Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 193 papers

Syndecan-3 and syndecan-4 are enriched in Schwann cell perinodal processes.

  • Laurence Goutebroze‎ et al.
  • BMC neuroscience‎
  • 2003‎

Nodes of Ranvier correspond to specialized axonal domains where voltage-gated sodium channels are highly concentrated. In the peripheral nervous system, they are covered by Schwann cells microvilli, where three homologous cytoskeletal-associated proteins, ezrin, radixin and moesin (ERM proteins) have been found, to be enriched. These glial processes are thought to play a crucial role in organizing axonal nodal domains during development. However, little is known about the molecules present in Schwann cell processes that could mediate axoglial interactions. The aim of this study is to identify by immunocytochemistry transmembrane proteins enriched in Schwann cells processes that could interact, directly or indirectly, with axonal proteins.


Syndecan 4 regulation of PDK1-dependent Akt activation.

  • Rong Ju‎ et al.
  • Cellular signalling‎
  • 2013‎

The phosphatidylinositol 3 kinase (Pi3K)/Akt pathway is a major regulator of cell growth, proliferation, metabolism, survival, and angiogenesis. Despite extensive study, a thorough understanding of the modulation and regulation of this pathway has remained elusive. We have previously demonstrated that syndecan 4 (S4) regulates the intracellular localization of mTORC2, thus altering phosphorylation of Akt at serine473 (Ser473), one of two critical phosphorylation sites essential for the full activation of Akt [1]. Here we report that S4 also regulates the phosphorylation of Akt at threonine308 (Thr308), the second phosphorylation site required for the full Akt activation. A deletion of S4 resulted in lower levels of Thr308 phosphorylation both in vitro and in vivo. Furthermore, a deletion or knockdown of the S4 effector molecule PKCα led to a similar reduction in phosphorylation of Thr308 while overexpression of myristoylated PKCα rescued AktThr308 phosphorylation in endothelial cells lacking S4. Finally, PAK1/2 is also recruited to the rafts by the S4-PKCα complex and is required for AKT activation.


Syndecan-4 dependent FGF stimulation of mouse vibrissae growth.

  • Tokuro Iwabuchi‎ et al.
  • Mechanisms of development‎
  • 2006‎

The development, maintenance and regeneration of epithelial appendages such as hairs or vibrissae depend on reciprocal interactions between the epidermal and the dermal components of the integument. Growth factors are among a number of signaling molecules that have been identified during these developmental events. Growth factors such as fibroblast growth factors (FGFs) bind cell surface heparan sulfate proteoglycans (HSPGs) on their heparan sulfate side chains and as such these proteoglycans act as co-receptors for FGF receptors (FGFRs) by forming a ternary signaling complex of HSPG, FGFR and FGF. The syndecans make up a family (syndecan-1-4) of transmembrane HSPGs. In the present study we examined the growth response of mouse vibrissae to HSPG-binding growth factors as a function of the presence or absence of syndecan-4 in an organ culture system. Syndecan-4 is expressed on keratinocytes that make up the inner root sheath of the vibrissa. Vibrissae from wild-type mice, but not from syndecan-4 null mice, displayed a statistically significant and dose-dependent growth response to FGF-1, FGF-2 and FGF-7. In contrast, a statistically significant growth response is seen in vibrissae from both wild-type and syndecan-4 null mice when the culture medium is supplemented with either hepatocyte growth factor (HGF) that binds to HSPG, insulin that does not bind to HSPG or 5% fetal bovine serum. The syndecan-4 dependent effect of FGF-1, -2 and -7 on the transcriptional activity of IRS expressed genes and of genes involved in cell proliferation reveals a number of different response patterns. In vivo, the vibrissae of syndecan-4 null mice are shorter and have a smaller diameter than those of wild-type mice and this phenotype may result from a suboptimal response to growth factors. Syndecan-1, which is expressed in the outer root sheath of the vibrissae shaft, does not influence the response of the vibrissae to FGF-1, -2 and -7 and the length and diameter of vibrissae of syndecan-1 null mice do not differ from those of wild-type mice.


Coupling of vinculin to F-actin demands Syndecan-4 proteoglycan.

  • R P Cavalheiro‎ et al.
  • Matrix biology : journal of the International Society for Matrix Biology‎
  • 2017‎

Syndecans are heparan sulfate proteoglycans characterized as transmembrane receptors that act cooperatively with the cell surface and extracellular matrix proteins. Syn4 knockdown was performed in order to address its role in endothelial cells (EC) behavior. Normal EC and shRNA-Syn4-EC cells were studied comparatively using complementary confocal, super-resolution and non-linear microscopic techniques. Confocal and super-resolution microscopy revealed that Syn4 knockdown alters the level and arrangement of essential proteins for focal adhesion, evidenced by the decoupling of vinculin from F-actin filaments. Furthermore, Syn4 knockdown alters the actin network leading to filopodial protrusions connected by VE-cadherin-rich junction. shRNA-Syn4-EC showed reduced adhesion and increased migration. Also, Syn4 silencing alters cell cycle as well as cell proliferation. Moreover, the ability of EC to form tube-like structures in matrigel is reduced when Syn4 is silenced. Together, the results suggest a mechanism in which Syndecan-4 acts as a central mediator that bridges fibronectin, integrin and intracellular components (actin and vinculin) and once silenced, the cytoskeleton protein network is disrupted. Ultimately, the results highlight Syn4 relevance for balanced cell behavior.


Association between syndecan-4 and subclinical atherosclerosis in ankylosing spondylitis.

  • Ahmet L Sertdemir‎ et al.
  • Medicine‎
  • 2024‎

Despite advances in the diagnosis and treatment of ankylosing spondylitis (AS), the risk of cardiovascular complications in AS patients is still higher than in the general population. Macrophages are at the intersection of the basic pathogenetic processes of AS and atherosclerosis. Although syndecan-4 (SDC4) mediates a variety of biological processes, the role of SDC4 in macrophage-mediated atherogenesis in AS patients remains unclear. Herein, we aimed to investigate the role of SDC4 in subclinical atherosclerosis in AS patients.


Syndecan-1 and syndecan-4 are involved in RANTES/CCL5-induced migration and invasion of human hepatoma cells.

  • Faten Charni‎ et al.
  • Biochimica et biophysica acta‎
  • 2009‎

We previously demonstrated that the CC-chemokine Regulated upon Activation, Normal T cell Expressed and Secreted (RANTES)/CCL5 exerts pro-tumoral effects on human hepatoma Huh7 cells through its G protein-coupled receptor, CCR1. Glycosaminoglycans play major roles in these biological events.


Heparan sulfate chain valency controls syndecan-4 function in cell adhesion.

  • Sandeep Gopal‎ et al.
  • The Journal of biological chemistry‎
  • 2010‎

Fibroblasts null for the transmembrane proteoglycan, syndecan-4, have an altered actin cytoskeleton, compared with matching wild-type cells. They do not organize alpha-smooth muscle actin into bundles, but will do so when full-length syndecan-4 is re-expressed. This requires the central V region of the core protein cytoplasmic domain, though not interactions with PDZ proteins. A second key requirement is multiple heparan sulfate chains. Mutant syndecan-4 with no chains, or only one chain, failed to restore the wild-type phenotype, whereas those expressing two or three were competent. However, clustering of one-chain syndecan-4 forms with antibodies overcame the block, indicating that valency of interactions with ligands is a key component of syndecan-4 function. Measurements of focal contact/adhesion size and focal adhesion kinase phosphorylation correlated with syndecan-4 status and alpha-smooth muscle actin organization, being reduced where syndecan-4 function was compromised by a lack of multiple heparan sulfate chains.


Unravelling the Effects of Syndecan-4 Knockdown on Skeletal Muscle Functions.

  • Mónika Sztretye‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

The remodelling of the extracellular matrix plays an important role in skeletal muscle development and regeneration. Syndecan-4 is a cell surface proteoglycan crucial for muscle differentiation. Syndecan-4-/- mice have been reported to be unable to regenerate following muscle damage. To investigate the consequences of the decreased expression of Syndecan-4, we have studied the in vivo and in vitro muscle performance and the excitation-contraction coupling machinery in young and aged Syndecan-4+/- (SDC4) mice. In vivo grip force was decreased significantly as well as the average and maximal speed of voluntary running in SDC4 mice, regardless of their age. The maximal in vitro twitch force was reduced in both EDL and soleus muscles from young and aged SDC4 mice. Ca2+ release from the sarcoplasmic reticulum decreased significantly in the FDB fibres of young SDC4 mice, while its voltage dependence was unchanged regardless of age. These findings were present in muscles from young and aged mice as well. On C2C12 murine skeletal muscle cells, we have also found altered calcium homeostasis upon Syndecan-4 silencing. The decreased expression of Syndecan-4 leads to reduced skeletal muscle performance in mice and altered motility in C2C12 myoblasts via altered calcium homeostasis. The altered muscle force performance develops at an early age and is maintained throughout the life course of the animal until old age.


Syndecan-4 Mediates the Cellular Entry of Adeno-Associated Virus 9.

  • Anett Hudák‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Due to their low pathogenicity, immunogenicity, and long-term gene expression, adeno-associated virus (AAV) vectors emerged as safe and efficient gene delivery tools, over-coming setbacks experienced with other viral gene delivery systems in early gene therapy trials. Among AAVs, AAV9 can translocate through the blood-brain barrier (BBB), making it a promising gene delivery tool for transducing the central nervous system (CNS) via systemic administration. Recent reports on the shortcomings of AAV9-mediated gene delivery into the CNS require reviewing the molecular base of AAV9 cellular biology. A more detailed understanding of AAV9's cellular entry would eradicate current hurdles and enable more efficient AAV9-based gene therapy approaches. Syndecans, the transmembrane family of heparan-sulfate proteoglycans, facilitate the cellular uptake of various viruses and drug delivery systems. Utilizing human cell lines and syndecan-specific cellular assays, we assessed the involvement of syndecans in AAV9's cellular entry. The ubiquitously expressed isoform, syndecan-4 proved its superiority in facilitating AAV9 internalization among syndecans. Introducing syndecan-4 into poorly transducible cell lines enabled robust AAV9-dependent gene transduction, while its knockdown reduced AAV9's cellular entry. Attachment of AAV9 to syndecan-4 is mediated not just by the polyanionic heparan-sulfate chains but also by the cell-binding domain of the extracellular syndecan-4 core protein. Co-immunoprecipitation assays and affinity proteomics also confirmed the role of syndecan-4 in the cellular entry of AAV9. Overall, our findings highlight the universally expressed syndecan-4 as a significant contributor to the cellular internalization of AAV9 and provide a molecular-based, rational explanation for the low gene delivery potential of AAV9 into the CNS.


Syndecan-4 tunes cell mechanics by activating the kindlin-integrin-RhoA pathway.

  • Antonios Chronopoulos‎ et al.
  • Nature materials‎
  • 2020‎

Extensive research over the past decades has identified integrins to be the primary transmembrane receptors that enable cells to respond to external mechanical cues. We reveal here a mechanism whereby syndecan-4 tunes cell mechanics in response to localized tension via a coordinated mechanochemical signalling response that involves activation of two other receptors: epidermal growth factor receptor and β1 integrin. Tension on syndecan-4 induces cell-wide activation of the kindlin-2/β1 integrin/RhoA axis in a PI3K-dependent manner. Furthermore, syndecan-4-mediated tension at the cell-extracellular matrix interface is required for yes-associated protein activation. Extracellular tension on syndecan-4 triggers a conformational change in the cytoplasmic domain, the variable region of which is indispensable for the mechanical adaptation to force, facilitating the assembly of a syndecan-4/α-actinin/F-actin molecular scaffold at the bead adhesion. This mechanotransduction pathway for syndecan-4 should have immediate implications for the broader field of mechanobiology.


Dynamic catch of a Thy-1-α5β1+syndecan-4 trimolecular complex.

  • Vincent F Fiore‎ et al.
  • Nature communications‎
  • 2014‎

Cancer cell adhesion to the vascular endothelium is a critical step of tumour metastasis. Endothelial surface molecule Thy-1 (CD90) is implicated in the metastatic process through its interactions with integrins and syndecans. However, how Thy-1 supports cell-cell adhesion in a dynamic mechanical environment is not known. Here we show that Thy-1 supports β1 integrin- and syndecan-4 (Syn4)-mediated contractility-dependent mechanosignalling of melanoma cells. At the single-molecule level, Thy-1 is capable of independently binding α5β1 integrin and syndecan-4 (Syn4) receptors. However, in the presence of both α5β1 and Syn4, the two receptors bind cooperatively to Thy-1, to form a trimolecular complex. This trimolecular complex displays a unique phenomenon we coin 'dynamic catch', characterized by abrupt bond stiffening followed by the formation of catch bonds, where force prolongs the bond lifetime. Thus, we reveal a new class of trimolecular interactions where force strengthens the synergistic binding of two co-receptors and modulates downstream mechanosignalling.


Syndecan-1 downregulates syndecan-4 expression by suppressing the ERK1/2 and p38 MAPK signaling pathways in cultured vascular endothelial cells.

  • Takato Hara‎ et al.
  • Biochemistry and biophysics reports‎
  • 2021‎

Syndecan-1 and syndecan-4 are members of the syndecan family of transmembrane heparan sulfate proteoglycans. Vascular endothelial cells synthesize both species of proteoglycans and use them to regulate the blood coagulation-fibrinolytic system and their proliferation via their heparin-like activity and FGF-2 binding activity, respectively. However, little is known about the crosstalk between the expressions of the proteoglycan species. Previously, we reported that biglycan, a small leucine-rich dermatan sulfate proteoglycan, intensifies ALK5-Smad2/3 signaling by TGF-β1 and downregulates syndecan-4 expression in vascular endothelial cells. In the present study, we investigated the crosstalk between the expressions of syndecan-1 and other proteoglycan species (syndecan-4, perlecan, glypican-1, and biglycan) in bovine aortic endothelial cells in a culture system. These data suggested that syndecan-1 downregulated syndecan-4 expression by suppressing the endogenous FGF-2-dependent ERK1/2 pathway and FGF-2-independent p38 MAPK pathway in the cells. Moreover, this crosstalk was a one-way communication from syndecan-1 to syndecan-4, suggesting that syndecan-4 compensated for the reduced activity in the regulation of vascular endothelial cell functions caused by the decreased expression of syndecan-1 under certain conditions.


Plasma membrane proteoglycans syndecan-2 and syndecan-4 engage with EGFR and RON kinase to sustain carcinoma cell cycle progression.

  • DeannaLee M Beauvais‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

Epidermal growth factor receptor (EGFR) is a causal factor in carcinoma, yet many carcinoma patients are resistant to EGFR inhibitors. Potential insight into this resistance stems from prior work that showed EGFR in normal epithelial cells docks to the extracellular domain of the plasma membrane proteoglycan syndecan-4 (Sdc4) engaged with α3β1 and α6β4 integrins. We now report that this receptor complex is modified by the recruitment of syndecan-2 (Sdc2), the Recepteur d'Origine Nantais (RON) tyrosine kinase, and the cellular signaling mediator Abelson murine leukemia viral oncogene homolog 1 (ABL1) in triple-negative breast carcinoma and head and neck squamous cell carcinoma, where it contributes to EGFR kinase-independent proliferation. Treatment with a peptide mimetic of the EGFR docking site in the extracellular domain of Sdc4 (called SSTNEGFR) disrupts the entire complex and causes a rapid, global arrest of the cell cycle. Normal epithelial cells do not recruit these additional receptors to the adhesion mechanism and are not arrested by SSTNEGFR. Although EGFR docking with Sdc4 in the tumor cells is required, cell cycle progression does not depend on EGFR kinase. Instead, progression depends on RON kinase, activated by its incorporation into the complex. RON activates ABL1, which suppresses p38 mitogen-activated protein kinase and prevents a p38-mediated signal that would otherwise arrest the cell cycle. These findings add to the growing list of receptor tyrosine kinases that support tumorigenesis when activated by their association with syndecans at sites of matrix adhesion and identify new potential targets for cancer therapy.


Syndecan-4/PAR-3 signaling regulates focal adhesion dynamics in mesenchymal cells.

  • Alejandra Valdivia‎ et al.
  • Cell communication and signaling : CCS‎
  • 2020‎

Syndecans regulate cell migration thus having key roles in scarring and wound healing processes. Our previous results have shown that Thy-1/CD90 can engage both αvβ3 integrin and Syndecan-4 expressed on the surface of astrocytes to induce cell migration. Despite a well-described role of Syndecan-4 during cell movement, information is scarce regarding specific Syndecan-4 partners involved in Thy-1/CD90-stimulated cell migration.


Acquisition of anoikis resistance up-regulates syndecan-4 expression in endothelial cells.

  • Bruna Ribeiro Carneiro‎ et al.
  • PloS one‎
  • 2014‎

Anoikis is a programmed cell death induced upon cell detachment from extracellular matrix, behaving as a critical mechanism in preventing adherent-independent cell growth and attachment to an inappropriate matrix, thus avoiding colonization of distant organs. Cell adhesion plays an important role in neoplastic transformation. Tumors produce several molecules that facilitate their proliferation, invasion and maintenance, especially proteoglycans. The syndecan-4, a heparan sulfate proteoglycan, can act as a co-receptor of growth factors and proteins of the extracellular matrix by increasing the affinity of adhesion molecules to their specific receptors. It participates together with integrins in cell adhesion at focal contacts connecting the extracellular matrix to the cytoskeleton. Changes in the expression of syndecan-4 have been observed in tumor cells, indicating its involvement in cancer. This study investigates the role of syndecan-4 in the process of anoikis and cell transformation. Endothelial cells were submitted to sequential cycles of forced anchorage impediment and distinct lineages were obtained. Anoikis-resistant endothelial cells display morphological alterations, high rate of proliferation, poor adhesion to fibronectin, laminin and collagen IV and deregulation of the cell cycle, becoming less serum-dependent. Furthermore, anoikis-resistant cell lines display a high invasive potential and a low rate of apoptosis. This is accompanied by an increase in the levels of heparan sulfate and chondroitin sulfate as well as by changes in the expression of syndecan-4 and heparanase. These results indicate that syndecan-4 plays a important role in acquisition of anoikis resistance and that the conferral of anoikis resistance may suffice to transform endothelial cells.


Cell-extracellular matrix and cell-cell adhesion are linked by syndecan-4.

  • Sandeep Gopal‎ et al.
  • Matrix biology : journal of the International Society for Matrix Biology‎
  • 2017‎

Cell-extracellular matrix (ECM) and cell-cell junctions that employ microfilaments are sites of tension. They are important for tissue repair, morphogenetic movements and can be emblematic of matrix contraction in fibrotic disease and the stroma of solid tumors. One cell surface receptor, syndecan-4, has been shown to regulate focal adhesions, junctions that form at the ends of microfilament bundles in response to matrix components such as fibronectin. Recently it has been shown that signaling emanating from this proteoglycan receptor includes regulation of Rho family GTPases and cytosolic calcium. While it is known that cell-ECM and cell-cell junctions may be linked, possible roles for syndecans in this process are not understood. Here we show that wild type primary fibroblasts and those lacking syndecan-4 utilize different cadherins in their adherens junctions and that tension is a major factor in this differential response. This corresponds to the reduced ability of fibroblasts lacking syndecan-4 to exert tension on the ECM and we now show that this may extend to reduced tension in cell-cell adhesion.


Syndecan-4 regulates extravillous trophoblast migration by coordinating protein kinase C activation.

  • Mariyan J Jeyarajah‎ et al.
  • Scientific reports‎
  • 2019‎

Extravillous trophoblast (EVT) invasion is an essential component of human placentation. Poor EVT invasion is associated with obstetrical complications including preeclampsia. Integration of cues from the extracellular environment is required for directional EVT invasion, but how EVTs coordinate responses to these cues is not well understood. Syndecan-4 (SDC4) is a transmembrane heparan sulfate proteoglycan that binds to, and modulates the activity of, many extracellular proteins implicated in placental development. Therefore, we determined the functional importance of SDC4 for EVT invasion. We found that SDC4 is expressed by a first trimester EVT line (HTR8), and in EVTs in placenta throughout pregnancy, with higher expression during early pregnancy than at term. Higher expression was also observed in placentas from preeclampsia compared to normotensive pregnancies. SDC4-deficient HTR8 EVTs exhibited reduced migration and Matrigel-based invasion, both under basal conditions and following exposure to basic fibroblast growth factor and heparin-binding epidermal growth factor. SDC4-deficient HTR8 EVTs also showed reduced protein kinase C-alpha (PKCα) and AKT phosphorylation. SDC4 directly bound to activated PKCα in EVTs, and inhibition of PKCα decreased EVT invasion and migration. Our findings reveal an essential role of SDC4 as a regulator of EVT motility, in part through coordination of PKCα activation.


Syndecan-4 Inhibits the Development of Pulmonary Fibrosis by Attenuating TGF-β Signaling.

  • Yoshinori Tanino‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Syndecan-4 is a transmembrane heparan sulfate proteoglycan expressed in a variety of cells, and its heparan sulfate glycosaminoglycan side chains bind to several proteins exhibiting various biological roles. The authors have previously demonstrated syndecan-4's critical roles in pulmonary inflammation. In the current study, however, its role in pulmonary fibrosis was evaluated. Wild-type and syndecan-4-deficient mice were injected with bleomycin, and several parameters of inflammation and fibrosis were analyzed. The mRNA expression of collagen and α-smooth muscle action (α-SMA) in lung tissues, as well as the histopathological lung fibrosis score and collagen content in lung tissues, were significantly higher in the syndecan-4-deficient mice. However, the total cell count and cell differentiation in bronchoalveolar lavage fluid were equivalent between the wild-type and syndecan-4-deficient mice. Although there was no difference in the TGF-β expression in lung tissues between the wild-type and syndecan-4-deficient mice, significantly more activation of Smad3 in lung tissues was observed in the syndecan-4-deficient mice compared to the wild-type mice. Furthermore, in the in vitro experiments using lung fibroblasts, the co-incubation of syndecan-4 significantly inhibited TGF-β-induced Smad3 activation, collagen and α-SMA upregulation. Moreover, syndecan-4 knock-down by siRNA increased TGF-β-induced Smad3 activation and upregulated collagen and α-SMA expression. These findings showed that syndecan-4 inhibits the development of pulmonary fibrosis, at least in part, through attenuating TGF-β signaling.


Syndecan-4 is regulated by IL-1β in β-cells and human islets.

  • Estelle Brioudes‎ et al.
  • Molecular and cellular endocrinology‎
  • 2020‎

Syndecans (SDC) are important multifunctional components of the extracellular matrix mainly described in endothelial cells. We studied the expression and regulation of SDC in cultured MIN6B1 cells and pancreatic islets. qRT-PCR revealed that syndecan-4 (SDC4) was the predominant isoform expressed in MIN6B1 cells and islets compared to other forms of SDC. Immunofluorescence in mouse and human pancreas sections revealed that SDC4 is mainly expressed in β-cells compared to other pancreatic cells. Exposure of MIN6B1 and human islets to IL-1β dose-dependently induced a rapid and transient expression of SDC4 while SRC and STAT3 inhibitors decreased this effect. Exposure of human islets to Il-1β caused an increase of SDC4 shedding, however treatment with STAT3 and SRC inhibitors inhibited this effect. These results indicate that SDC4 is upregulated by IL-1β through the SRC-STAT3 pathway and this pathway is also involved in SDC4 shedding in islets.


Systemically administered wound-homing peptide accelerates wound healing by modulating syndecan-4 function.

  • Horacio Maldonado‎ et al.
  • Nature communications‎
  • 2023‎

CAR (CARSKNKDC) is a wound-homing peptide that recognises angiogenic neovessels. Here we discover that systemically administered CAR peptide has inherent ability to promote wound healing: wounds close and re-epithelialise faster in CAR-treated male mice. CAR promotes keratinocyte migration in vitro. The heparan sulfate proteoglycan syndecan-4 regulates cell migration and is crucial for wound healing. We report that syndecan-4 expression is restricted to epidermis and blood vessels in mice skin wounds. Syndecan-4 regulates binding and internalisation of CAR peptide and CAR-mediated cytoskeletal remodelling. CAR induces syndecan-4-dependent activation of the small GTPase ARF6, via the guanine nucleotide exchange factor cytohesin-2, and promotes syndecan-4-, ARF6- and Cytohesin-2-mediated keratinocyte migration. Finally, we show that genetic ablation of syndecan-4 in male mice eliminates CAR-induced wound re-epithelialisation following systemic administration. We propose that CAR peptide activates syndecan-4 functions to selectively promote re-epithelialisation. Thus, CAR peptide provides a therapeutic approach to enhance wound healing in mice; systemic, yet target organ- and cell-specific.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: