Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 325 papers

Subfunctionalization and neofunctionalization of vertebrate Lef/Tcf transcription factors.

  • Susanne Klingel‎ et al.
  • Developmental biology‎
  • 2012‎

Invertebrates express a multitude of Wnt ligands and all Wnt/β-catenin signaling pathways converge to only one nuclear Lef/Tcf. In vertebrates, however, four distinct Lef/Tcfs, i.e. Tcf-1, Lef, Tcf-3, and Tcf-4 fulfill this function. At present, it is largely unknown to what extent the various Lef/Tcfs are functionally similar or diversified in vertebrates. In particular, it is not known which domains are responsible for the Tcf subtype specific functions. We investigated the conserved and non-conserved functions of the various Tcfs by using Xenopus laevis as a model organism and testing Tcfs from Hydra magnipapillata, Caenorhabditis elegans and Drosophila melanogaster. In order to identify domains relevant for the individual properties we created series of chimeric constructs consisting of parts of XTcf-3, XTcf-1 and HyTcf. Rescue experiments in Xenopus morphants revealed that the three invertebrate Tcfs tested compensated the loss of distinct Xenopus Tcfs: Drosophila Tcf (Pangolin) can substitute for the loss of XTcf-1, XTcf-3 and XTcf-4. By comparison, Caenorhabditis Tcf (Pop-1) and Hydra Tcf (HyTcf) can substitute for the loss of only XTcf-3 and XTcf-4, respectively. The domain, which is responsible for subtype specific functions is the regulatory CRD domain. A phylogenetic analysis separates Tcf-1/Lef-1 from the sister group Tcf-3/4 in the vertebrate lineage. We propose that the vertebrate specific diversification of Tcfs in vertebrates resulted in subfunctionalization of a Tcf that already united most of the Lef/Tcf functions.


TCF/LEF Transcription Factors: An Update from the Internet Resources.

  • Dusan Hrckulak‎ et al.
  • Cancers‎
  • 2016‎

T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) proteins (TCFs) from the High Mobility Group (HMG) box family act as the main downstream effectors of the Wnt signaling pathway. The mammalian TCF/LEF family comprises four nuclear factors designated TCF7, LEF1, TCF7L1, and TCF7L2 (also known as TCF1, LEF1, TCF3, and TCF4, respectively). The proteins display common structural features and are often expressed in overlapping patterns implying their redundancy. Such redundancy was indeed observed in gene targeting studies; however, individual family members also exhibit unique features that are not recapitulated by the related proteins. In the present viewpoint, we summarized our current knowledge about the specific features of individual TCFs, namely structural-functional studies, posttranslational modifications, interacting partners, and phenotypes obtained upon gene targeting in the mouse. In addition, we employed several publicly available databases and web tools to evaluate the expression patterns and production of gene-specific isoforms of the TCF/LEF family members in human cells and tissues.


Lysine Demethylase KDM2A Promotes Proteasomal Degradation of TCF/LEF Transcription Factors in a Neddylation-Dependent Manner.

  • Tijana Šopin‎ et al.
  • Cells‎
  • 2023‎

Canonical Wnt signaling is essential for a plethora of biological processes ranging from early embryogenesis to aging. Malfunctions of this crucial signaling pathway are associated with various developmental defects and diseases, including cancer. Although TCF/LEF transcription factors (TCF/LEFs) are known to be essential for this pathway, the regulation of their intracellular levels is not completely understood. Here, we show that the lysine demethylase KDM2A promotes the proteasomal destabilization of TCF/LEFs independently of its demethylase domain. We found that the KDM2A-mediated destabilization of TCF/LEFs is dependent on the KDM2A zinc finger CXXC domain. Furthermore, we identified the C-terminal region of TCF7L2 and the CXXC domain of KDM2A as the domains responsible for the interaction between the two proteins. Our study is also the first to show that endogenous TCF/LEF proteins undergo KDM2A-mediated proteasomal degradation in a neddylation-dependent manner. Here, we reveal a completely new mechanism that affects canonical Wnt signaling by regulating the levels of TCF/LEF transcription factors through their KDM2A-promoted proteasomal degradation.


VBP1 modulates Wnt/β-catenin signaling by mediating the stability of the transcription factors TCF/LEFs.

  • Haifeng Zhang‎ et al.
  • The Journal of biological chemistry‎
  • 2020‎

The Wnt/β-catenin pathway is one of the major pathways that regulates embryonic development, adult homeostasis, and stem cell self-renewal. In this pathway, transcription factors T-cell factor and lymphoid enhancer factor (TCF/LEF) serve as a key switch to repress or activate Wnt target gene transcription by recruiting repressor molecules or interacting with the β-catenin effector, respectively. It has become evident that the protein stability of the TCF/LEF family members may play a critical role in controlling the activity of the Wnt/β-catenin signaling pathway. However, factors that regulate the stability of TCF/LEFs remain largely unknown. Here, we report that pVHL binding protein 1 (VBP1) regulates the Wnt/β-catenin signaling pathway by controlling the stability of TCF/LEFs. Surprisingly, we found that either overexpression or knockdown of VBP1 decreased Wnt/β-catenin signaling activity in both cultured cells and zebrafish embryos. Mechanistically, VBP1 directly binds to all four TCF/LEF family members and von Hippel-Lindau tumor-suppressor protein (pVHL). Either overexpression or knockdown of VBP1 increases the association between TCF/LEFs and pVHL and then decreases the protein levels of TCF/LEFs via proteasomal degradation. Together, our results provide mechanistic insights into the roles of VBP1 in controlling TCF/LEFs protein stability and regulating Wnt/β-catenin signaling pathway activity.


SOX transcription factors direct TCF-independent WNT/β-catenin responsive transcription to govern cell fate in human pluripotent stem cells.

  • Shreyasi Mukherjee‎ et al.
  • Cell reports‎
  • 2022‎

WNT/β-catenin signaling controls gene expression across biological contexts from development and stem cell homeostasis to diseases including cancer. How β-catenin is recruited to distinct enhancers to activate context-specific transcription is unclear, given that most WNT/ß-catenin-responsive transcription is thought to be mediated by TCF/LEF transcription factors (TFs). With time-resolved multi-omic analyses, we show that SOX TFs can direct lineage-specific WNT-responsive transcription during the differentiation of human pluripotent stem cells (hPSCs) into definitive endoderm and neuromesodermal progenitors. We demonstrate that SOX17 and SOX2 are required to recruit β-catenin to lineage-specific WNT-responsive enhancers, many of which are not occupied by TCFs. At TCF-independent enhancers, SOX TFs establish a permissive chromatin landscape and recruit a WNT-enhanceosome complex to activate SOX/ß-catenin-dependent transcription. Given that SOX TFs and the WNT pathway are critical for specification of most cell types, these results have broad mechanistic implications for the specificity of WNT responses across developmental and disease contexts.


SOX9 and TCF transcription factors associate to mediate Wnt/β-catenin target gene activation in colorectal cancer.

  • Aravinda-Bharathi Ramakrishnan‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

Activation of the Wnt/β-catenin pathway regulates gene expression by promoting the formation of a β-catenin-T-cell factor (TCF) complex on target enhancers. In addition to TCFs, other transcription factors interact with the Wnt/β-catenin pathway at different levels to produce tissue-specific patterns of Wnt target gene expression. The transcription factor SOX9 potently represses many Wnt target genes by downregulating β-catenin protein levels. Here, we find using colony formation and cell growth assays that SOX9 surprisingly promotes the proliferation of Wnt-driven colorectal cancer (CRC) cells. In contrast to how it indirectly represses Wnt targets, SOX9 directly co-occupies and activates multiple Wnt-responsive enhancers in CRC cells. Our examination of the binding site grammar of these enhancers shows the presence of TCF and SOX9 binding sites that are necessary for transcriptional activation. In addition, we identify a physical interaction between the DNA-binding domains of TCFs and SOX9 and show that TCF-SOX9 interactions are important for target gene regulation and CRC cell growth. Our work demonstrates a highly context-dependent effect of SOX9 on Wnt targets, with the presence or absence of SOX9-binding sites on Wnt-regulated enhancers determining whether they are directly activated or indirectly repressed by SOX9.


Transcription factors TCF-1 and GATA3 are key factors for the epigenetic priming of early innate lymphoid progenitors toward distinct cell fates.

  • Gang Ren‎ et al.
  • Immunity‎
  • 2022‎

The differentiation of innate lymphoid cells (ILCs) from hematopoietic stem cells needs to go through several multipotent progenitor stages. However, it remains unclear whether the fates of multipotent progenitors are predefined by epigenetic states. Here, we report the identification of distinct accessible chromatin regions in all lymphoid progenitors (ALPs), EILPs, and ILC precursors (ILCPs). Single-cell MNase-seq analyses revealed that EILPs contained distinct subpopulations epigenetically primed toward either dendritic cell lineages or ILC lineages. We found that TCF-1 and GATA3 co-bound to the lineage-defining sites for ILCs (LDS-Is), whereas PU.1 binding was enriched in the LDSs for alternative dendritic cells (LDS-As). TCF-1 and GATA3 were indispensable for the epigenetic priming of LDSs at the EILP stage. Our results suggest that the multipotency of progenitor cells is defined by the existence of a heterogeneous population of cells epigenetically primed for distinct downstream lineages, which are regulated by key transcription factors.


IL-7 receptor signals inhibit expression of transcription factors TCF-1, LEF-1, and RORgammat: impact on thymocyte development.

  • Qing Yu‎ et al.
  • The Journal of experimental medicine‎
  • 2004‎

Intrathymic T cell development depends on signals transduced by both T cell receptor and cytokine receptors. Early CD4(-)CD8(-) (double negative) thymocytes require interleukin (IL)-7 receptor (IL-7R) signals for survival and proliferation, but IL-7R signals are normally extinguished by the immature single positive (ISP) stage of thymocyte development. We now demonstrate that IL-7R signals inhibit expression of transcription factors TCF-1, LEF-1, and RORgammat that are required for the ISP to double positive (DP) transition in the thymus. In addition, we demonstrate that IL-7R signals also inhibit TCF-1 and LEF-1 expression in mature peripheral T cells. Thus, the present work has identified several important downstream target genes of IL-7R signaling in T cells and thymocytes that provide a molecular mechanism for the inhibitory influence of IL-7R signaling on DP thymocyte development. We conclude that IL-7R signals down-regulate transcription factors required for the ISP to DP transition and so must be terminated by the ISP stage of thymocyte development.


Dazap2 modulates transcription driven by the Wnt effector TCF-4.

  • Jan Lukas‎ et al.
  • Nucleic acids research‎
  • 2009‎

A major outcome of the canonical Wnt/beta-catenin-signalling pathway is the transcriptional activation of a specific set of target genes. A typical feature of the transcriptional response induced by Wnt signalling is the involvement of Tcf/Lef factors that function in the nucleus as the principal mediators of signalling. Vertebrate Tcf/Lef proteins perform two well-characterized functions: in association with beta-catenin they activate gene expression, and in the absence of Wnt ligands they bind TLE/Groucho proteins to act as transcriptional repressors. Although the general characteristics of Tcf/Lef factors are well understood, the mechanisms that control their specific roles in various cellular backgrounds are much less defined. In this report we reveal that the evolutionary conserved Dazap2 protein functions as a TCF-4 interacting partner. We demonstrate that a short region proximal to the TCF-4 HMG box mediates the interaction and that all Tcf/Lef family members associate with Dazap2. Interestingly, knockdown of Dazap2 not only reduced the activity of Wnt signalling as measured by Tcf/beta-catenin reporters but additionally altered the expression of Wnt-signalling target genes. Finally, chromatin immunoprecipitation studies indicate that Dazap2 modulates the affinity of TCF-4 for its DNA-recognition motif.


The transcription factor TCF-1 enforces commitment to the innate lymphoid cell lineage.

  • Christelle Harly‎ et al.
  • Nature immunology‎
  • 2019‎

Innate lymphoid cells (ILCs) play important functions in immunity and tissue homeostasis, but their development is poorly understood. Through the use of single-cell approaches, we examined the transcriptional and functional heterogeneity of ILC progenitors, and studied the precursor-product relationships that link the subsets identified. This analysis identified two successive stages of ILC development within T cell factor 1-positive (TCF-1+) early innate lymphoid progenitors (EILPs), which we named 'specified EILPs' and 'committed EILPs'. Specified EILPs generated dendritic cells, whereas this potential was greatly decreased in committed EILPs. TCF-1 was dispensable for the generation of specified EILPs, but required for the generation of committed EILPs. TCF-1 used a pre-existing regulatory landscape established in upstream lymphoid precursors to bind chromatin in EILPs. Our results provide insight into the mechanisms by which TCF-1 promotes developmental progression of ILC precursors, while constraining their dendritic cell lineage potential and enforcing commitment to ILC fate.


Lineage-Determining Transcription Factor TCF-1 Initiates the Epigenetic Identity of T Cells.

  • John L Johnson‎ et al.
  • Immunity‎
  • 2018‎

T cell development is orchestrated by transcription factors that regulate the expression of genes initially buried within inaccessible chromatin, but the transcription factors that establish the regulatory landscape of the T cell lineage remain unknown. Profiling chromatin accessibility at eight stages of T cell development revealed the selective enrichment of TCF-1 at genomic regions that became accessible at the earliest stages of development. TCF-1 was further required for the accessibility of these regulatory elements and at the single-cell level, it dictated a coordinate opening of chromatin in T cells. TCF-1 expression in fibroblasts generated de novo chromatin accessibility even at chromatin regions with repressive marks, inducing the expression of T cell-restricted genes. These results indicate that a mechanism by which TCF-1 controls T cell fate is through its widespread ability to target silent chromatin and establish the epigenetic identity of T cells.


Intrinsically disordered domain of transcription factor TCF-1 is required for T cell developmental fidelity.

  • Naomi Goldman‎ et al.
  • Nature immunology‎
  • 2023‎

In development, pioneer transcription factors access silent chromatin to reveal lineage-specific gene programs. The structured DNA-binding domains of pioneer factors have been well characterized, but whether and how intrinsically disordered regions affect chromatin and control cell fate is unclear. Here, we report that deletion of an intrinsically disordered region of the pioneer factor TCF-1 (termed L1) leads to an early developmental block in T cells. The few T cells that develop from progenitors expressing TCF-1 lacking L1 exhibit lineage infidelity distinct from the lineage diversion of TCF-1-deficient cells. Mechanistically, L1 is required for activation of T cell genes and repression of GATA2-driven genes, normally reserved to the mast cell and dendritic cell lineages. Underlying this lineage diversion, L1 mediates binding of TCF-1 to its earliest target genes, which are subject to repression as T cells develop. These data suggest that the intrinsically disordered N terminus of TCF-1 maintains T cell lineage fidelity.


Mammalian Nemo-like kinase enhances β-catenin-TCF transcription activity in human osteosarcoma and neuroblastoma cells.

  • Jun Yasuda‎ et al.
  • Proceedings of the Japan Academy. Series B, Physical and biological sciences‎
  • 2007‎

Nemo-like kinase (NLK) is an evolutionarily conserved serine/threonine kinase and has been considered to be a suppressor of Wnt signaling in mammalian cells. Our study, however, has raised the possibility that NLK also functions as a Wnt signaling activator. In human osteosarcoma and neuroblastoma cell lines, NLK specifically enhanced β-catenin-TCF complex transcription activity. The effect required kinase activity of NLK and co-expression of the β-catenin ΔN (constitutive active mutant of β-catenin). The nuclear localization of Lymphoid enhancer factor 1 (LEF1) and β-catenin ΔN was not altered by NLK overexpression regardless of its effect on β-catenin-TCF complex activity. Reporter analysis using LEF1 mutants at known NLK target sites indicated that NLK may have different activation targets for β-catenin-TCF complex. Mutations in the potential NLK phosphorylation sites in β-catenin did not change its transcription activity either. Our results suggest that NLK positively regulates Wnt/β-catenin signaling in a cell type dependent manner through an unidentified mechanism.


Wnt target enhancer regulation by a CDX/TCF transcription factor collective and a novel DNA motif.

  • Aravinda-Bharathi Ramakrishnan‎ et al.
  • Nucleic acids research‎
  • 2021‎

Transcriptional regulation by Wnt signalling is primarily thought to be accomplished by a complex of β-catenin and TCF family transcription factors (TFs). Although numerous studies have suggested that additional TFs play roles in regulating Wnt target genes, their mechanisms of action have not been investigated in detail. We characterised a Wnt-responsive element (WRE) downstream of the Wnt target gene Axin2 and found that TCFs and Caudal type homeobox (CDX) proteins were required for its activation. Using a new separation-of-function TCF mutant, we found that WRE activity requires the formation of a TCF/CDX complex. Our systematic mutagenesis of this enhancer identified other sequences essential for activation by Wnt signalling, including several copies of a novel CAG DNA motif. Computational and experimental evidence indicates that the TCF/CDX/CAG mode of regulation is prevalent in multiple WREs. Put together, our results demonstrate the complex nature of cis- and trans- interactions required for signal-dependent enhancer activity.


A Single TCF Transcription Factor, Regardless of Its Activation Capacity, Is Sufficient for Effective Trilineage Differentiation of ESCs.

  • Steven Moreira‎ et al.
  • Cell reports‎
  • 2017‎

Co-expression and cross-regulation of the four TCF/LEFs render their redundant and unique functions ambiguous. Here, we describe quadruple-knockout (QKO) mouse ESCs lacking all full-length TCF/LEFs and cell lines rescued with TCF7 or TCF7L1. QKO cells self-renew, despite gene expression patterns that differ significantly from WT, and display delayed, neurectoderm-biased, embryoid body (EB) differentiation. QKO EBs have no contracting cardiomyocytes and differentiate poorly into mesendoderm but readily generate neuronal cells. QKO cells and TCF7L1-rescued cells cannot efficiently activate TCF reporters, whereas TCF7-rescued cells exhibit significant reporter responsiveness. Surprisingly, despite dramatically different transactivation capacities, re-expression of TCF7L1 or TCF7 in QKO cells restores their tri-lineage differentiation ability, with similar lineage marker expression patterns and beating cardiomyocyte frequencies observed in EBs. Both factors also similarly affect the transcriptome of QKO cells. Our data reveal that a single TCF, regardless of its activation capacity, is sufficient for effective trilineage differentiation of ESCs.


Nanog safeguards early embryogenesis against global activation of maternal β-catenin activity by interfering with TCF factors.

  • Mudan He‎ et al.
  • PLoS biology‎
  • 2020‎

Maternal β-catenin activity is essential and critical for dorsal induction and its dorsal activation has been thoroughly studied. However, how the maternal β-catenin activity is suppressed in the nondorsal cells remains poorly understood. Nanog is known to play a central role for maintenance of the pluripotency and maternal -zygotic transition (MZT). Here, we reveal a novel role of Nanog as a strong repressor of maternal β-catenin signaling to safeguard the embryo against hyperactivation of maternal β-catenin activity and hyperdorsalization. In zebrafish, knockdown of nanog at different levels led to either posteriorization or dorsalization, mimicking zygotic or maternal activation of Wnt/β-catenin activities, and the maternal zygotic mutant of nanog (MZnanog) showed strong activation of maternal β-catenin activity and hyperdorsalization. Although a constitutive activator-type Nanog (Vp16-Nanog, lacking the N terminal) perfectly rescued the MZT defects of MZnanog, it did not rescue the phenotypes resulting from β-catenin signaling activation. Mechanistically, the N terminal of Nanog directly interacts with T-cell factor (TCF) and interferes with the binding of β-catenin to TCF, thereby attenuating the transcriptional activity of β-catenin. Therefore, our study establishes a novel role for Nanog in repressing maternal β-catenin activity and demonstrates a transcriptional switch between β-catenin/TCF and Nanog/TCF complexes, which safeguards the embryo from global activation of maternal β-catenin activity.


pop-1/TCF, ref-2/ZIC and T-box factors regulate the development of anterior cells in the C. elegans embryo.

  • Jonathan D Rumley‎ et al.
  • Developmental biology‎
  • 2022‎

Patterning of the anterior-posterior axis is fundamental to animal development. The Wnt pathway plays a major role in this process by activating the expression of posterior genes in animals from worms to humans. This observation raises the question of whether the Wnt pathway or other regulators control the expression of the many anterior-expressed genes. We found that the expression of five anterior-specific genes in Caenorhabditis elegans embryos depends on the Wnt pathway effectors pop-1/TCF and sys-1/β-catenin. We focused further on one of these anterior genes, ref-2/ZIC, a conserved transcription factor expressed in multiple anterior lineages. Live imaging of ref-2 mutant embryos identified defects in cell division timing and position in anterior lineages. Cis-regulatory dissection identified three ref-2 transcriptional enhancers, one of which is necessary and sufficient for anterior-specific expression. This enhancer is activated by the T-box transcription factors TBX-37 and TBX-38, and surprisingly, concatemerized TBX-37/38 binding sites are sufficient to drive anterior-biased expression alone, despite the broad expression of TBX-37 and TBX-38. Taken together, our results highlight the diverse mechanisms used to regulate anterior expression patterns in the embryo.


TCF-3-mediated transcription of lncRNA HNF1A-AS1 targeting oncostatin M expression inhibits epithelial-mesenchymal transition via TGFβ signaling in gastroenteropancreatic neuroendocrine neoplasms.

  • Jingwen Xue‎ et al.
  • Aging‎
  • 2021‎

Long noncoding RNAs play key roles in several cancers, but their potential functions in gastroenteropancreatic neuroendocrine neoplasms remain to be investigated. We performed GeneChip assay to explore differentiated lncRNAs in gastric NENs and peri-cancerous tissues. The regulation of HNF1A-AS1 on biological behavior of GEP-NENs cells and in vivo xenograft model was confirmed by CCK8, colony formation assay, transwell, western blot and qRT-PCR. We next detected the potential transcription factors and the binding sites between them with bioinformatic analysis. qRT-PCR was performed to analyze the exact relationship between them. HNF1A-AS1 expression was decreased in gastric NENs tissues (p < 0.01). Over-expression of HNF1A-AS1 suppressed cellular proliferation, migration and invasion. Knockdown of transcription factor 3 inhibited the expression of HNF1A-AS1 and promoted cellular migration and invasion. Oncostatin M was identified as the downstream target of HNF1A-AS1. Inhibition of transforming growth factor-β activity inhibited HNF1A-AS1/Oncostatin M-mediated epithelial-mesenchymal transition. Our data suggest that transcription factor 3/HNF1A-AS1/Oncostatin M axis inhibits the tumorigenesis and metastasis of gastroenteropancreatic neuroendocrine neoplasms via transforming growth factor-β signaling.


Wnt-induced transcriptional activation is exclusively mediated by TCF/LEF.

  • Jurian Schuijers‎ et al.
  • The EMBO journal‎
  • 2014‎

Active canonical Wnt signaling results in recruitment of β-catenin to DNA by TCF/LEF family members, leading to transcriptional activation of TCF target genes. However, additional transcription factors have been suggested to recruit β-catenin and tether it to DNA. Here, we describe the genome-wide pattern of β-catenin DNA binding in murine intestinal epithelium, Wnt-responsive colorectal cancer (CRC) cells and HEK293 embryonic kidney cells. We identify two classes of β-catenin binding sites. The first class represents the majority of the DNA-bound β-catenin and co-localizes with TCF4, the prominent TCF/LEF family member in these cells. The second class consists of β-catenin binding sites that co-localize with a minimal amount of TCF4. The latter consists of lower affinity β-catenin binding events, does not drive transcription and often does not contain a consensus TCF binding motif. Surprisingly, a dominant-negative form of TCF4 abrogates the β-catenin/DNA interaction of both classes of binding sites, implying that the second class comprises low affinity TCF-DNA complexes. Our results indicate that β-catenin is tethered to chromatin overwhelmingly through the TCF/LEF transcription factors in these three systems.


TFAP2 transcription factors are regulators of lipid droplet biogenesis.

  • Cameron C Scott‎ et al.
  • eLife‎
  • 2018‎

How trafficking pathways and organelle abundance adapt in response to metabolic and physiological changes is still mysterious, although a few transcriptional regulators of organellar biogenesis have been identified in recent years. We previously found that the Wnt signaling directly controls lipid droplet formation, linking the cell storage capacity to the established functions of Wnt in development and differentiation. In the present paper, we report that Wnt-induced lipid droplet biogenesis does not depend on the canonical TCF/LEF transcription factors. Instead, we find that TFAP2 family members mediate the pro-lipid droplet signal induced by Wnt3a, leading to the notion that the TFAP2 transcription factor may function as a 'master' regulator of lipid droplet biogenesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: