Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 30 papers

Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons.

  • Tobias Weinert‎ et al.
  • Nature communications‎
  • 2017‎

Historically, room-temperature structure determination was succeeded by cryo-crystallography to mitigate radiation damage. Here, we demonstrate that serial millisecond crystallography at a synchrotron beamline equipped with high-viscosity injector and high frame-rate detector allows typical crystallographic experiments to be performed at room-temperature. Using a crystal scanning approach, we determine the high-resolution structure of the radiation sensitive molybdenum storage protein, demonstrate soaking of the drug colchicine into tubulin and native sulfur phasing of the human G protein-coupled adenosine receptor. Serial crystallographic data for molecular replacement already converges in 1,000-10,000 diffraction patterns, which we collected in 3 to maximally 82 minutes. Compared with serial data we collected at a free-electron laser, the synchrotron data are of slightly lower resolution, however fewer diffraction patterns are needed for de novo phasing. Overall, the data we collected by room-temperature serial crystallography are of comparable quality to cryo-crystallographic data and can be routinely collected at synchrotrons.Serial crystallography was developed for protein crystal data collection with X-ray free-electron lasers. Here the authors present several examples which show that serial crystallography using high-viscosity injectors can also be routinely employed for room-temperature data collection at synchrotrons.


Progress in small-angle scattering from biological solutions at high-brilliance synchrotrons.

  • Anne T Tuukkanen‎ et al.
  • IUCrJ‎
  • 2017‎

Small-angle X-ray scattering (SAXS) is an established technique that provides low-resolution structural information on macromolecular solutions. Recent decades have witnessed significant progress in both experimental facilities and in novel data-analysis approaches, making SAXS a mainstream method for structural biology. The technique is routinely applied to directly reconstruct low-resolution shapes of proteins and to generate atomistic models of macromolecular assemblies using hybrid approaches. Very importantly, SAXS is capable of yielding structural information on systems with size and conformational polydispersity, including highly flexible objects. In addition, utilizing high-flux synchrotron facilities, time-resolved SAXS allows analysis of kinetic processes over time ranges from microseconds to hours. Dedicated bioSAXS beamlines now offer fully automated data-collection and analysis pipelines, where analysis and modelling is conducted on the fly. This enables SAXS to be employed as a high-throughput method to rapidly screen various sample conditions and additives. The growing SAXS user community is supported by developments in data and model archiving and quality criteria. This review illustrates the latest developments in SAXS, in particular highlighting time-resolved applications aimed at flexible and evolving systems.


Micro-structured polymer fixed targets for serial crystallography at synchrotrons and XFELs.

  • Melissa Carrillo‎ et al.
  • IUCrJ‎
  • 2023‎

Fixed targets are a popular form of sample-delivery system used in serial crystallography at synchrotron and X-ray free-electron laser sources. They offer a wide range of sample-preparation options and are generally easy to use. The supports are typically made from silicon, quartz or polymer. Of these, currently, only silicon offers the ability to perform an aperture-aligned data collection where crystals are loaded into cavities in precise locations and sequentially rastered through, in step with the X-ray pulses. The polymer-based fixed targets have lacked the precision fabrication to enable this data-collection strategy and have been limited to directed-raster scans with crystals randomly distributed across the polymer surface. Here, the fabrication and first results from a new polymer-based fixed target, the micro-structured polymer fixed targets (MISP chips), are presented. MISP chips, like those made from silicon, have a precise array of cavities and fiducial markers. They consist of a structured polymer membrane and a stabilization frame. Crystals can be loaded into the cavities and the excess crystallization solution removed through apertures at their base. The fiducial markers allow for a rapid calculation of the aperture locations. The chips have a low X-ray background and, since they are optically transparent, also allow for an a priori analysis of crystal locations. This location mapping could, ultimately, optimize hit rates towards 100%. A black version of the MISP chip was produced to reduce light contamination for optical-pump/X-ray probe experiments. A study of the loading properties of the chips reveals that these types of fixed targets are best optimized for crystals of the order of 25 µm, but quality data can be collected from crystals as small as 5 µm. With the development of these chips, it has been proved that polymer-based fixed targets can be made with the precision required for aperture-alignment-based data-collection strategies. Further work can now be directed towards more cost-effective mass fabrication to make their use more sustainable for serial crystallography facilities and users.


Estimating signal and noise of time-resolved X-ray solution scattering data at synchrotrons and XFELs.

  • Jungmin Kim‎ et al.
  • Journal of synchrotron radiation‎
  • 2020‎

Elucidating the structural dynamics of small molecules and proteins in the liquid solution phase is essential to ensure a fundamental understanding of their reaction mechanisms. In this regard, time-resolved X-ray solution scattering (TRXSS), also known as time-resolved X-ray liquidography (TRXL), has been established as a powerful technique for obtaining the structural information of reaction intermediates and products in the liquid solution phase and is expected to be applied to a wider range of molecules in the future. A TRXL experiment is generally performed at the beamline of a synchrotron or an X-ray free-electron laser (XFEL) to provide intense and short X-ray pulses. Considering the limited opportunities to use these facilities, it is necessary to verify the plausibility of a target experiment prior to the actual experiment. For this purpose, a program has been developed, referred to as S-cube, which is short for a Solution Scattering Simulator. This code allows the routine estimation of the shape and signal-to-noise ratio (SNR) of TRXL data from known experimental parameters. Specifically, S-cube calculates the difference scattering curve and the associated quantum noise on the basis of the molecular structure of the target reactant and product, the target solvent, the energy of the pump laser pulse and the specifications of the beamline to be used. Employing a simplified form for the pair-distribution function required to calculate the solute-solvent cross term greatly increases the calculation speed as compared with a typical TRXL data analysis. Demonstrative applications of S-cube are presented, including the estimation of the expected TRXL data and SNR level for the future LCLS-II HE beamlines.


Crystal structure of the processivity clamp loader gamma (gamma) complex of E. coli DNA polymerase III.

  • D Jeruzalmi‎ et al.
  • Cell‎
  • 2001‎

The gamma complex, an AAA+ ATPase, is the bacterial homolog of eukaryotic replication factor C (RFC) that loads the sliding clamp (beta, homologous to PCNA) onto DNA. The 2.7/3.0 A crystal structure of gamma complex reveals a pentameric arrangement of subunits, with stoichiometry delta':gamma(3):delta. The C-terminal domains of the subunits form a circular collar that supports an asymmetric arrangement of the N-terminal ATP binding domains of the gamma motor and the structurally related domains of the delta' stator and the delta wrench. The structure suggests a mechanism by which the gamma complex switches between a closed state, in which the beta-interacting element of delta is hidden by delta', and an open form similar to the crystal structure, in which delta is free to bind to beta.


Design of a multipurpose sample cell holder for the Diamond Light Source high-throughput SAXS beamline B21.

  • Charlotte Jennifer Chante Edwards-Gayle‎ et al.
  • Journal of synchrotron radiation‎
  • 2021‎

The design of a multipurpose sample cell holder for the high-throughput (HT) beamline B21 is presented. The device is compatible with the robot bioSAXS sample changer currently installed on BM29, ESRF, and P12 Petra IV synchrotrons. This work presents an approach that uses 3D-printing to make hardware alterations which can expand the versatility of HT beamlines at low cost.


A procedure and double-chambered device for macromolecular crystal flash-cooling in different cryogenic liquids.

  • Jean-Marc Jeckelmann‎ et al.
  • PloS one‎
  • 2020‎

Flash-cooling of macromolecular crystals for X-ray diffraction analysis is usually performed in liquid nitrogen (LN2). Cryogens different than LN2 are used as well for this procedure but are highly underrepresented, e.g., liquid propane and liquid ethane. These two cryogens have significantly higher cooling rates compared with LN2 and may thus be beneficial for flash-cooling of macromolecular crystals. Flash-cooling in liquid propane or liquid ethane results in sample vitrification but is accompanied by solidification of these cryogens, which is not compatible with the robotic systems nowadays used for crystal mounting at most synchrotrons. Here we provide a detailed description of a new double-chambered device and procedure to flash-cool loop mounted macromolecular crystals in different cryogenic liquids. The usage of this device may result in specimens of better crystal- and optical quality in terms of mosaic spread and ice contamination. Furthermore, applying the described procedure with the new double-chambered device provides the possibility to screen for the best flash-cooling cryogen for macromolecular crystals on a routine basis, and, most importantly, the samples obtained allow the usage of state-of-the-art robotic sample-loading systems at synchrotrons.


Water equivalent PRESAGE® for synchrotron radiation therapy dosimetry.

  • Frank M Gagliardi‎ et al.
  • Medical physics‎
  • 2018‎

Synchrotron Radiation Therapy techniques are currently being trialed and commissioned at synchrotrons around the world. The patient treatment planning systems (TPS) developed for these treatments use simulated data of the synchrotron x-ray beam to produce the dosimetry in the treatment plan. The purpose of this study was to investigate a water equivalent PRESAGE® dosimeter capable of 3D dosimetry over an energy range suitable for synchrotron x-ray beams.


The Croonian lecture 2006. Structure of the living cell.

  • Iain D Campbell‎
  • Philosophical transactions of the Royal Society of London. Series B, Biological sciences‎
  • 2008‎

The smallest viable unit of life is a single cell. To understand life, we need to visualize the structure of the cell as well as all cellular components and their complexes. This is a formidable task that requires sophisticated tools. These have developed from the rudimentary early microscopes of 350 years ago to a toolbox that includes electron microscopes, synchrotrons, high magnetic fields and vast computing power. This lecture briefly reviews the development of biophysical tools and illustrates how they begin to unravel the 'molecular logic of the living state'.


Slow protein dynamics probed by time-resolved oscillation crystallography at room temperature.

  • Sylvain Aumonier‎ et al.
  • IUCrJ‎
  • 2022‎

The development of serial crystallography over the last decade at XFELs and synchrotrons has produced a renaissance in room-temperature macromolecular crystallography (RT-MX), and fostered many technical and methodological breakthroughs designed to study phenomena occurring in proteins on the picosecond-to-second timescale. However, there are components of protein dynamics that occur in much slower regimes, of which the study could readily benefit from state-of-the-art RT-MX. Here, the room-temperature structural study of the relaxation of a reaction intermediate at a synchrotron, exploiting a handful of single crystals, is described. The intermediate in question is formed in microseconds during the photoreaction of the LOV2 domain of phototropin 2 from Arabidopsis thaliana, which then decays in minutes. This work monitored its relaxation in the dark using a fast-readout EIGER X 4M detector to record several complete oscillation X-ray diffraction datasets, each of 1.2 s total exposure time, at different time points in the relaxation process. Coupled with in crystallo UV-Vis absorption spectroscopy, this RT-MX approach allowed the authors to follow the relaxation of the photoadduct, a thio-ether covalent bond between the chromophore and a cysteine residue. Unexpectedly, the return of the chromophore to its spectroscopic ground state is followed by medium-scale protein rearrangements that trigger a crystal phase transition and hinder the full recovery of the structural ground state of the protein. In addition to suggesting a hitherto unexpected role of a conserved tryptophan residue in the regulation of the photocycle of LOV2, this work provides a basis for performing routine time-resolved protein crystallography experiments at synchrotrons for phenomena occurring on the second-to-hour timescale.


Sample manipulation and data assembly for robust microcrystal synchrotron crystallography.

  • Gongrui Guo‎ et al.
  • IUCrJ‎
  • 2018‎

With the recent developments in microcrystal handling, synchrotron microdiffraction beamline instrumentation and data analysis, microcrystal crystallo-graphy with crystal sizes of less than 10 µm is appealing at synchrotrons. However, challenges remain in sample manipulation and data assembly for robust microcrystal synchrotron crystallography. Here, the development of micro-sized polyimide well-mounts for the manipulation of microcrystals of a few micrometres in size and the implementation of a robust data-analysis method for the assembly of rotational microdiffraction data sets from many microcrystals are described. The method demonstrates that microcrystals may be routinely utilized for the acquisition and assembly of complete data sets from synchrotron microdiffraction beamlines.


The new X-ray/visible microscopy MAXWELL technique for fast three-dimensional nanoimaging with isotropic resolution.

  • Yoshiki Kohmura‎ et al.
  • Scientific reports‎
  • 2022‎

Microscopy by Achromatic X-rays With Emission of Laminar Light (MAXWELL) is a new X-ray/visible technique with attractive characteristics including isotropic resolution in all directions, large-volume imaging and high throughput. An ultrathin, laminar X-ray beam produced by a Wolter type I mirror irradiates the sample stimulating the emission of visible light by scintillating nanoparticles, captured by an optical system. Three-dimensional (3D) images are obtained by scanning the specimen with respect to the laminar beam. We implemented and tested the technique with a high-brightness undulator at SPring-8, demonstrating its validity for a variety of specimens. This work was performed under the Synchrotrons for Neuroscience-an Asia-Pacific Strategic Enterprise (SYNAPSE) collaboration.


Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser.

  • Mark S Hunter‎ et al.
  • Nature communications‎
  • 2016‎

Structural information about biological macromolecules near the atomic scale provides important insight into the functions of these molecules. To date, X-ray crystallography has been the predominant method used for macromolecular structure determination. However, challenges exist when solving structures with X-rays, including the phase problem and radiation damage. X-ray-free electron lasers (X-ray FELs) have enabled collection of diffraction information before the onset of radiation damage, yet the majority of structures solved at X-ray FELs have been phased using external information via molecular replacement. De novo phasing at X-ray FELs has proven challenging due in part to per-pulse variations in intensity and wavelength. Here we report the solution of a selenobiotinyl-streptavidin structure using phases obtained by the anomalous diffraction of selenium measured at a single wavelength (Se-SAD) at the Linac Coherent Light Source. Our results demonstrate Se-SAD, routinely employed at synchrotrons for novel structure determination, is now possible at X-ray FELs.


High-viscosity injector-based pink-beam serial crystallography of microcrystals at a synchrotron radiation source.

  • Jose M Martin-Garcia‎ et al.
  • IUCrJ‎
  • 2019‎

Since the first successful serial crystallography (SX) experiment at a synchrotron radiation source, the popularity of this approach has continued to grow showing that third-generation synchrotrons can be viable alternatives to scarce X-ray free-electron laser sources. Synchrotron radiation flux may be increased ∼100 times by a moderate increase in the bandwidth ('pink beam' conditions) at some cost to data analysis complexity. Here, we report the first high-viscosity injector-based pink-beam SX experiments. The structures of proteinase K (PK) and A2A adenosine receptor (A2AAR) were determined to resolutions of 1.8 and 4.2 Å using 4 and 24 consecutive 100 ps X-ray pulse exposures, respectively. Strong PK data were processed using existing Laue approaches, while weaker A2AAR data required an alternative data-processing strategy. This demonstration of the feasibility presents new opportunities for time-resolved experiments with microcrystals to study structural changes in real time at pink-beam synchrotron beamlines worldwide.


Glycoscience@Synchrotron: Synchrotron radiation applied to structural glycoscience.

  • Serge Pérez‎ et al.
  • Beilstein journal of organic chemistry‎
  • 2017‎

Synchrotron radiation is the most versatile way to explore biological materials in different states: monocrystalline, polycrystalline, solution, colloids and multiscale architectures. Steady improvements in instrumentation have made synchrotrons the most flexible intense X-ray source. The wide range of applications of synchrotron radiation is commensurate with the structural diversity and complexity of the molecules and macromolecules that form the collection of substrates investigated by glycoscience. The present review illustrates how synchrotron-based experiments have contributed to our understanding in the field of structural glycobiology. Structural characterization of protein-carbohydrate interactions of the families of most glycan-interacting proteins (including glycosyl transferases and hydrolases, lectins, antibodies and GAG-binding proteins) are presented. Examples concerned with glycolipids and colloids are also covered as well as some dealing with the structures and multiscale architectures of polysaccharides. Insights into the kinetics of catalytic events observed in the crystalline state are also presented as well as some aspects of structure determination of protein in solution.


The use of a mini-κ goniometer head in macromolecular crystallography diffraction experiments.

  • Sandor Brockhauser‎ et al.
  • Acta crystallographica. Section D, Biological crystallography‎
  • 2013‎

Most macromolecular crystallography (MX) diffraction experiments at synchrotrons use a single-axis goniometer. This markedly contrasts with small-molecule crystallography, in which the majority of the diffraction data are collected using multi-axis goniometers. A novel miniaturized κ-goniometer head, the MK3, has been developed to allow macromolecular crystals to be aligned. It is available on the majority of the structural biology beamlines at the ESRF, as well as elsewhere. In addition, the Strategy for the Alignment of Crystals (STAC) software package has been developed to facilitate the use of the MK3 and other similar devices. Use of the MK3 and STAC is streamlined by their incorporation into online analysis tools such as EDNA. The current use of STAC and MK3 on the MX beamlines at the ESRF is discussed. It is shown that the alignment of macromolecular crystals can result in improved diffraction data quality compared with data obtained from randomly aligned crystals.


Femtosecond Soft-X-ray Absorption Spectroscopy of Liquids with a Water-Window High-Harmonic Source.

  • Adam D Smith‎ et al.
  • The journal of physical chemistry letters‎
  • 2020‎

Femtosecond X-ray absorption spectroscopy (XAS) is a powerful method to investigate the dynamical behavior of a system after photoabsorption in real time. So far, the application of this technique has remained limited to large-scale facilities, such as femtosliced synchrotrons and free-electron lasers (FEL). In this work, we demonstrate femtosecond time-resolved soft-X-ray absorption spectroscopy of liquid samples by combining a sub-micrometer-thin flat liquid jet with a high-harmonic tabletop source covering the entire water-window range (284-538 eV). Our work represents the first extension of tabletop XAS to the oxygen edge of a chemical sample in the liquid phase. In the time domain, our measurements resolve the gradual appearance of absorption features below the carbon K-edge of ethanol and methanol during strong-field ionization and trace the valence-shell ionization dynamics of the liquid alcohols with a temporal resolution of ∼30 fs. This technique opens unique opportunities to study molecular dynamics of chemical systems in the liquid phase with elemental, orbital, and site sensitivity.


Structural Modeling Using Solution Small-Angle X-ray Scattering (SAXS).

  • Tobias W Gräwert‎ et al.
  • Journal of molecular biology‎
  • 2020‎

Small-angle X-ray scattering (SAXS) offers a way to examine the overall shape and oligomerization state of biological macromolecules under quasi native conditions in solution. In the past decades, SAXS has become a standard tool for structure biologists due to the availability of high brilliance X-ray sources and the development of data analysis/interpretation methods. Sample handling robots and software pipelines have significantly reduced the time necessary to conduct SAXS experiments. Presently, most synchrotrons feature beamlines dedicated to biological SAXS, and the SAXS-derived models are deposited into dedicated and accessible databases. The size of macromolecules that may be analyzed ranges from small peptides or snippets of nucleic acids to gigadalton large complexes or even entire viruses. Compared to other structural methods, sample preparation is straightforward, and the risk of inducing preparation artefacts is minimal. Very importantly, SAXS is a method of choice to study flexible systems like unfolded or disordered proteins, providing the structural ensembles compatible with the data. Although it may be utilized stand-alone, SAXS profits a lot from available experimental or predicted high-resolution data and information from complementary biophysical methods. Here, we show the basic principles of SAXS and review latest developments in the fields of hybrid modeling and flexible systems.


4th generation synchrotron source boosts crystalline imaging at the nanoscale.

  • Peng Li‎ et al.
  • Light, science & applications‎
  • 2022‎

New 4th-generation synchrotron sources, with their increased brilliance, promise to greatly improve the performances of coherent X-ray microscopy. This perspective is of major interest for crystal microscopy, which aims at revealing the 3D crystalline structure of matter at the nanoscale, an approach strongly limited by the available coherent flux. Our results, based on Bragg ptychography experiments performed at the first 4th-generation synchrotron source, demonstrate the possibility of retrieving a high-quality image of the crystalline sample, with unprecedented quality. Importantly, the larger available coherent flux produces datasets with enough information to overcome experimental limitations, such as strongly deteriorated scanning conditions. We show this achievement would not be possible with 3rd-generation sources, a limit that has inhibited the development of this otherwise powerful microscopy method, so far. Hence, the advent of next-generation synchrotron sources not only makes Bragg ptychography suitable for high throughput studies but also strongly relaxes the associated experimental constraints, making it compatible with a wider range of experimental set-ups at the new synchrotrons.


Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature.

  • Soichiro Tsujino‎ et al.
  • Scientific reports‎
  • 2016‎

Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinning of the crystal within a levitating droplet ensured an efficient sampling of the reciprocal space. The datasets were processed with a program suite developed for serial femtosecond crystallography (SFX). The structure, which was solved by molecular replacement, was found to be identical to the structure obtained by the conventional oscillation method for up to a 1.8-Å resolution limit. In particular, the absence of protein crystal damage resulting from the acoustic levitation was carefully established. These results represent a key step towards a fully automated sample handling and measurement pipeline, which has promising prospects for a high acquisition rate and high sample efficiency for room temperature X-ray crystallography.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: