Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 164 papers

Expression of synaptosomal-associated protein-25 in the rat brain after subarachnoid hemorrhage.

  • Gang Chen‎ et al.
  • Neural regeneration research‎
  • 2013‎

Synaptosomal-associated protein-25 is an important factor for synaptic functions and cognition. In this study, subarachnoid hemorrhage models with spatial learning disorder were established through a blood injection into the chiasmatic cistern. Immunohistochemical staining and western blot analysis results showed that synaptosomal-associated protein-25 expression in the temporal lobe, hippocampus, and cerebellum significantly lower at days 1 and 3 following subarachnoid morrhage. Our findings indicate that synaptosomal-associated protein-25 expression was down-regulated in the rat brain after subarachnoid hemorrhage.


CSF levels of synaptosomal-associated protein 25 and synaptotagmin-1 in first-episode psychosis subjects.

  • Chengai Xu‎ et al.
  • IBRO reports‎
  • 2020‎

Post-mortem studies consistently show evidence of reduced synaptic protein levels in patients with schizophrenia. Clinically high-risk subjects show a steeper decrease in grey matter thickness and in vitro modeling using patient-derived cells implicate excessive synaptic pruning during neurodevelopment as a part of the schizophrenia pathophysiology. However, it is unclear to what extent synapse elimination is present during various stages of the disease, which is of clinical importance as in a real-world setting most subjects received their first-episode psychosis (FEP) diagnosis not until their mid-twenties. In the present study, we measured cerebrospinal fluid (CSF) concentrations of the two pre-synaptic proteins synaptosomal-associated protein 25 (SNAP-25) and synaptotagmin-1 (SYT-1), both of which are increased in conditions of ongoing synaptic degeneration, in 44 FEP subjects (mean age 29.9 years) and 21 healthy controls (25.9 years) using immunoprecipitation mass spectrometry. Neither protein was found to differ between healthy controls and patients, and they showed no correlation with symptom ratings, cognitive performance or antipsychotic medication. Additional studies in high-risk subjects in the early prodromal phase will be needed to address if excessive synapse destruction occurs before the development of overt psychotic symptoms.


Gene expression of synaptosomal-associated protein 25 (SNAP-25) in the prefrontal cortex of the spontaneously hypertensive rat (SHR).

  • Qi Li‎ et al.
  • Biochimica et biophysica acta‎
  • 2009‎

Dopamine is believed to play an important role in the etiology of attention-deficit/hyperactivity disorder (ADHD). In our previous study, we showed that gene expression of dopamine D4 receptor decreased in the spontaneously hypertensive rat (SHR) in the prefrontal cortex (PFC). In the present study, we explored the potential causes of dysfunction in the dopamine system in ADHD. It is the first time that neuronal activities in both juvenile SHR and WKY rats have been measured by functional MRI (fMRI). Our results showed that in PFC the Blood Oxygenation Level Dependent (BOLD) signal response in SHR was much higher than WKY under stressful situations. We tested the effects of acute and repeated administration of amphetamine on behavioral changes in SHR combined with the expression of the neuronal activity marker, c-fos, in the PFC. Meanwhile dopamine-related gene expression was measured in the PFC after repeated administration of amphetamine. We found that potential neuronal damage occurred through deficit of D2-like receptor protective functions in the PFC of the SHR. We also measured the expression of synaptosomal-associated protein 25 (SNAP-25) in SHR in PFC. The results showed decreased expression of SNAP-25 mRNA in the PFC of SHR; this defect disappeared after repeated injection of D-AMP.


Synaptosomal-associated protein 25 mutation induces immaturity of the dentate granule cells of adult mice.

  • Koji Ohira‎ et al.
  • Molecular brain‎
  • 2013‎

Synaptosomal-associated protein, 25 kDa (SNAP-25) regulates the exocytosis of neurotransmitters. Growing evidence suggests that SNAP-25 is involved in neuropsychiatric disorders, such as schizophrenia, attention-deficit/hyperactivity disorder, and epilepsy. Recently, increases in anxiety-related behaviors and epilepsy have been observed in SNAP-25 knock-in (KI) mice, which have a single amino acid substitution of Ala for Ser187. However, the molecular and cellular mechanisms underlying the abnormalities in this mutant remain unknown.


Interaction of Synaptosomal-Associated Protein 25 with Neutral Sphingomyelinase 2: Functional Impact on the Sphingomyelin Pathway.

  • Jong Hoon Won‎ et al.
  • Neuroscience‎
  • 2020‎

Neurotransmitter release is mediated by ceramide, which is generated by sphingomyelin hydrolysis. In the present study, we examined whether synaptosomal-associated protein 25 (SNAP-25) is involved in ceramide production and exocytosis. Neutral sphingomyelinase 2 (nSMase2) was partially purified from bovine brain and we found that SNAP-25 was enriched in the nSMase2-containing fractions. In rat synaptosomes and PC12 cells, the immunoprecipitation pellet of anti-SNAP-25 antibody showed higher nSMase activity than the immunoprecipitation pellet of anti-nSMase2 antibody. In PC12 cells, SNAP-25 was colocalized with nSMase2. Transfection of SNAP-25 small interfering RNA (siRNA) significantly inhibited nSMase2 translocation to the plasma membrane. A23187-induced ceramide production was concomitantly reduced in SNAP-25 siRNA-transfected PC12 cells compared with that in scrambled siRNA-transfected cells. Moreover, transfection of SNAP-25 siRNA inhibited dopamine release, whereas addition of C6-ceramide to the siRNA-treated cells moderately reversed this inhibition. Additionally, nSMase2 inhibition reduced dopamine release. Collectively, our results indicate that SNAP-25 interacts with nSMase2 during ceramide production, which mediates exocytosis and neurotransmitter release.


Different levels of immunoreactivity for synaptosomal-associated protein of 25 kDa in vasoconstrictor and vasodilator axons of guinea-pigs.

  • J L Morris‎ et al.
  • Neuroscience letters‎
  • 2000‎

Immunoreactivity (IR) for synaptosomal-associated protein of 25 kDa (SNAP-25) was examined in axons of autonomic vasoconstrictor and vasodilator neurons innervating the lingual and uterine arteries of guinea-pigs. Polyacrylamide gel electrophoresis and immunoblotting of protein extracts demonstrated a SNAP-25-IR band at 25 kDa in both arteries. Quantitative confocal microscopy demonstrated significantly higher levels of SNAP-25-IR in varicosities with IR for vasoactive intestinal peptide (VIP) than in adjacent axons with IR for tyrosine hydroxylase (TH). Levels of SNAP-25-IR in TH-IR axons, relative to adjacent VIP-IR axons, were significantly higher in the lingual artery than the uterine artery. These differences in IR for SNAP-25, a protein considered essential for calcium-dependent exocytosis of neurotransmitters, raise the possibility that mechanisms of transmitter release may vary between different classes of autonomic neurons.


Mining the potential prognostic value of synaptosomal-associated protein 25 (SNAP25) in colon cancer based on stromal-immune score.

  • Jinyan Zou‎ et al.
  • PeerJ‎
  • 2020‎

Colon cancer is one of the deadliest tumors worldwide. Stromal cells and immune cells play important roles in cancer biology and microenvironment across different types of cancer. This study aimed to identify the prognostic value of stromal/immune cell-associated genes for colon cancer in The Cancer Genome Atlas (TCGA) database using bioinformatic technology.


Synaptosomal-associated protein 25 may be an intervention target for improving sensory and locomotor functions after spinal cord contusion.

  • Zhan-Qiong Zhong‎ et al.
  • Neural regeneration research‎
  • 2017‎

Synaptosomal-associated protein 25 kDa (SNAP-25) is localized on the synapse and participates in exocytosis and neurotransmitter release. Decreased expression of SNAP-25 is associated with Alzheimer's disease and attention deficit/hyperactivity disorder. However, the expression of SNAP-25 in spinal cord contusion injury is still unclear. We hypothesized that SNAP-25 is associated with sensory and locomotor functions after spinal cord injury. We established rat models of spinal cord contusion injury to detect gene changes with a gene array. A decreased level of SNAP-25 was detected by quantitative real time-polymerase chain reaction and western blot assay at 1, 3, 7, 14 and 28 days post injury. SNAP-25 was localized in the cytoplasm of neurons of the anterior and posterior horns, which are involved in locomotor and sensory functions. Our data suggest that reduced levels of SNAP-25 are associated with sensory and locomotor functions in rats with spinal cord contusion injury.


Cerebrospinal fluid synaptosomal-associated protein 25 is a key player in synaptic degeneration in mild cognitive impairment and Alzheimer's disease.

  • Hua Zhang‎ et al.
  • Alzheimer's research & therapy‎
  • 2018‎

There is accumulating evidence that synaptic loss precedes neuronal loss and correlates best with impaired memory formation in Alzheimer's disease (AD). Cerebrospinal fluid (CSF) synaptosomal-associated protein 25 (SNAP-25) is a newly discovered marker indicating synaptic damage. We here test CSF SNAP-25 and SNAP-25/amyloid-β42 (Aβ42) ratio as a diagnostic marker for predicting cognitive decline and brain structural change in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.


Distribution of the SNAP25 and SNAP23 synaptosomal-associated protein isoforms in rat cerebellar cortex.

  • G Mandolesi‎ et al.
  • Neuroscience‎
  • 2009‎

Synaptosome-associated protein of 25 kDa (SNAP25) is a component of the fusion complex that mediates synaptic vesicle exocytosis, regulates calcium dynamics and neuronal plasticity. Despite its crucial role in vesicle release, SNAP25 is not distributed homogenously within the brain. It seems to be virtually absent in mature inhibitory terminals and is observed in a subtype of excitatory neurons defined by the expression of vesicular glutamate transporter 1 (VGluT1). Since a complementary distribution of VGluT1 and VGluT2 in excitatory synapses is correlated with different probabilities of release (Pr), we evaluated whether SNAP25 localization is associated with specific synaptic properties. In the cerebellum, climbing fiber (CF) and parallel fiber (PF) inputs, which impinge onto the same Purkinje cell (PC), have very different functional properties. In the cerebellum of adult rats, using confocal and electron microscopy, we observed that VGluT2-positive CFs, characterized by a high Pr, only weakly express SNAP25, while VGluT1-positive PFs that show a low Pr abundantly express SNAP25. Moreover, SNAP25 was less profuse in the VGluT2-positive rosettes of mossy fibers (MFs) and was almost absent in inhibitory terminals. We extended our analysis to the SNAP23 homolog; this is expressed at different levels in both gamma-aminobutyric acid-containing terminals (GABAergic) and glutamatergic terminals of the cerebellar cortex. In conclusion, the preferential localization of SNAP25 in specific synaptic boutons suggests a correlation between SNAP25 and the Pr. This evidence supports the hypothesis that SNAP25 has a modulatory role in shaping synaptic responses.


Immunohistochemical localization and quantification of glial fibrillary acidic protein and synaptosomal-associated protein (mol. wt 25000) in the ageing hippocampus following administration of 5,7-dihydroxytryptamine.

  • A Dugar‎ et al.
  • Neuroscience‎
  • 1998‎

Responses to injury in the ageing hippocampus were assessed utilizing the synaptic markers glial fibrillary acidic protein and synaptosomal-associated protein (mol. wt 25,000) following administration of the neurotoxin, 5,7-dihydroxytryptamine, into the fimbria-fornix and cingulum bundle to denervate serotonergic afferent input to the dorsal hippocampus. Age-dependent alterations in hippocampal immunohistochemical localization of glial fibrillary acidic protein and synaptosomal-associated protein were evaluated in female Fischer 344 rats following serotonergic deafferentation with 5,7-dihydroxytryptamine. Across the lifespan, as indicated by measurements taken at three, 18, 21 and 29 months, marked increases in glial fibrillary acidic protein, but not synaptosomal-associated protein immunoreactivity, occurred throughout the hippocampus at 21 and 29 months compared to three and 18 months. Following three weeks pretreatment with 5,7-dihydroxytryptamine (20 microg total dose) or vehicle (0.1% ascorbic saline; 2 microl total volume) infused in the fimbria-fornix/cingulum bundle, immunohistochemical analysis demonstrated marked increases of glial fibrillary acidic protein, but not synaptosomal-associated protein, in the 18-month 5,7-dihydroxytryptamine group compared to the 18-month vehicle and 3-month 5,7-dihydroxytryptamine groups. Additionally, a significant increase in glial fibrillary acidic protein concentration was found by enzyme-linked immunosorbent assay in the 18-month 5,7-dihydroxytryptamine group compared to the 18-month vehicle and three-month 5,7-dihydroxytryptamine groups. These results demonstrate that selective neurotoxicant damage of the hippocampal serotonergic system differentially alters the expression of glial fibrillary acidic protein. This approach may provide a valuable tool to determine the ability of the hippocampus to respond to age-related neurodegenerative injury.


Mitochondrial bioenergetics and cytometric characterization of a synaptosomal preparation from mouse brain cortex.

  • Paulina Lombardi‎ et al.
  • Mitochondrion‎
  • 2023‎

Mitochondrial function at synapses can be assessed in isolated nerve terminals. Synaptosomes are structures obtained in vitro by detaching the nerve endings from neuronal bodies under controlled homogenization conditions. Several protocols have been described for the preparation of intact synaptosomal fractions. Herein a fast and economical method to obtain synaptosomes with optimal intrasynaptic mitochondria functionality was described. Synaptosomal fractions were obtained from mouse brain cortex by differential centrifugation followed by centrifugation in a Ficoll gradient. The characteristics of the subcellular particles obtained were analyzed by flow cytometry employing specific tools. Integrity and specificity of the obtained organelles were evaluated by calcein and SNAP-25 probes. The proportion of positive events of the synaptosomal preparation was 75 ± 2 % and 48 ± 7% for calcein and Synaptosomal-Associated Protein of 25 kDa (SNAP-25), respectively. Mitochondrial integrity was evaluated by flow cytometric analysis of cardiolipin content, which indicated that 73 ± 1% of the total events were 10 N-nonylacridine orange (NAO)-positive. Oxygen consumption, ATP production and mitochondrial membrane potential determinations showed that mitochondria inside synaptosomes remained functional after the isolation procedure. Mitochondrial and synaptosomal enrichment were determined by measuring synaptosomes/ homogenate ratio of specific markers. Functionality of synaptosomes was verified by nitric oxide detection after glutamate addition. As compared with other methods, the present protocol can be performed briefly, does not imply high economic costs, and provides an useful tool for the isolation of a synaptosomal preparation with high mitochondrial respiratory capacity and an adequate integrity and function of intraterminal mitochondria.


Levels of Cortisol in CSF Are Associated With SNAP-25 and Tau Pathology but Not Amyloid-β.

  • Qing Wang‎ et al.
  • Frontiers in aging neuroscience‎
  • 2018‎

Objective: Preclinical studies have found both hyperactivity of hypothalamic- pituitary- adrenal (HPA) axis and synaptic degeneration are involved in the pathogenesis of Alzheimer's disease (AD). However, the data on the relationship of activity of HPA axis and synaptic degeneration in humans are limited. Methods: We compared CSF cortisol levels in 310 subjects, including 92 cognitively normal older people, 149 patients with mild cognitive impairment (MCI), and 69 patients with mild AD. Several linear and logistic regression models were conducted to investigate associations between CSF cortisol and synaptosomal-associated protein 25 (SNAP-25, reflecting synaptic degeneration) and other AD-related biomarkers. Results: We found that levels of cortisol in CSF were associated with SNAP-25 levels and tau pathologies but not amyloid-β protein. However, there were no significant differences in CSF cortisol levels among the three diagnostic groups. Conclusion: The HPA axis may play a crucial role in synaptic degeneration in AD pathogenesis.


SNAP-25 reduction in the hippocampus of patients with schizophrenia.

  • Peter M Thompson‎ et al.
  • Progress in neuro-psychopharmacology & biological psychiatry‎
  • 2003‎

In this study, the authors sought to replicate the findings of reduced synaptosomal associated protein 25 kDa (SNAP-25) immunoreactivity in the hippocampus of patients with schizophrenia. The authors also measured N-methyl-D-aspartate (NMDA) receptor 1 (NR1) receptor subunit to determine if glutamatergic synapses were involved with the loss of SNAP-25. We found 49% less SNAP-25 immunointensity in the schizophrenic group (n=7) compared to the control (n=8) or bipolar groups (n=4) (P=.004). There was no change in NMDA NR1 levels in the three groups. The authors confirm the previous report of less SNAP-25 immunoreactivity in the hippocampus using a different cohort of patients with schizophrenia. It also appears that NMDA NR1 was unchanged, indicating that the overall level of NMDA glutamatergic synapses in hippocampus is normal. These data add to evidence suggesting that in schizophrenia the molecular pathology of the hippocampus involves presynaptic components.


Differential role of SNAP-25 phosphorylation by protein kinases A and C in the regulation of SNARE complex formation and exocytosis in PC12 cells.

  • Jing Gao‎ et al.
  • Cellular signalling‎
  • 2016‎

The final step of regulated exocytosis, membrane fusion, is mediated by formation of the SNARE complex by syntaxin, SNAP-25 (synaptosomal-associated protein of 25 kDa), and VAMP (vesicle-associated membrane protein). Phosphorylation of SNARE and accessory proteins contributes to regulation of exocytosis. We previously identified residues of SNAP-25 phosphorylated by protein kinase A (PKA) and PKC. However, the physiological role of SNAP-25 phosphorylation in exocytosis, in particular with regard to SNARE complex formation, has remained elusive. SNARE complex formation by purified recombinant SNAP-25, syntaxin-1, and VAMP-2 in vitro was inhibited or promoted as a result of the phosphorylation at Thr(138) by PKA or at Ser(187) by PKC, respectively. SNARE complex formation in intact PC12 cells was similarly inhibited by forskolin (activator of PKA) and promoted by phorbol 12-myristate 13-acetate (PMA, activator of PKC). Noradrenaline secretion from PC12 cells induced by a high K(+) concentration was enhanced by forskolin or PMA. Stable depletion of SNAP-25 inhibited high-K(+)-induced noradrenaline secretion. Forced expression of WT SNAP-25 restored the secretory response of the SNAP-25-depleted cells to high-K(+), and this response was enhanced by forskolin or PMA. Expression of the nonphosphorylatable T138A or S187A mutants of SNAP-25 similarly rescued the secretory response to high-K(+), but the augmentation of this response by forskolin was more pronounced in the cells expressing SNAP-25 (T138A) than in those expressing SNAP-25 (WT), whereas that by PMA was less pronounced in those expressing SNAP-25 (S187A). Our results thus suggest that SNAP-25 phosphorylation by PKA or PKC contributes differentially to the control of exocytosis in PC12 cells by regulating SNARE complex formation.


Heterogeneous expression of SNAP-25 in rat and human brain.

  • Rita Garbelli‎ et al.
  • The Journal of comparative neurology‎
  • 2008‎

Synaptosomal associated protein of 25 kDa (SNAP-25) is a SNARE component of the exocytotic apparatus involved in the release of neurotransmitter. We used multiple-labeling immunofluorescence, confocal microscopy, and ultrastructural immunocytochemistry to examine the expression of SNAP-25 in excitatory and inhibitory terminals from different rat and human brain areas. Glutamatergic and GABAergic terminals were identified by staining for the vesicular glutamate transporter (vGLUT1), glutamic acid decarboxylase (GAD67), or the vesicular GABA transporter (vGAT). In all examined areas GABAergic terminals did not display detectable levels of SNAP-25, whereas glutamatergic terminals expressed the protein to a variable extent. Codistribution analysis revealed a high colocalization between pixels detecting SNAP-25 labeling and pixels detecting vGLUT1 immunoreactivity. On the contrary, a low degree of pixel colocalization, comparable to that between two unrelated antigens, was detected between SNAP-25 and vGAT, thus suggesting a random overlap of immunofluorescence signals. Our immunofluorescence evidence was supported by ultrastructural data, which clearly confirmed that SNAP-25 was undetectable in GABAergic terminals identified by both their typical morphology and specific staining for GABA. Interestingly, our ultrastructural results confirmed that a subset of glutamatergic synapses do not contain detectable levels of SNAP-25. The present study extends our previous findings obtained in rodent hippocampus and provides evidence that SNAP-25 expression is highly variable between different axon terminals both in rat and human brain. The heterogeneous distribution of SNAP-25 may have important implications not only in relation to the function of the protein as a SNARE but also in the control of network excitability.


LRRK2 phosphorylates Snapin and inhibits interaction of Snapin with SNAP-25.

  • Hye Jin Yun‎ et al.
  • Experimental & molecular medicine‎
  • 2013‎

Leucine-rich repeat kinase 2 (LRRK2) is a gene that, upon mutation, causes autosomal-dominant familial Parkinson's disease (PD). Yeast two-hybrid screening revealed that Snapin, a SNAP-25 (synaptosomal-associated protein-25) interacting protein, interacts with LRRK2. An in vitro kinase assay exhibited that Snapin is phosphorylated by LRRK2. A glutathione-S-transferase (GST) pull-down assay showed that LRRK2 may interact with Snapin via its Ras-of-complex (ROC) and N-terminal domains, with no significant difference on interaction of Snapin with LRRK2 wild type (WT) or its pathogenic mutants. Further analysis by mutation study revealed that Threonine 117 of Snapin is one of the sites phosphorylated by LRRK2. Furthermore, a Snapin T117D phosphomimetic mutant decreased its interaction with SNAP-25 in the GST pull-down assay. SNAP-25 is a component of the SNARE (Soluble NSF Attachment protein REceptor) complex and is critical for the exocytosis of synaptic vesicles. Incubation of rat brain lysate with recombinant Snapin T117D, but not WT, protein caused decreased interaction of synaptotagmin with the SNARE complex based on a co-immunoprecipitation assay. We further found that LRRK2-dependent phosphorylation of Snapin in the hippocampal neurons resulted in a decrease in the number of readily releasable vesicles and the extent of exocytotic release. Combined, these data suggest that LRRK2 may regulate neurotransmitter release via control of Snapin function by inhibitory phosphorylation.


Taurine supplementation restores glucose and carbachol-induced insulin secretion in islets from low-protein diet rats: involvement of Ach-M3R, Synt 1 and SNAP-25 proteins.

  • Thiago M Batista‎ et al.
  • The Journal of nutritional biochemistry‎
  • 2012‎

Isolated islets from low-protein (LP) diet rats showed decreased insulin secretion in response to glucose and carbachol (Cch). Taurine (TAU) increases insulin secretion in rodent islets with a positive effect upon the cholinergic pathway. Here, we investigated the effect of TAU administration upon glucose tolerance and insulin release in rats fed on a normal protein diet (17%) without (NP) or with 2.5% of TAU in their drinking water (NPT), and LP diet fed rats (6%) without (LP) or with TAU (LPT). Glucose tolerance was found to be higher in LP, compared to NP rats. However, plasma glucose levels, during ipGTT, in LPT rats were similar to those of controls. Isolated islets from LP rats secreted less insulin in response to increasing glucose concentrations (2.8-22.2 mmol/L) and to 100 μmol/L Cch. This lower secretion was accompanied by a reduction in Cch-induced internal Ca(2+) mobilization. TAU supplementation prevents these alterations, as judged by the higher secretion induced by glucose or Cch in LPT islets. In addition, Ach-M3R, syntaxin 1 and synaptosomal associated protein of 25 kDa protein expressions in LP were lower than in NP islets. The expressions of these proteins in LPT were normalized. Finally, the sarcoendoplasmatic reticulum Ca(2+)-ATPase 3 protein expression was higher in LPT and NPT, compared with controls. In conclusion, TAU supplementation to LP rats prevented alterations in glucose tolerance as well as in insulin secretion from isolated islets. The latter effect involves the normalization of the cholinergic pathway, associated with the preservation of exocytotic proteins.


Aging potentiates Abeta-induced depletion of SNAP-25 in mouse hippocampus.

  • Neelima B Chauhan‎ et al.
  • Brain research‎
  • 2003‎

Previously we showed that in Tg2576 mouse hippocampus, synaptosomal-associated protein 25 (SNAP-25) immunoreactivity (IR) is greatly reduced and intracerebroventricular injection of anti-Abeta reverses this depletion. 3- and 24-month-old wild-type mice received juxta-amygdala injection of Abeta42 and hippocampal sections were analyzed for glial fibrillary acidic protein (GFAP)- and SNAP-25-IR at intervals after injections. In young mice, SNAP-IR declined >95% at 1 week in DG-Smi and remained low until 8 weeks, while decreasing in SR, SL and hilum by 8-27% at 1 week and returning to baseline by 2 weeks. There was no change in DG-SMm. In old mice, DG-Smi was specifically depleted in SNAP-IR by >95% even before injection. At 2 weeks, SNAP-IR had declined in all layers by 30-39% of baseline values and by 8 weeks had returned to control values, except the DG-SMm which showed only a 10% reduction at 2 weeks. Baseline GFAP-IR was 10-fold higher in old than in young mice in the fimbria/IC but not appreciably changed in hippocampus. In young mice, the injections of Abeta caused 20-fold increases in GFAP-IR in the fimbria/IC and 2-fold increases in the hippocampal neuropil at 1 week, all of which values returned to baseline by 8 weeks. In old mice, Abeta injections caused relatively much larger increases in GFAP-IR in the hippocampal neuropil than in the fimbria/IC and the GFAP-IR remained greatly increased at 8 weeks.


Synaptic retrograde regulation of the PKA-induced SNAP-25 and Synapsin-1 phosphorylation.

  • Aleksandra Polishchuk‎ et al.
  • Cellular & molecular biology letters‎
  • 2023‎

Bidirectional communication between presynaptic and postsynaptic components contribute to the homeostasis of the synapse. In the neuromuscular synapse, the arrival of the nerve impulse at the presynaptic terminal triggers the molecular mechanisms associated with ACh release, which can be retrogradely regulated by the resulting muscle contraction. This retrograde regulation, however, has been poorly studied. At the neuromuscular junction (NMJ), protein kinase A (PKA) enhances neurotransmitter release, and the phosphorylation of the molecules of the release machinery including synaptosomal associated protein of 25 kDa (SNAP-25) and Synapsin-1 could be involved.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: