Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,632 papers

Cytotoxic Granule Trafficking and Fusion in Synaptotagmin7-Deficient Cytotoxic T Lymphocytes.

  • Marwa Sleiman‎ et al.
  • Frontiers in immunology‎
  • 2020‎

Granules of cytotoxic T lymphocytes (CTL) are derived from the lysosomal compartment. Synaptotagmin7 (Syt7) appears to be the calcium sensor triggering fusion of lysosomes in fibroblasts. Syt7 has been proposed to control cytotoxic granule (CG) fusion in lymphocytes and mice lacking Syt7 have reduced ability to clear infections. However, fusion of CG persists in the absence of Syt7. To clarify the role of Syt7 in CTL function, we have examined the fusion of cytotoxic granules of CD8+ T-lymphocytes from Syt7 knock-out mice. We have recorded granule fusion in living CTL, using total internal reflection microscopy. Since Syt7 is considered a high affinity calcium-sensor specialized for fusion under low calcium conditions, we have compared cytotoxic granule fusion under low and high calcium conditions in the same CTL. There was no difference in latencies or numbers of fusion events per CTL under low-calcium conditions, indicating that Syt7 is not required for cytotoxic granule fusion. A deficit of fusion in Syt7 KO CTL was seen when a high-calcium solution was introduced. Expressing wild type Syt7 in Syt7 KO lymphocytes reversed this deficit, confirming its Syt7-dependence. Mutations of Syt7 which disrupt calcium binding to its C2A domain reduced the efficacy of this rescue. We counted the cytotoxic granules present at the plasma membrane to determine if the lack of fusion events in the Syt7 KO CTL was due to a lack of granules. In low calcium there were no differences in fusion events per CTL, and granule numbers were similar. In high calcium, granule number was similar though wild type CTL exhibited significantly more fusion than Syt7 KO CTL. The modest differences in granule counts do not account for the lack of fusion in high calcium in Syt7 KO CTL. In Syt7 KO CTL expressing wild type Syt7, delivery of cytotoxic granules to the plasma membrane was comparable to that of wild type CTL. Syt7 KO CTL expressing Syt7 with deficient calcium binding in the C2A domain had significantly less fusion and fewer CG at the plasma membrane. These results indicate that Syt7 is involved in trafficking of CG to the plasma membrane.


Cytotoxic Granule Exocytosis From Human Cytotoxic T Lymphocytes Is Mediated by VAMP7.

  • Praneeth Chitirala‎ et al.
  • Frontiers in immunology‎
  • 2019‎

Cytotoxic T lymphocytes kill infected or malignant cells through the directed release of cytotoxic substances at the site of target cell contact, the immunological synapse. While genetic association studies of genes predisposing to early-onset life-threatening hemophagocytic lymphohistiocytosis has identified components of the plasma membrane fusion machinery, the identity of the vesicular components remain enigmatic. Here, we identify VAMP7 as an essential component of the vesicular fusion machinery of primary, human T cells. VAMP7 co-localizes with granule markers throughout all stages of T cell maturation and simultaneously fuses with granule markers at the IS. Knock-down of VAMP7 expression significantly decreased the killing efficiency of T cells, without diminishing early T cell receptor signaling. VAMP7 exerts its function in a SNARE complex with Syntaxin11 and SNAP-23 on the plasma membrane. The identification of the minimal fusion machinery in T cells provides a starting point for the development of potential drugs in immunotherapy.


Tolerance to p53 by A2.1-restricted cytotoxic T lymphocytes.

  • M Theobald‎ et al.
  • The Journal of experimental medicine‎
  • 1997‎

Elevated levels of the p53 protein occur in approximately 50% of human malignancies, which makes it an excellent target for a broad-spectrum T cell immunotherapy of cancer. A major barrier to the design of p53-specific immunotherapeutics and vaccines, however, is the possibility that T cells may be tolerant of antigens derived from wild-type p53 due to its low level of expression in normal thymus and lymphohemopoetic cells. The combination of p53 deficient (p53-/-) and p53+/+ HLA-A2.1/Kb transgenic mice was used as a model to explore the possibility that A2.1-restricted cytotoxic T lymphocytes (CTL) are functionally tolerant of self peptides derived from the wild-type p53 tumor suppressor protein. A2.1-restricted CTL specific for a naturally processed p53 self-epitope spanning residues 187-197 were completely aborted in p53+/+ as opposed to p53-/- transgenic mice. In contrast, CTL specific for a second self-epitope spanning residues 261-269 of the murine p53 sequence were detected in both p53-/- and p53+/+ A2.1/Kb transgenic mice. However, the avidity of the CTL effectors obtained from p53+/+ mice was 10-fold lower than that obtained from p53-/- mice, again suggesting elimination of CTL with high avidity for the A2.1-peptide complex. The circumvention of functional tolerance of high avidity CTL may therefore be a necessary prerequisite for optimizing immunotherapy against A2.1-restricted wild-type p53 epitopes in humans.


Peptide-independent recognition by alloreactive cytotoxic T lymphocytes (CTL).

  • P A Smith‎ et al.
  • The Journal of experimental medicine‎
  • 1997‎

We have isolated several H-2K(b)-alloreactive cytotoxic T cell clones and analyzed their reactivity for several forms of H-2K(b). These cytotoxic T lymphocytes (CTL) were elicited by priming with a skin graft followed by in vitro stimulation using stimulator cells that express an H-2K(b) molecule unable to bind CD8. In contrast to most alloreactive T cells, these CTL were able to recognize H-2K(b) on the surface of the antigen processing defective cell lines RMA-S and T2. Furthermore, this reactivity was not increased by the addition of an extract containing peptides from C57BL/6 (H-2(b)) spleen cells, nor was the reactivity decreased by treating the target cells with acid to remove peptides bound to MHC molecules. The CTL were also capable of recognizing targets expressing the mutant H-2K(bm8) molecule. These findings suggested that the clones recognized determinants on H-2K(b) that were independent of peptide. Further evidence for this hypothesis was provided by experiments in which H-2K(b) produced in Drosophila melanogaster cells and immobilized on the surface of a tissue culture plate was able to stimulate hybridomas derived from these alloreactive T cells. Precursor frequency analysis demonstrated that skin graft priming, whether with skin expressing the wild-type or the mutant H-2K(b) molecule, is a strong stimulus to elicit peptide-independent CTL. Moreover, reconstitution experiments demonstrated that the peptide-independent CTL clones were capable of mediating rapid and complete rejection of H-2-incompatible skin grafts. These findings provide evidence that not all allorecognition is peptide dependent.


Migration of Cytotoxic T Lymphocytes in 3D Collagen Matrices.

  • Zeinab Sadjadi‎ et al.
  • Biophysical journal‎
  • 2020‎

CD8+ cytotoxic T lymphocytes (CTL) and natural killer cells are the main cytotoxic killer cells of the human body to eliminate pathogen-infected or tumorigenic cells (also known as target cells). To find their targets, they have to navigate and migrate through complex biological microenvironments, a key component of which is the extracellular matrix (ECM). The mechanisms underlying killer cell's navigation are not well understood. To mimic an ECM, we use a matrix formed by different collagen concentrations and analyze migration trajectories of primary human CTLs. Different migration patterns are observed and can be grouped into three motility types: slow, fast, and mixed. The dynamics are well described by a two-state persistent random walk model, which allows cells to switch between slow motion with low persistence and fast motion with high persistence. We hypothesize that the slow motility mode describes CTLs creating channels through the collagen matrix by deforming and tearing apart collagen fibers and that the fast motility mode describes CTLs moving within these channels. Experimental evidence supporting this scenario is presented by visualizing migrating T cells following each other on exactly the same track and showing cells moving quickly in channel-like cavities within the surrounding collagen matrix. Consequently, the efficiency of the stochastic search process of CTLs in the ECM should strongly be influenced by a dynamically changing channel network produced by the killer cells themselves.


Determinant of HIV-1 mutational escape from cytotoxic T lymphocytes.

  • Otto O Yang‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

CD8+ class I-restricted cytotoxic T lymphocytes (CTLs) usually incompletely suppress HIV-1 in vivo, and while analogous partial suppression induces antiretroviral drug-resistance mutations, epitope escape mutations are inconsistently observed. However, escape mutation depends on the net balance of selective pressure and mutational fitness costs, which are poorly understood and difficult to study in vivo. Here we used a controlled in vitro system to evaluate the ability of HIV-1 to escape from CTL clones, finding that virus replicating under selective pressure rapidly can develop phenotypic resistance associated with genotypic changes. Escape varied between clones recognizing the same Gag epitope or different Gag and RT epitopes, indicating the influence of the T cell receptor on pressure and fitness costs. Gag and RT escape mutations were monoclonal intra-epitope substitutions, indicating limitation by fitness constraints in structural proteins. In contrast, escape from Nef-specific CTL was more rapid and consistent, marked by a polyclonal mixture of epitope point mutations and upstream frameshifts. We conclude that incomplete viral suppression by CTL can result in rapid emergence of immune escape, but the likelihood is strongly determined by factors influencing the fitness costs of the particular epitope targeted and the ability of responding CTL to recognize specific epitope variants.


Collagen fiber structure guides 3D motility of cytotoxic T lymphocytes.

  • Hawley C Pruitt‎ et al.
  • Matrix biology : journal of the International Society for Matrix Biology‎
  • 2020‎

Lymphocyte motility is governed by a complex array of mechanisms, and highly dependent on external microenvironmental cues. Tertiary lymphoid sites in particular have unique physical structure such as collagen fiber alignment, due to matrix deposition and remodeling. Three dimensional studies of human lymphocytes in such environments are lacking. We hypothesized that aligned collagenous environment modulates CD8+ T cells motility. We encapsulated activated CD8+ T cells in collagen hydrogels of distinct fiber alignment, a characteristic of tumor microenvironments. We found that human CD8+ T cells move faster and more persistently in aligned collagen fibers compared with nonaligned collagen fibers. Moreover, CD8+ T cells move along the axis of collagen alignment. We showed that myosin light chain kinase (MLCK) inhibition could nullify the effect of aligned collagen on CD8+ T cell motility patterns by decreasing T cell turning in unaligned collagen fiber gels. Finally, as an example of a tertiary lymphoid site, we found that xenograft prostate tumors exhibit highly aligned collagen fibers. We observed CD8+ T cells alongside aligned collagen fibers, and found that they are mostly concentrated in the periphery of tumors. Overall, using an in vitro controlled hydrogel system, we show that collagen fiber organization modulates CD8+ T cells movement via MLCK activation thus providing basis for future studies into relevant therapeutics.


Role of CD8 in aberrant function of cytotoxic T lymphocytes.

  • B Kessler‎ et al.
  • The Journal of experimental medicine‎
  • 1997‎

Using H-2Kd-restricted photoprobe-specific cytotoxic T lymphocyte (CTL) clones, which permit assessment of T cell receptor (TCR)-ligand interactions by TCR photoaffinity labeling, we observed that the efficiency of antigen recognition by CTL was critically dependent on the half-life of TCR-ligand complexes. We show here that antigen recognition by CTL is essentially determined by the frequency of serial TCR engagement, except for very rapid dissociations, which resulted in aberrant TCR signaling and antagonism. Thus agonists that were efficiently recognized exhibited rapid TCR-ligand complex dissociation, and hence a high frequency of serial TCR engagement, whereas the opposite was true for weak agonists. Surprisingly, these differences were largely accounted for by the coreceptor CD8. While it was known that CD8 substantially decreases TCR-ligand complex dissociation, we observed in this study that this effect varied considerably among ligand variants, indicating that epitope modifications can alter the CD8 contribution to TCR-ligand binding, and hence the efficiency of antigen recognition by CTL.


Rapamycin improves Graves' orbitopathy by suppressing CD4+ cytotoxic T lymphocytes.

  • Meng Zhang‎ et al.
  • JCI insight‎
  • 2023‎

CD4+ cytotoxic T lymphocytes (CTLs) were recently implicated in immune-mediated inflammation and fibrosis progression of Graves' orbitopathy (GO). However, little is known about therapeutic targeting of CD4+ CTLs. Herein, we studied the effect of rapamycin, an approved mTOR complex 1 (mTORC1) inhibitor, in a GO mouse model, in vitro, and in patients with refractory GO. In the adenovirus-induced model, rapamycin significantly decreased the incidence of GO. This was accompanied by the reduction of both CD4+ CTLs and the reduction of orbital inflammation, adipogenesis, and fibrosis. CD4+ CTLs from patients with active GO showed upregulation of the mTOR pathway, while rapamycin decreased their proportions and cytotoxic function. Low-dose rapamycin treatment substantially improved diplopia and the clinical activity score in steroid-refractory patients with GO. Single-cell RNA-Seq revealed that eye motility improvement was closely related to suppression of inflammation and chemotaxis in CD4+ CTLs. In conclusion, rapamycin is a promising treatment for CD4+ CTL-mediated inflammation and fibrosis in GO.


Rab27a is required for regulated secretion in cytotoxic T lymphocytes.

  • J C Stinchcombe‎ et al.
  • The Journal of cell biology‎
  • 2001‎

Rab27a activity is affected in several mouse models of human disease including Griscelli (ashen mice) and Hermansky-Pudlak (gunmetal mice) syndromes. A loss of function mutation occurs in the Rab27a gene in ashen (ash), whereas in gunmetal (gm) Rab27a dysfunction is secondary to a mutation in the alpha subunit of Rab geranylgeranyl transferase, an enzyme required for prenylation and activation of Rabs. We show here that Rab27a is normally expressed in cytotoxic T lymphocytes (CTLs), but absent in ashen homozygotes (ash/ash). Cytotoxicity and secretion assays show that ash/ash CTLs are unable to kill target cells or to secrete granzyme A and hexosaminidase. By immunofluorescence and electron microscopy, we show polarization but no membrane docking of ash/ash lytic granules at the immunological synapse. In gunmetal CTLs, we show underprenylation and redistribution of Rab27a to the cytosol, implying reduced activity. Gunmetal CTLs show a reduced ability to kill target cells but retain the ability to secrete hexosaminidase and granzyme A. However, only some of the granules polarize to the immunological synapse, and many remain dispersed around the periphery of the CTLs. These results demonstrate that Rab27a is required in a final secretory step and that other Rab proteins also affected in gunmetal are likely to be involved in polarization of the granules to the immunological synapse.


Tumor eradication by wild-type p53-specific cytotoxic T lymphocytes.

  • M P Vierboom‎ et al.
  • The Journal of experimental medicine‎
  • 1997‎

The tumor suppressor protein p53 is overexpressed in close to 50% of all human malignancies. The p53 protein is therefore an attractive target for immunotherapy. Cytotoxic T lymphocytes (CTLs) recognizing a murine wild-type p53 peptide, presented by the major histocompatibility complex class I molecule H-2Kb, were generated by immunizing p53 gene deficient (p53 -/-) C57BL/6 mice with syngeneic p53-overexpressing tumor cells. Adoptive transfer of these CTLs into tumor-bearing p53 +/+ nude mice caused complete and permanent tumor eradication. Importantly, this occurred in the absence of any demonstrable damage to normal tissue. When transferred into p53 +/+ immunocompetent C57BL/6 mice, the CTLs persisted for weeks in the absence of immunopathology and were capable of preventing tumor outgrowth. Wild-type p53-specific CTLs can apparently discriminate between p53-overexpressing tumor cells and normal tissue, indicating that widely expressed autologous molecules such as p53 can serve as a target for CTL-mediated immunotherapy of tumors.


Induction of 90K-specific Cytotoxic T Lymphocytes for Colon Cancer Immunotherapy.

  • Ji Hee Lee‎ et al.
  • Immune network‎
  • 2010‎

Dendritic cell (DC)-based tumor vaccine is an attractive modality for the treatment of colon cancer because it has been recurred and produced few side effects in patients. Secretory glycoprotein 90K has been found at elevated level in various cancer tissues and sera. We investigated to establish a more effective DC vaccine for the treatment of colon cancer in which the levels of 90K are elevated.


MUC1-specific cytotoxic T lymphocytes in cancer therapy: induction and challenge.

  • David Roulois‎ et al.
  • BioMed research international‎
  • 2013‎

MUC1 glycoprotein is often found overexpressed and hypoglycosylated in tumor cells from numerous cancer types. Since its discovery MUC1 has been an attractive target for antitumor immunotherapy. Indeed, in vitro and in vivo experiments have shown T-cell-specific responses against MUC1 in an HLA-restricted and HLA-unrestricted manner, although some animal models have highlighted the possible development of tolerogenic responses against this antigen. These observations permit the development of new T-cell vaccine strategies capable of inducing an MUC1-specific cytotoxic T cell response in cancer patients. Some of these strategies are now being tested in clinical trials against different types of cancer. To date, encouraging clinical responses have been observed with some MUC1 vaccines in phase II/III clinical trials. This paper compiles knowledge regarding MUC1 as a promising tumor antigen for antitumor therapeutic vaccines applicable to numerous cancers. We also summarize the results of MUC1-vaccine-based clinical trials.


Individual Human Cytotoxic T Lymphocytes Exhibit Intraclonal Heterogeneity during Sustained Killing.

  • Zilton Vasconcelos‎ et al.
  • Cell reports‎
  • 2015‎

The killing of antigen-bearing cells by clonal populations of cytotoxic T lymphocytes (CTLs) is thought to be a rapid phenomenon executed uniformly by individual CTLs. We combined bulk and single-CTL killing assays over a prolonged time period to provide the killing statistics of clonal human CTLs against an excess of target cells. Our data reveal efficiency in sustained killing at the population level, which relied on a highly heterogeneous multiple killing performance at the individual level. Although intraclonal functional heterogeneity was a stable trait in clonal populations, it was reset in the progeny of individual CTLs. In-depth mathematical analysis of individual CTL killing data revealed a substantial proportion of high-rate killer CTLs with burst killing activity. Importantly, such activity was delayed and required activation with strong antigenic stimulation. Our study implies that functional heterogeneity allows CTL populations to calibrate prolonged cytotoxic activity to the size of target cell populations.


FLT3-regulated antigens as targets for leukemia-reactive cytotoxic T lymphocytes.

  • B Brackertz‎ et al.
  • Blood cancer journal‎
  • 2011‎

The FMS-like tyrosine kinase 3 (FLT3) is highly expressed in acute myeloid leukemia (AML). Internal tandem duplications (ITD) of the juxtamembrane domain lead to the constitutive activation of the FLT3 kinase inducing the activation of multiple genes, which may result in the expression of leukemia-associated antigens (LAAs). We analyzed the regulation of LAA in FLT3-wild-type (WT)- and FLT3-ITD(+) myeloid cells to identify potential targets for antigen-specific immunotherapy for AML patients. Antigens, such as PR-3, RHAMM, Survivin, WT-1 and PRAME, were upregulated by constitutively active FLT3-ITD as well as FLT3-WT activated by FLT3 ligand (FL). Cytotoxic T-cell (CTL) clones against PR-3, RHAMM, Survivin and an AML-directed CTL clone recognized AML cell lines and primary AML blasts expressing FLT3-ITD, as well as FLT3-WT(+) myeloid dendritic cells in the presence of FL. Downregulation of FLT3 led to the abolishment of CTL recognition. Comparing our findings concerning LAA upregulation by the FLT3 kinase with those already made for the Bcr-Abl kinase, we found analogies in the LAA expression pattern. Antigens upregulated by both FLT3 and Bcr-Abl may be promising targets for the development of immunotherapeutical approaches against myeloid leukemia of different origin.


PI3Kδ is essential for tumor clearance mediated by cytotoxic T lymphocytes.

  • Eva Maria Putz‎ et al.
  • PloS one‎
  • 2012‎

PI3Kδ is a lipid kinase of the phosphoinositide 3-kinase class 1A family and involved in early signaling events of leukocytes regulating proliferation, differentiation and survival. Currently, several inhibitors of PI3Kδ are under investigation for the treatment of hematopoietic malignancies. In contrast to the beneficial effect of inhibiting PI3Kδ in tumor cells, several studies reported the requirement of PI3Kδ for the function of immune cells, such as natural killer and T helper cells. Cytotoxic T lymphocytes (CTLs) are essential for tumor surveillance. The scope of this study is to clarify the potential impact of PI3Kδ inhibition on the function of CTLs with emphasis on tumor surveillance.


CD40-independent pathways of T cell help for priming of CD8(+) cytotoxic T lymphocytes.

  • Z Lu‎ et al.
  • The Journal of experimental medicine‎
  • 2000‎

In many cases, induction of CD8(+) CTL responses requires CD4(+) T cell help. Recently, it has been shown that a dominant pathway of CD4(+) help is via antigen-presenting cell (APC) activation through engagement of CD40 by CD40 ligand on CD4(+) T cells. To further study this three cell interaction, we established an in vitro system using dendritic cells (DCs) as APCs and influenza hemagglutinin (HA) class I and II peptide-specific T cell antigen receptor transgenic T cells as cytotoxic T lymphocyte precursors and CD4(+) T helper cells, respectively. We found that CD4(+) T cells can provide potent help for DCs to activate CD8(+) T cells when antigen is provided in the form of either cell lysate, recombinant protein, or synthetic peptides. Surprisingly, this help is completely independent of CD40. Moreover, CD40-independent CD4(+) help can be documented in vivo. Finally, we show that CD40-independent T cell help is delivered through both sensitization of DCs and direct CD4(+)-CD8(+) T cell communication via lymphokines. Therefore, we conclude that CD4(+) help comprises at least three components: CD40-dependent DC sensitization, CD40-independent DC sensitization, and direct lymphokine-dependent CD4(+)-CD8(+) T cell communication.


Generation of tumor-associated cytotoxic T lymphocytes requires interleukin 4 from CD8(+) T cells.

  • T Schüler‎ et al.
  • The Journal of experimental medicine‎
  • 2001‎

Activation of tumor-associated CD8(+) cytotoxic T lymphocytes (CTLs) often requires antigen representation, e.g., by dendritic cells (DCs), and CD4(+) T cell help. Previously, we showed that CTL-mediated tumor immunity required interleukin 4 (IL-4) during the immunization but not effector phase. To determine the source and target cells of IL-4, we performed adoptive T cell transfers using CD4(+) and CD8(+) T cells from IL-4(-/-) and IL-4R(-/-) mice and analyzed CTL generation. Even though necessary for CTL generation, CD4(+) T cells did not need to express IL-4 or IL-4R. Surprisingly, CTL generation required IL-4 but not IL-4R expression by CD8(+) T cells. As IL-4 (a) was expressed by naive CD8(+) T cells within 24 h after antigen encounter, (b) IL-4 induced DC maturation, and (c) CTL development was impaired in T cell-reconstituted IL-4R(-/-) mice, CD8(+) T cell-derived IL-4 appears to act on DCs. We conclude that CD4(+) and CD8(+) T cells provide different signals for DC activation during CTL generation.


Cyclooxygenase 2 modulates killing of cytotoxic T lymphocytes by colon cancer cells.

  • Quanxin Wang‎ et al.
  • Journal of clinical biochemistry and nutrition‎
  • 2009‎

Although anti-cancer effects of cyclooxygenase 2 (COX2) inhibitors have been reported, most studies focused on the direct effects of COX2 inhibiters on colon cancer cells. On the other hand, several types of cancers express Fas ligand (FasL) and/or TRAIL and mediate apoptosis of T cells in vitro. The "counter-attack" machinery may account for the mechanisms by which tumors evade host immune surveillance. In this study we determined if COX2 inhibitor could modulate effector molecules of cell death on colon cancer cells changing their effects on cytotoxic T lymphocytes. Colon adenocarcinoma cells, HCA7 and HCT116, the former COX2-positive and the latter COX2-negative, were pre-incubated with/without a COX2 inhibitor, NS398. Subsequently, the cells were co-cultured with Jurkat T cell leukemia cells and damage to Jurkat cells was determined. Treatment with NS398 resulted in reduction of expression of FasL and TRAIL in HCA7 cells, whereas NS398 did not affect the expression of FasL and TRAIL in HCT116 cells. The number of viable Jurkat cells was diminished when cells were co-cultured with naive, non-pretreated HCA7 or HCA116 cells. Preincubation of HCA7 cells with NS398 before co-culture blunted the HCA7 cell-induced cell toxicity on Jurkat cells. In contrast, pretreatment with NS398 failed to inhibit the HCT116-induced Jurkat cell killing. Our results suggest that COX2 regulates the expression of FasL and TRAIL on COX2-positive colon cancer cells thereby evoking a counter-attack against cytotoxic T cells, which may lead to compromised host immune responses.


Cytotoxic T lymphocytes require transcription for infiltration but not target cell lysis.

  • Arianne C Richard‎ et al.
  • EMBO reports‎
  • 2023‎

Effector cytotoxic T lymphocytes (CTLs) are critical for ridding the body of infected or cancerous cells. CTL T cell receptor (TCR) ligation not only drives the delivery and release of cytolytic granules but also initiates a new wave of transcription. In order to address whether TCR-induced transcriptomic changes impact the ability of CTLs to kill, we asked which genes are expressed immediately after CTLs encounter targets and how CTL responses change when inhibiting transcription. Our data demonstrate that while expression of cytokines/chemokines and transcriptional machinery depend on transcription, cytotoxic protein expression and cytolytic activity are relatively robust to transcription blockade, with CTLs lysing nearby target cells for several hours after actinomycin D treatment. Monitoring CTL movement among target cells after inhibiting transcription demonstrates an infiltration defect that is not rectified by provision of exogenous cytokine/chemokine gradients, indicating a cell-intrinsic transcriptional requirement for infiltration. Together, our results reveal differential molecular control of CTL functions, separating recruitment and infiltration from cytolysis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: