the current therapeutic approach is the difficulty of drugs and gene-targeting modalities to cross the blood-brain barrier and their unintended side effects. In this review, the current therapeutic strategies used for tauopathies including the use of oligonucleotide-based gene therapy approaches that have shown a promising result for the treatment of tauopathies and Alzheimer's disease in preclinical animal models, have been discussed.


Involvement of Oligodendrocytes in Tau Seeding and Spreading in Tauopathies.

  • Isidro Ferrer‎ et al.
  • Frontiers in aging neuroscience‎
  • 2019‎

Introduction: Human tau seeding and spreading occur following intracerebral inoculation into different gray matter regions of brain homogenates obtained from tauopathies in transgenic mice expressing wild or mutant tau, and in wild-type (WT) mice. However, little is known about tau propagation following inoculation in the white matter. Objectives: The present study is geared to learning about the patterns of tau seeding and cells involved following unilateral inoculation in the corpus callosum of homogenates from sporadic Alzheimer's disease (AD), primary age-related tauopathy (PART: neuronal 4Rtau and 3Rtau), pure aging-related tau astrogliopathy (ARTAG: astroglial 4Rtau with thorn-shaped astrocytes TSAs), globular glial tauopathy (GGT: 4Rtau with neuronal tau and specific tau inclusions in astrocytes and oligodendrocytes, GAIs and GOIs, respectively), progressive supranuclear palsy (PSP: 4Rtau with neuronal inclusions, tufted astrocytes and coiled bodies), Pick's disease (PiD: 3Rtau with characteristic Pick bodies in neurons and tau containing fibrillar astrocytes), and frontotemporal lobar degeneration linked to P301L mutation (FTLD-P301L: 4Rtau familial tauopathy). Methods: Adult WT mice were inoculated unilaterally in the lateral corpus callosum with sarkosyl-insoluble fractions or with sarkosyl-soluble fractions from the mentioned tauopathies; mice were killed from 4 to 7 months after inoculation. Brains were fixed in paraformaldehyde, embedded in paraffin and processed for immunohistochemistry. Results: Tau seeding occurred in the ipsilateral corpus callosum and was also detected in the contralateral corpus callosum. Phospho-tau deposits were found in oligodendrocytes similar to coiled bodies and in threads. Moreover, tau deposits co-localized with active (phosphorylated) tau kinases p38 and ERK 1/2, suggesting active tau phosphorylation of murine tau. TSAs, GAIs, GOIs, tufted astrocytes, and tau-containing fibrillar astrocytes were not seen in any case. Tau deposits were often associated with slight myelin disruption and the presence of small PLP1-immunoreactive globules and dots in the ipsilateral corpus callosum 6 months after inoculation of sarkosyl-insoluble fractions from every tauopathy. Conclusions: Seeding and spreading of human tau in the corpus callosum of WT mice occurs in oligodendrocytes, thereby supporting the idea of a role of oligodendrogliopathy in tau seeding and spreading in the white matter in tauopathies. Slight differences in the predominance of threads or oligodendroglial deposits suggest disease differences in the capacity of tau seeding and spreading among tauopathies.


CSF tau microtubule-binding region identifies pathological changes in primary tauopathies.

  • Kanta Horie‎ et al.
  • Nature medicine‎
  • 2022‎

Despite recent advances in fluid biomarker research in Alzheimer's disease (AD), there are no fluid biomarkers or imaging tracers with utility for diagnosis and/or theragnosis available for other tauopathies. Using immunoprecipitation and mass spectrometry, we show that 4 repeat (4R) isoform-specific tau species from microtubule-binding region (MTBR-tau275 and MTBR-tau282) increase in the brains of corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), frontotemporal lobar degeneration (FTLD)-MAPT and AD but decrease inversely in the cerebrospinal fluid (CSF) of CBD, FTLD-MAPT and AD compared to control and other FTLD-tau (for example, Pick's disease). CSF MTBR-tau measures are reproducible in repeated lumbar punctures and can be used to distinguish CBD from control (receiver operating characteristic area under the curve (AUC) = 0.889) and other FTLD-tau, such as PSP (AUC = 0.886). CSF MTBR-tau275 and MTBR-tau282 may represent the first affirmative biomarkers to aid in the diagnosis of primary tauopathies and facilitate clinical trial designs.


Determinants of Astrocytic Pathology in Stem Cell Models of Primary Tauopathies.

  • Kimberly L Fiock‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Astrocytic tau aggregates are seen in several primary and secondary tauopathies, including progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and chronic traumatic encephalopathy (CTE). In all cases, astrocytic tau consists exclusively of the longer (4R) tau isoform, even when adjacent neuronal aggregates consist of a mixture of 3- and 4R tau, as in CTE. The reasons for this and the mechanisms by which astrocytic tau aggregates form remain unclear. We used a combination of RNA in situ hybridization and immunofluorescence in post-mortem human brain tissue, as well as tau uptake studies in human stem cell-derived astrocytes, to determine the origins of astrocytic tau in 4R tauopathies. We found that astrocytes across tauopathies do not upregulate tau mRNA expression between diseases or between tau-positive and -negative astrocytes within PSP. We then found that stem cell-derived astrocytes preferentially take up long isoform (4R) labeled recombinant tau and that this uptake is impaired by induction of reactivity with inflammatory stimuli or nutritional stress. Astrocytes exposed to either 3R or 4R tau also showed downregulation of genes related to astrocyte differentiation. Our findings suggest that astrocytes preferentially take up neuronal 4R tau from the extracellular space, which potentially explains why astrocytic tau aggregates contain only 4R tau, and that tau uptake is impaired by decreased nutrient availability or neuroinflammation, both of which are common in the aging brain.


Deep learning-based model for diagnosing Alzheimer's disease and tauopathies.

  • Shunsuke Koga‎ et al.
  • Neuropathology and applied neurobiology‎
  • 2022‎

This study aimed to develop a deep learning-based model for differentiating tauopathies, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and Pick's disease (PiD), based on tau-immunostained digital slide images.


A novel dephosphorylation targeting chimera selectively promoting tau removal in tauopathies.

  • Jie Zheng‎ et al.
  • Signal transduction and targeted therapy‎
  • 2021‎

Intraneuronal accumulation of hyperphosphorylated tau is a hallmark pathology shown in over twenty neurodegenerative disorders, collectively termed as tauopathies, including the most common Alzheimer's disease (AD). Therefore, selectively removing or reducing hyperphosphorylated tau is promising for therapies of AD and other tauopathies. Here, we designed and synthesized a novel DEPhosphorylation TArgeting Chimera (DEPTAC) to specifically facilitate the binding of tau to Bα-subunit-containing protein phosphatase 2A (PP2A-Bα), the most active tau phosphatase in the brain. The DEPTAC exhibited high efficiency in dephosphorylating tau at multiple AD-associated sites and preventing tau accumulation both in vitro and in vivo. Further studies revealed that DEPTAC significantly improved microtubule assembly, neurite plasticity, and hippocampus-dependent learning and memory in transgenic mice with inducible overexpression of truncated and neurotoxic human tau N368. Our data provide a strategy for selective removal of the hyperphosphorylated tau, which sheds new light for the targeted therapy of AD and related-tauopathies.


Long non-coding RNA SNHG8 drives stress granule formation in tauopathies.

  • Reshma Bhagat‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2023‎

Tauopathies are a heterogenous group of neurodegenerative disorders characterized by tau aggregation in the brain. In a subset of tauopathies, rare mutations in the MAPT gene, which encodes the tau protein, are sufficient to cause disease; however, the events downstream of MAPT mutations are poorly understood. Here, we investigate the role of long non-coding RNAs (lncRNAs), transcripts >200 nucleotides with low/no coding potential that regulate transcription and translation, and their role in tauopathy. Using stem cell derived neurons from patients carrying a MAPT p.P301L, IVS10+16, or p.R406W mutation, and CRISPR-corrected isogenic controls, we identified transcriptomic changes that occur as a function of the MAPT mutant allele. We identified 15 lncRNAs that were commonly differentially expressed across the three MAPT mutations. The commonly differentially expressed lncRNAs interact with RNA-binding proteins that regulate stress granule formation. Among these lncRNAs, SNHG8 was significantly reduced in a mouse model of tauopathy and in FTLD-tau, progressive supranuclear palsy, and Alzheimer’s disease brains. We show that SNHG8 interacts with tau and stress granule-associated RNA-binding protein TIA1. Overexpression of mutant tau in vitro is sufficient to reduce SNHG8 expression and induce stress granule formation. Rescuing SNHG8 expression leads to reduced stress granule formation and reduced TIA1 levels, suggesting that dysregulation of this non-coding RNA is a causal factor driving stress granule formation via TIA1 in tauopathies.


TRIM11 protects against tauopathies and is down-regulated in Alzheimer's disease.

  • Zi-Yang Zhang‎ et al.
  • Science (New York, N.Y.)‎
  • 2023‎

Aggregation of tau into filamentous inclusions underlies Alzheimer's disease (AD) and numerous other neurodegenerative tauopathies. The pathogenesis of tauopathies remains unclear, which impedes the development of disease-modifying treatments. Here, by systematically analyzing human tripartite motif (TRIM) proteins, we identified a few TRIMs that could potently inhibit tau aggregation. Among them, TRIM11 was markedly down-regulated in AD brains. TRIM11 promoted the proteasomal degradation of mutant tau as well as superfluous normal tau. It also enhanced tau solubility by acting as both a molecular chaperone to prevent tau misfolding and a disaggregase to dissolve preformed tau fibrils. TRIM11 maintained the connectivity and viability of neurons. Intracranial delivery of TRIM11 through adeno-associated viruses ameliorated pathology, neuroinflammation, and cognitive impairments in multiple animal models of tauopathies. These results suggest that TRIM11 down-regulation contributes to the pathogenesis of tauopathies and that restoring TRIM11 expression may represent an effective therapeutic strategy.


Thioflavin S Staining and Amyloid Formation Are Unique to Mixed Tauopathies.

  • Kimberly L Fiock‎ et al.
  • The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society‎
  • 2023‎

Tau phosphorylation, aggregation, and toxicity are the main drivers of neurodegeneration in multiple tauopathies, including Alzheimer's disease (AD) and frontotemporal lobar degeneration with tau. Although aggregation and amyloid formation are often assumed to be synonymous, the ability of tau aggregates in different diseases to form amyloids in vivo has not been systematically studied. We used the amyloid dye Thioflavin S to look at tau aggregates in mixed tauopathies such as AD and primary age-related tauopathy, as well as pure 3R or 4R tauopathies such as Pick's disease, progressive supranuclear palsy, and corticobasal degeneration. We found that aggregates of tau protein only form thioflavin-positive amyloids in mixed (3R/4R), but not pure (3R or 4R), tauopathies. Interestingly, neither astrocytic nor neuronal tau pathology was thioflavin-positive in pure tauopathies. As most current positron emission tomography tracers are based on thioflavin derivatives, this suggests that they may be more useful for differential diagnosis than the identification of a general tauopathy. Our findings also suggest that thioflavin staining may have utility as an alternative to traditional antibody staining for distinguishing between tau aggregates in patients with multiple pathologies and that the mechanisms for tau toxicity may differ between different tauopathies.


Tau deposition patterns are associated with functional connectivity in primary tauopathies.

  • Nicolai Franzmeier‎ et al.
  • Nature communications‎
  • 2022‎

Tau pathology is the main driver of neuronal dysfunction in 4-repeat tauopathies, including cortico-basal degeneration and progressive supranuclear palsy. Tau is assumed to spread prion-like across connected neurons, but the mechanisms of tau propagation are largely elusive in 4-repeat tauopathies, characterized not only by neuronal but also by astroglial and oligodendroglial tau accumulation. Here, we assess whether connectivity is associated with 4R-tau deposition patterns by combining resting-state fMRI connectomics with both 2nd generation 18F-PI-2620 tau-PET in 46 patients with clinically diagnosed 4-repeat tauopathies and post-mortem cell-type-specific regional tau assessments from two independent progressive supranuclear palsy patient samples (n = 97 and n = 96). We find that inter-regional connectivity is associated with higher inter-regional correlation of both tau-PET and post-mortem tau levels in 4-repeat tauopathies. In regional cell-type specific post-mortem tau assessments, this association is stronger for neuronal than for astroglial or oligodendroglial tau, suggesting that connectivity is primarily associated with neuronal tau accumulation. Using tau-PET we find further that patient-level tau patterns are associated with the connectivity of subcortical tau epicenters. Together, the current study provides combined in vivo tau-PET and histopathological evidence that brain connectivity is associated with tau deposition patterns in 4-repeat tauopathies.


Nontoxic singlet oxygen generator as a therapeutic candidate for treating tauopathies.

  • Sahabudeen Sheik Mohideen‎ et al.
  • Scientific reports‎
  • 2015‎

Methylene blue (MB) inhibits the aggregation of tau, a main constituent of neurofibrillary tangles. However, MB's mode of action in vivo is not fully understood. MB treatment reduced the amount of sarkosyl-insoluble tau in Drosophila that express human wild-type tau. MB concurrently ameliorated the climbing deficits of transgenic tau flies to a limited extent and diminished the climbing activity of wild-type flies. MB also decreased the survival rate of wild-type flies. Based on its photosensitive efficacies, we surmised that singlet oxygen generated through MB under light might contribute to both the beneficial and toxic effects of MB in vivo. We identified rose bengal (RB) that suppressed tau accumulation and ameliorated the behavioral deficits to a lesser extent than MB. Unlike MB, RB did not reduce the survival rate of flies. Our findings indicate that singlet oxygen generators with little toxicity may be suitable drug candidates for treating tauopathies.


Tau immunoreactivity in peripheral tissues of human aging and select tauopathies.

  • Brittany N Dugger‎ et al.
  • Neuroscience letters‎
  • 2019‎

Many studies have been directed at understanding mechanisms of tau aggregation and therapeutics, nearly all focusing on the brain. It is critical to understand the presence of tau in peripheral tissues since this may provide new insights into disease progression and selective vulnerability. The current study sought to determine the presence of select tau species in peripheral tissues in elderly individuals and across an array of tauopathies. Using formalin fixed paraffin embedded sections, we examined abdominal skin, submandibular gland, and sigmoid colon among 69 clinicopathologically defined cases: 19 lacking a clinical neuropathological diagnosis (normal controls), 26 progressive supranuclear palsy (PSP), 21 Alzheimer's disease (AD), and 3 with corticobasal degeneration (CBD). Immunohistochemistry was performed using antibodies for "total" tau (HT7) and two phosphorylated tau species (AT8 and pT231). HT7 staining of abdominal skin revealed immunoreactivity of potential nerve elements in 5% of cases (1 AD, 1 AD/PSP, and 1 CBD out of 55 cases examined); skin sections lacked AT8 and pT231 immunoreactive nerve elements. Submandibular glands from all cases had HT7 immunoreactive nerve elements; while pT231 was present in 92% of cases, and AT8 in only 3 cases (2 AD and one AD/PSP case). In sigmoid colon, HT7 immunoreactivity was present in all but 2 cases (97%), pT231 in 54%, and AT8 was present in only 5/62 cases (8%). These data suggest select tau species in CNS tauopathies do not have a high propensity to spread to the periphery and this may hold clues for the understanding of CNS tau pathogenicity and vulnerability.


Determinants of astrocytic pathology in stem cell models of primary tauopathies.

  • Kimberly L Fiock‎ et al.
  • Acta neuropathologica communications‎
  • 2023‎

Astrocytic tau aggregates are seen in several primary and secondary tauopathies, including progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and chronic traumatic encephalopathy (CTE). In all of these diseases, astrocytic tau consists mostly of the longer (4R) tau isoform, even when adjacent neuronal aggregates consist of a mixture of 3- and 4R tau, as in CTE. Even the rare astrocytic tau aggregates seen in Pick's disease appear to contain both 3R and 4R tau. The reasons for this, and the mechanisms by which astrocytic tau aggregates form, remain unclear. We used a combination of RNA in situ hybridization and immunofluorescence in post-mortem human brain tissue, as well as tau uptake studies in human stem cell-derived astrocytes, to determine the origins of astrocytic tau in 4R tauopathies. We found no differences in tau mRNA expression between diseases or between tau positive and negative astrocytes within PSP. We then found that stem cell-derived astrocytes preferentially take up long isoform (4R) recombinant tau and that this uptake is impaired by induction of reactivity with inflammatory stimuli or nutritional stress. Astrocytes exposed to either 3R or 4R tau also showed downregulation of genes related to astrocyte differentiation. Our findings suggest that astrocytes preferentially take up neuronal 4R tau from the extracellular space, potentially explaining why 4R tau is the predominant isoform in astrocytic tau aggregates.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: