Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 688 papers

SYK kinase mediates brown fat differentiation and activation.

  • Marko Knoll‎ et al.
  • Nature communications‎
  • 2017‎

Brown adipose tissue (BAT) metabolism influences glucose homeostasis and metabolic health in mice and humans. Sympathetic stimulation of β-adrenergic receptors in response to cold induces proliferation, differentiation, and UCP1 expression in pre-adipocytes and mature brown adipocytes. Here we show that spleen tyrosine kinase (SYK) is upregulated during brown adipocyte differentiation and activated by β-adrenergic stimulation. Deletion or inhibition of SYK, a kinase known for its essential roles in the immune system, blocks brown and white pre-adipocyte proliferation and differentiation in vitro, and results in diminished expression of Ucp1 and other genes regulating brown adipocyte function in response to β-adrenergic stimulation. Adipocyte-specific SYK deletion in mice reduces BAT mass and BAT that developed consisted of SYK-expressing brown adipocytes that had escaped homozygous Syk deletion. SYK inhibition in vivo represses β-agonist-induced thermogenesis and oxygen consumption. These results establish SYK as an essential mediator of brown fat formation and function.


Saturation mutagenesis of a predicted ancestral Syk-family kinase.

  • Helen T Hobbs‎ et al.
  • Protein science : a publication of the Protein Society‎
  • 2022‎

Many tyrosine kinases cannot be expressed readily in Escherichia coli, limiting facile production of these proteins for biochemical experiments. We used ancestral sequence reconstruction to generate a spleen tyrosine kinase (Syk) variant that can be expressed in bacteria and purified in soluble form, unlike the human members of this family (Syk and zeta-chain-associated protein kinase of 70 kDa [ZAP-70]). The catalytic activity, substrate specificity, and regulation by phosphorylation of this Syk variant are similar to the corresponding properties of human Syk and ZAP-70. Taking advantage of the ability to express this novel Syk-family kinase in bacteria, we developed a two-hybrid assay that couples the growth of E. coli in the presence of an antibiotic to successful phosphorylation of a bait peptide by the kinase. Using this assay, we screened a site-saturation mutagenesis library of the kinase domain of this reconstructed Syk-family kinase. Sites of loss-of-function mutations identified in the screen correlate well with residues established previously as critical to function and/or structure in protein kinases. We also identified activating mutations in the regulatory hydrophobic spine and activation loop, which are within key motifs involved in kinase regulation. Strikingly, one mutation in an ancestral Syk-family variant increases the soluble expression of the protein by 75-fold. Thus, through ancestral sequence reconstruction followed by deep mutational scanning, we have generated Syk-family kinase variants that can be expressed in bacteria with very high yield.


Matrix valency regulates integrin-mediated lymphoid adhesion via Syk kinase.

  • D G Stupack‎ et al.
  • The Journal of cell biology‎
  • 1999‎

Lymphocytes accumulate within the extracellular matrix (ECM) of tumor, wound, or inflammatory tissues. These tissues are largely comprised of polymerized adhesion proteins such as fibrin and fibronectin or their fragments. Nonactivated lymphoid cells attach preferentially to polymerized ECM proteins yet are unable to attach to monomeric forms or fragments of these proteins without previous activation. This adhesion event depends on the appropriate spacing of integrin adhesion sites. Adhesion of nonactivated lymphoid cells to polymeric ECM components results in activation of the antigen receptor-associated Syk kinase that accumulates in adhesion-promoting podosomes. In fact, activation of Syk by antigen or agonists, as well as expression of an activated Syk mutant in lymphoid cells, facilitates their adhesion to monomeric ECM proteins or their fragments. These results reveal a cooperative interaction between signals emanating from integrins and antigen receptors that can serve to regulate stable lymphoid cell adhesion and retention within a remodeling ECM.


Shiga toxin increases formation of clathrin-coated pits through Syk kinase.

  • Audrun Utskarpen‎ et al.
  • PloS one‎
  • 2010‎

Clathrin-dependent endocytosis is a main entry mechanism for the glycolipid-binding Shiga toxin (Stx), although clathrin-independent pathways are also involved. Binding of Stx to its receptor Gb3 not only is essential for Stx retrograde transport to the endoplasmic reticulum and toxicity but also activates signaling through the tyrosine kinase Syk. We previously described that Syk activity is important for Stx entry, but it remained unclear how this kinase modulates endocytosis of Stx. Here we characterized the effects of Stx and Syk on clathrin-coated pit formation. We found that acute treatment with Stx results in an increase in the number of clathrin-coated profiles as determined by electron microscopy and on the number of structures containing the endocytic AP-2 adaptor at the plasma membrane determined by live-cell spinning disk confocal imaging. These responses to Stx require functional Syk activity. We propose that a signaling pathway mediated by Syk and modulated by Stx leads to an increased number of endocytic clathrin-coated structures, thus providing a possible mechanism by which Stx enhances its own endocytosis.


Role of Tyrosine Kinase Syk in Thrombus Stabilisation at High Shear.

  • Gina Perrella‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Understanding the pathways involved in the formation and stability of the core and shell regions of a platelet-rich arterial thrombus may result in new ways to treat arterial thrombosis. The distinguishing feature between these two regions is the absence of fibrin in the shell which indicates that in vitro flow-based assays over thrombogenic surfaces, in the absence of coagulation, can be used to resemble this region. In this study, we have investigated the contribution of Syk tyrosine kinase in the stability of platelet aggregates (or thrombi) formed on collagen or atherosclerotic plaque homogenate at arterial shear (1000 s-1). We show that post-perfusion of the Syk inhibitor PRT-060318 over preformed thrombi on both surfaces enhances thrombus breakdown and platelet detachment. The resulting loss of thrombus stability led to a reduction in thrombus contractile score which could be detected as early as 3 min after perfusion of the Syk inhibitor. A similar loss of thrombus stability was observed with ticagrelor and indomethacin, inhibitors of platelet adenosine diphosphate (ADP) receptor and thromboxane A2 (TxA2), respectively, and in the presence of the Src inhibitor, dasatinib. In contrast, the Btk inhibitor, ibrutinib, causes only a minor decrease in thrombus contractile score. Weak thrombus breakdown is also seen with the blocking GPVI nanobody, Nb21, which indicates, at best, a minor contribution of collagen to the stability of the platelet aggregate. These results show that Syk regulates thrombus stability in the absence of fibrin in human platelets under flow and provide evidence that this involves pathways additional to activation of GPVI by collagen.


Feedback Regulation of Syk by Protein Kinase C in Human Platelets.

  • Stephanie Makhoul‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

The spleen tyrosine kinase (Syk) is essential for immunoreceptor tyrosine-based activation motif (ITAM)-dependent platelet activation, and it is stimulated by Src-family kinase (SFK)-/Syk-mediated phosphorylation of Y352 (interdomain-B) and Y525/526 (kinase domain). Additional sites for Syk phosphorylation and protein interactions are known but remain elusive. Since Syk S297 phosphorylation (interdomain-B) was detected in platelets, we hypothesized that this phosphorylation site regulates Syk activity via protein kinase C (PKC)-and cyclic adenosine monophosphate (cAMP)-dependent pathways. ADP, the GPVI-agonist convulxin, and the GPIbα-agonist echicetin beads (EB) were used to stimulate human platelets with/without effectors. Platelet aggregation and intracellular messengers were analyzed, along with phosphoproteins, by immunoblotting using phosphosite-specific antibodies or phos-tags. ADP, convulxin, and EB upregulated Syk S297 phosphorylation, which was inhibited by iloprost (cAMP pathway). Convulxin-stimulated Syk S297 phosphorylation was stoichiometric, transient, abolished by the PKC inhibitor GF109203X, and mimicked by the PKC activator PDBu. Convulxin/EB stimulated Syk S297, Y352, and Y525/526 phosphorylation, which was inhibited by SFK and Syk inhibitors. GFX and iloprost inhibited convulxin/EB-induced Syk S297 phosphorylation but enhanced Syk tyrosine (Y352/Y525/526) and substrate (linker adaptor for T cells (LAT), phospholipase γ2 (PLC γ2)) phosphorylation. GFX enhanced convulxin/EB-increases of inositol monophosphate/Ca2+. ITAM-activated Syk stimulates PKC-dependent Syk S297 phosphorylation, which is reduced by SFK/Syk/PKC inhibition and cAMP. Inhibition of Syk S297 phosphorylation coincides with enhanced Syk activation, suggesting that S297 phosphorylation represents a mechanism for feedback inhibition in human platelets.


Loss of NF1 in Melanoma Confers Sensitivity to SYK Kinase Inhibition.

  • Cara Abecunas‎ et al.
  • Cancer research‎
  • 2023‎

Neurofibromin 1 (NF1) loss of function (LoF) mutations are frequent in melanoma and drive hyperactivated RAS and tumor growth. NF1LoF melanoma cells, however, do not show consistent sensitivity to individual MEK, ERK, or PI3K/mTOR inhibitors. To identify more effective therapeutic strategies for treating NF1LoF melanoma, we performed a targeted kinase inhibitor screen. A tool compound named MTX-216 was highly effective in blocking NF1LoF melanoma growth in vitro and in vivo. Single-cell analysis indicated that drug-induced cytotoxicity was linked to effective cosuppression of proliferation marker Ki-67 and ribosomal protein S6 phosphorylation. The antitumor efficacy of MTX-216 was dependent on its ability to inhibit not only PI3K, its nominal target, but also SYK. MTX-216 suppressed expression of a group of genes that regulate mitochondrial electron transport chain and are associated with poor survival in patients with NF1LoF melanoma. Furthermore, combinations of inhibitors targeting either MEK or PI3K/mTOR with an independent SYK kinase inhibitor or SYK knockdown reduced the growth of NF1LoF melanoma cells. These studies provide a path to exploit SYK dependency to selectively target NF1LoF melanoma cells.


Syk kinase is phosphorylated in specific areas of the developing nervous system.

  • Eric Hatterer‎ et al.
  • Neuroscience research‎
  • 2011‎

An increasing number of data involve immunoreceptors in brain development, synaptic plasticity and behavior. However it has yet to be determined whether these proteins in fact transmit an immunoreceptor-like signal in non-hematopoietic neuronal cells. The recruitment and activation of the Syk family tyrosine kinases, Syk and ZAP-70, being a critical step in this process, we conducted a thorough analysis of Syk/ZAP-70 expression pattern in nervous tissues. Syk/ZAP-70 is present in neurons of different structures including the cerebellum, the hippocampus, the visual system and the olfactory system. During the olfactory system ontogeny the protein is detected from the 16th embryonic day and persists in adulthood. Importantly, Syk was phosphorylated on tyrosine residues representative of an active form of the kinase in specialized neuronal subpopulations comprising rostral migratory stream neuronal progenitor cells, hippocampal pyramidal cells, retinal ganglion cells and cerebellar granular cells. Phospho-Syk staining was also observed in synapse-rich regions such as the olfactory bulb glomeruli and the retina inner plexiform layer. Furthermore, our work on cultured primary hippoccampal neurons indicates that as for hematopoietic cells, Syk phosphorylation is readily induced upon pervanadate treatment. Therefore, Syk appears to be a serious candidate in connecting immunoreceptors to downstream adaptor/effector molecules in neurons.


Spleen tyrosine kinase (Syk) regulates systemic lupus erythematosus (SLE) T cell signaling.

  • Alexandros P Grammatikos‎ et al.
  • PloS one‎
  • 2013‎

Engagement of the CD3/T cell receptor complex in systemic lupus erythematosus (SLE) T cells involves Syk rather than the zeta-associated protein. Because Syk is being considered as a therapeutic target we asked whether Syk is central to the multiple aberrantly modulated molecules in SLE T cells. Using a gene expression array, we demonstrate that forced expression of Syk in normal T cells reproduces most of the aberrantly expressed molecules whereas silencing of Syk in SLE T cells normalizes the expression of most abnormally expressed molecules. Protein along with gene expression modulation for select molecules was confirmed. Specifically, levels of cytokine IL-21, cell surface receptor CD44, and intracellular molecules PP2A and OAS2 increased following Syk overexpression in normal T cells and decreased after Syk silencing in SLE T cells. Our results demonstrate that levels of Syk affect the expression of a number of enzymes, cytokines and receptors that play a key role in the development of disease pathogenesis in SLE and provide support for therapeutic targeting in SLE patients.


The selective inhibition of the Syk tyrosine kinase ameliorates experimental autoimmune arthritis.

  • Eszter Káposztás‎ et al.
  • Frontiers in immunology‎
  • 2023‎

Autoimmune arthritis - such as rheumatoid arthritis - affect a significant proportion of the population, which can cause everyday joint pain, decreased mobility and reduced quality of life. Despite having more and more therapeutic options available, there are still a lot of patients who cannot reach remission or low disease activity by current therapies. This causes an urgent need for the development of new treatment options. The Syk tyrosine kinase plays an essential role in B cell receptor, Fc receptor and integrin signaling. It has been shown that the hematopoietic cell-specific deletion of Syk resulted in a complete protection against autoantibody-induced experimental arthritis. This prompted us to test the effect of entospletinib, a second generation, Syk-selective inhibitor, which has a tolerable safety profile according to hematological clinical trials, in experimental autoimmune arthritis. We found that entospletinib dose-dependently decreased the macroscopic signs of joint inflammation, while it did not affect the health status of the animals. In line with these findings, local neutrophil accumulation and cytokine levels were reduced compared to the vehicle-treated group, while macrophage accumulation and synovial fibroblast numbers were not significantly altered. Meanwhile, entospletinib dose-dependently decreased the cell responses of immune complex- or integrin ligand-activated neutrophils. Overall, we found that selective Syk inhibition by entospletinib reduced the activity of autoantibody-induced experimental arthritis, which seems to be based mainly on the effect of the inhibitor on neutrophil functions. Our data raise the possibility that entospletinib could be a good drug candidate in the treatment of human autoimmune arthritis.


Functional interaction between the ubiquitin-specific protease 25 and the SYK tyrosine kinase.

  • Michael Cholay‎ et al.
  • Experimental cell research‎
  • 2010‎

The SYK non-receptor tyrosine kinase is a key effector of immune receptors signaling in hematopoietic cells. Here, we identified and characterized a novel interaction between SYK and the ubiquitin-specific protease 25 (USP25). We report that the second SH2 domain of SYK physically interacts with a tyrosine-rich, C-terminal region of USP25 independently of tyrosine phosphorylation. Moreover, we showed that SYK specifically phosphorylates USP25 and alters its cellular levels. This study thus uncovers a new SYK substrate and reveals a novel SYK function, namely the regulation of USP25 cellular levels.


Functional role for Syk tyrosine kinase in natural killer cell-mediated natural cytotoxicity.

  • K M Brumbaugh‎ et al.
  • The Journal of experimental medicine‎
  • 1997‎

Natural killer (NK) cells are named based on their natural cytotoxic activity against a variety of target cells. However, the mechanisms by which sensitive targets activate killing have been difficult to study due to the lack of a prototypic NK cell triggering receptor. Pharmacologic evidence has implicated protein tyrosine kinases (PTKs) in natural killing; however, Lck-deficient, Fyn-deficient, and ZAP-70-deficient mice do not exhibit defects in natural killing despite demonstrable defects in T cell function. This discrepancy implies the involvement of other tyrosine kinases. Here, using combined biochemical, pharmacologic, and genetic approaches, we demonstrate a central role for the PTK Syk in natural cytotoxicity. Biochemical analyses indicate that Syk is tyrosine phosphorylated after stimulation with a panel of NK-sensitive target cells. Pharmacologic exposure to piceatannol, a known Syk family kinase inhibitor, inhibits natural cytotoxicity. In addition, gene transfer of dominant-negative forms of Syk to NK cells inhibits natural cytotoxicity. Furthermore, sensitive targets that are rendered NK-resistant by major histocompatibility complex (MHC) class I transfection no longer activate Syk. These data suggest that Syk activation is an early and requisite signaling event in the development of natural cytotoxicity directed against a variety of cellular targets.


syk protein tyrosine kinase regulates Fc receptor gamma-chain-mediated transport to lysosomes.

  • C Bonnerot‎ et al.
  • The EMBO journal‎
  • 1998‎

B- and T-cell receptors, as well as most Fc receptors (FcR), are part of a large family of membrane proteins named immunoreceptors and are expressed on all cells of the immune system. Immunoreceptors' biological functions rely on two of their fundamental attributes: signal transduction and internalization. The signals required for these two functions are present in the chains associated with immunoreceptors, within conserved amino acid motifs called immunoreceptor tyrosine-based activation motifs (ITAMs). We have examined the role of the protein tyrosine kinase (PTK) syk, a critical effector of immunoreceptor-mediated cell signalling through ITAMs, in FcR-associated gamma-chain internalization and lysosomal targeting. A point mutation in the immunoreceptor-associated gamma-chain ITAM affecting syk activation, as well as overexpression of a syk dominant negative mutant, inhibited signal transduction without affecting receptor coated-pit localization or internalization. In contrast, blocking of gamma-chain-mediated syk activation impaired FcR transport from endosomes to lysosomes and selectively inhibited the presentation of certain T-cell epitopes. Therefore, activation of the PTK syk is dispensable for receptor internalization, but necessary for cell signalling and for gamma-chain-mediated FcR delivery to lysosomes.


The tyrosine kinase Syk promotes phagocytosis of Francisella through the activation of Erk.

  • Kishore V L Parsa‎ et al.
  • Molecular immunology‎
  • 2008‎

Francisella tularensis is a highly infectious, Gram-negative intra-cellular pathogen that can cause the zoonotic disease tularemia. Although the receptors critical for internalization of Francisella by macrophages are beginning to be defined, the identity of the downstream signaling pathways essential for the engulfment are not yet identified. In this study we have tested the role of Syk in the phagocytosis of Francisella. We report that Syk is activated during Francisella infection and is critical for the uptake of the organisms. Pharmacologic inhibition of Syk almost completely abrogated uptake, whereas the overexpression of Syk significantly enhanced uptake. However, Syk appears to be dispensable during initial host-pathogen contact. Further analyses of the molecular mechanism of Syk influence on Francisella uptake revealed that the MAPK Erk but not the phosphatidylinositol 3 kinase (PI3K)/Akt pathway is the downstream effector of Syk. Thus, the inhibition of Erk in Syk-overexpressing cells or the inhibition of Syk in Erk-overexpressing cells led to a significant attenuation of uptake. Collectively, these data identify Syk and Erk as key players in the phagocytosis of Francisella.


Syk kinase-coupled C-type lectin receptors engage protein kinase C-δ to elicit Card9 adaptor-mediated innate immunity.

  • Dominikus Strasser‎ et al.
  • Immunity‎
  • 2012‎

C-type lectin receptors (CLRs) that couple with the kinase Syk are major pattern recognition receptors for the activation of innate immunity and host defense. CLRs recognize fungi and other forms of microbial or sterile danger, and they induce inflammatory responses through the adaptor protein Card9. The mechanisms relaying CLR proximal signals to the core Card9 module are unknown. Here we demonstrated that protein kinase C-δ (PKCδ) was activated upon Dectin-1-Syk signaling, mediated phosphorylation of Card9 at Thr231, and was responsible for Card9-Bcl10 complex assembly and canonical NF-κB control. Prkcd(-/-) dendritic cells, but not those lacking PKCα, PKCβ, or PKCθ, were defective in innate responses to Dectin-1, Dectin-2, or Mincle stimulation. Moreover, Candida albicans-induced cytokine production was blocked in Prkcd(-/-) cells, and Prkcd(-/-) mice were highly susceptible to fungal infection. Thus, PKCδ is an essential link between Syk activation and Card9 signaling for CLR-mediated innate immunity and host protection.


Characterization of midostaurin as a dual inhibitor of FLT3 and SYK and potentiation of FLT3 inhibition against FLT3-ITD-driven leukemia harboring activated SYK kinase.

  • Ellen L Weisberg‎ et al.
  • Oncotarget‎
  • 2017‎

Oncogenic FLT3 kinase is a clinically validated target in acute myeloid leukemia (AML), and both multi-targeted and selective FLT3 inhibitors have been developed. Spleen tyrosine kinase (SYK) has been shown to be activated and increased in FLT3-ITD-positive AML patients, and has further been shown to be critical for transformation and maintenance of the leukemic clone in these patients. Further, over-expression of constitutively activated SYK causes resistance to highly selective FLT3 tyrosine kinase inhibitors (TKI). Up to now, the activity of the multi-targeted FLT3 inhibitor, midostaurin, against cells expressing activated SYK has not been explored in the context of leukemia, although SYK has been identified as a target of midostaurin in systemic mastocytosis. We compared the ability of midostaurin to inhibit activated SYK in mutant FLT3-positive AML cells with that of inhibitors displaying dual SYK/FLT3 inhibition, targeted SYK inhibition, and targeted FLT3 inhibition. Our findings suggest that dual FLT3/SYK inhibitors and FLT3-targeted drugs potently kill oncogenic FLT3-transformed cells, while SYK-targeted small molecule inhibition displays minimal activity. However, midostaurin and other dual FLT3/SYK inhibitors display superior anti-proliferative activity when compared to targeted FLT3 inhibitors, such as crenolanib and quizartinib, against cells co-expressing FLT3-ITD and constitutively activated SYK-TEL. Interestingly, additional SYK suppression potentiated the effects of dual FLT3/SYK inhibitors and targeted FLT3 inhibitors against FLT3-ITD-driven leukemia, both in the absence and presence of activated SYK. Taken together, our findings have important implications for the design of drug combination studies in mutant FLT3-positive patients and for the design of future generations of FLT3 inhibitors.


Spleen tyrosine kinase Syk is critical for sustained leukocyte adhesion during inflammation in vivo.

  • David Frommhold‎ et al.
  • BMC immunology‎
  • 2007‎

During inflammation, beta2-integrins mediate leukocyte adhesion to the endothelium accompanied by the activation of the spleen tyrosine kinase Syk.


Identification of the major sites of autophosphorylation of the murine protein-tyrosine kinase Syk.

  • M T Furlong‎ et al.
  • Biochimica et biophysica acta‎
  • 1997‎

The protein tyrosine kinase p72syk (Syk) is expressed in a variety of hematopoietic cell types, including B cells, thymocytes, mast cells and others. Both the activity and phosphotyrosine content of this enzyme increase in these cells in response to engagement of the appropriate cell surface receptors. Herein, we describe the cloning of murine Syk and its expression in Sf9 cells as a catalytically active protein. Full-length Syk and a catalytically active 42.5 kDa carboxyl terminal fragment were also expressed as glutathione S-transferase fusion proteins. Comparative reverse phase HPLC and 40% alkaline gel analysis of tryptic digests of phosphorylated Syk demonstrated that all of the major sites of autophosphorylation were also present in GST-Syk and all but one were contained in the 42.5 kDa fragment. The sites of autophosphorylation were identified using a combination of Edman sequencing and mass spectrometric analysis. Ten sites were identified. One site is located in the amino terminal half of the molecule between the two tandem Src homology 2 (SH2) domains. Five sites are located in the hinge region located between the carboxyl terminal SH2 domain and the kinase domain. Two sites lie in the kinase domain within the catalytic loop and two near the extreme carboxyl terminus. Sequences of phosphorylation sites located within the hinge region predict that Syk serves as a docking site for other SH2 domain-containing proteins. Consistent with this prediction, autophosphorylated Syk efficiently binds the carboxyl terminal SH2 domain of phospholipase C-gamma 1.


Syk Kinase Inhibitors Synergize with Artemisinins by Enhancing Oxidative Stress in Plasmodium falciparum-Parasitized Erythrocytes.

  • Ioannis Tsamesidis‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2020‎

Although artemisinin-based combination therapies (ACTs) treat Plasmodium falciparum malaria effectively throughout most of the world, the recent expansion of ACT-resistant strains in some countries of the Greater Mekong Subregion (GMS) further increased the interest in improving the effectiveness of treatment and counteracting resistance. Recognizing that (1) partially denatured hemoglobin containing reactive iron (hemichromes) is generated in parasitized red blood cells (pRBC) by oxidative stress, (2) redox-active hemichromes have the potential to enhance oxidative stress triggered by the parasite and the activation of artemisinin to its pharmaceutically active form, and (3) Syk kinase inhibitors block the release of membrane microparticles containing hemichromes, we hypothesized that increasing hemichrome content in parasitized erythrocytes through the inhibition of Syk kinase might trigger a virtuous cycle involving the activation of artemisinin, the enhancement of oxidative stress elicited by activated artemisinin, and a further increase in hemichrome production. We demonstrate here that artemisinin indeed augments oxidative stress within parasitized RBCs and that Syk kinase inhibitors further increase iron-dependent oxidative stress, synergizing with artemisinin in killing the parasite. We then demonstrate that Syk kinase inhibitors achieve this oxidative enhancement by preventing parasite-induced release of erythrocyte-derived microparticles containing redox-active hemichromes. We also observe that Syk kinase inhibitors do not promote oxidative toxicity to healthy RBCs as they do not produce appreciable amounts of hemichromes. Since some Syk kinase inhibitors can be taken daily with minimal side effects, we propose that Syk kinase inhibitors could evidently contribute to the potentiation of ACTs.


Pseudomonas aeruginosa induces p38MAP kinase-dependent IL-6 and CXCL8 release from bronchial epithelial cells via a Syk kinase pathway.

  • Matthew S Coates‎ et al.
  • PloS one‎
  • 2021‎

Pseudomonas aeruginosa (Pa) infection is a major cause of airway inflammation in immunocompromised and cystic fibrosis (CF) patients. Mitogen-activated protein (MAP) and tyrosine kinases are integral to inflammatory responses and are therefore potential targets for novel anti-inflammatory therapies. We have determined the involvement of specific kinases in Pa-induced inflammation. The effects of kinase inhibitors against p38MAPK, MEK 1/2, JNK 1/2, Syk or c-Src, a combination of a p38MAPK with Syk inhibitor, or a novel narrow spectrum kinase inhibitor (NSKI), were evaluated against the release of the proinflammatory cytokine/chemokine, IL-6 and CXCL8 from BEAS-2B and CFBE41o- epithelial cells by Pa. Effects of a Syk inhibitor against phosphorylation of the MAPKs were also evaluated. IL-6 and CXCL8 release by Pa were significantly inhibited by p38MAPK and Syk inhibitors (p<0.05). Phosphorylation of HSP27, but not ERK or JNK, was significantly inhibited by Syk kinase inhibition. A combination of p38MAPK and Syk inhibitors showed synergy against IL-6 and CXCL8 induction and an NSKI completely inhibited IL-6 and CXCL8 at low concentrations. Pa-induced inflammation is dependent on p38MAPK primarily, and Syk partially, which is upstream of p38MAPK. The NSKI suggests that inhibiting specific combinations of kinases is a potent potential therapy for Pa-induced inflammation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: