Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 460 papers

Suppressor of cytokine signaling-2 gene disruption promotes Apc(Min/+) tumorigenesis and activator protein-1 activation.

  • Victoria A Newton‎ et al.
  • The American journal of pathology‎
  • 2010‎

Epigenetic in vitro and in vivo studies suggest that suppressor of cytokine signaling-2 (SOCS2) may normally limit tumorigenesis in the intestine; however, this theory has not been directly tested. We hypothesized that SOCS2 deficiency promotes spontaneous intestinal tumorigenesis in Apc(Min/+) mice. Therefore, we quantified tumor number, size, and load in the small intestine and colon using SOCS2(+/+)/Apc(Min/+), SOCS2(+/-)/Apc(Min/+), and SOCS2(-/-)/Apc(Min/+) mice and assayed hematocrit as an indirect marker of disease severity. Biochemical and histological assays were used to assess mechanisms. Heterozygous and homozygous disruption of SOCS2 alleles promoted 166 and 441% increases in tumor load in the small intestine, respectively, accelerated development of colon tumors, and caused severe anemia. SOCS2 deletion promoted significant increases in intestinal insulin-like growth factor-I mRNA but did not affect plasma insulin-like growth factor-I. Western blots and immunohistochemical analysis demonstrated that tumor and nontumor intestinal tissue of SOCS2(-/-)/Apc(Min/+) mice had increased serine 727 phosphorylation of signal transducer and activator of transcription 3 compared with SOCS2(+/+)/Apc(Min/+) mice. Moreover, electromobility shift assays showed that SOCS2 deletion did not alter signal transducer and activator of transcription 3 DNA binding. However, tumors and small intestine from SOCS2(-/-)/Apc(Min/+) showed dramatic increases in activator protein-1 (AP-1) DNA binding, and SOCS2 overexpression in vitro reduced levels of AP-1. These studies indicate that SOCS2 deletion promotes the spontaneous development of intestinal tumors driven by mutations in the adenomatous polyposis coli/beta-catenin pathway and activates AP-1. Therefore, reduced expression or epigenetic silencing of SOCS2 may serve as a useful biomarker for colorectal cancer risk.


HTLV-1 evades type I interferon antiviral signaling by inducing the suppressor of cytokine signaling 1 (SOCS1).

  • Stéphanie Olière‎ et al.
  • PLoS pathogens‎
  • 2010‎

Human T cell leukemia virus type 1 (HTLV-1) is the etiologic agent of Adult T cell Leukemia (ATL) and the neurological disorder HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Although the majority of HTLV-1-infected individuals remain asymptomatic carriers (AC) during their lifetime, 2-5% will develop either ATL or HAM/TSP, but never both. To better understand the gene expression changes in HTLV-1-associated diseases, we examined the mRNA profiles of CD4+ T cells isolated from 7 ATL, 12 HAM/TSP, 11 AC and 8 non-infected controls. Using genomic approaches followed by bioinformatic analysis, we identified gene expression pattern characteristic of HTLV-1 infected individuals and particular disease states. Of particular interest, the suppressor of cytokine signaling 1--SOCS1--was upregulated in HAM/TSP and AC patients but not in ATL. Moreover, SOCS1 was positively correlated with the expression of HTLV-1 mRNA in HAM/TSP patient samples. In primary PBMCs transfected with a HTLV-1 proviral clone and in HTLV-1-transformed MT-2 cells, HTLV-1 replication correlated with induction of SOCS1 and inhibition of IFN-α/β and IFN-stimulated gene expression. Targeting SOCS1 with siRNA restored type I IFN production and reduced HTLV-1 replication in MT-2 cells. Conversely, exogenous expression of SOCS1 resulted in enhanced HTLV-1 mRNA synthesis. In addition to inhibiting signaling downstream of the IFN receptor, SOCS1 inhibited IFN-β production by targeting IRF3 for ubiquitination and proteasomal degradation. These observations identify a novel SOCS1 driven mechanism of evasion of the type I IFN antiviral response against HTLV-1.


Nuclear Localization of Suppressor of Cytokine Signaling-1 Regulates Local Immunity in the Lung.

  • Jana Zimmer‎ et al.
  • Frontiers in immunology‎
  • 2016‎

Suppressor of cytokine signaling 1 (SOCS1) is a negative feedback inhibitor of cytoplasmic Janus kinase and signal transducer and activator of transcription (STAT) signaling. SOCS1 also contains a nuclear localization sequence (NLS), yet, the in vivo importance of nuclear translocation is unknown. We generated transgenic mice containing mutated Socs1ΔNLS that fails to translocate in the cell nucleus (MGLtg mice). Whereas mice fully deficient for SOCS1 die within the first 3 weeks due to excessive interferon signaling and multiorgan inflammation, mice expressing only non-nuclear Socs1ΔNLS (Socs1-/-MGLtg mice) were rescued from early lethality. Canonical interferon gamma signaling was still functional in Socs1-/-MGLtg mice as shown by unaltered tyrosine phosphorylation of STAT1 and whole genome expression analysis. However, a subset of NFκB inducible genes was dysregulated. Socs1-/-MGLtg mice spontaneously developed low-grade inflammation in the lung and had elevated Th2-type cytokines. Upon ovalbumin sensitization and challenge, airway eosinophilia was increased in Socs1-/-MGLtg mice. Decreased transepithelial electrical resistance in trachea epithelial cells from Socs1-/-MGLtg mice suggests disrupted epithelial cell barrier. The results indicate that nuclear SOCS1 is a regulator of local immunity in the lung and unravel a so far unrecognized function for SOCS1 in the cell nucleus.


Clinico-biological significance of suppressor of cytokine signaling 1 expression in acute myeloid leukemia.

  • H-A Hou‎ et al.
  • Blood cancer journal‎
  • 2017‎

Suppressor of cytokine signaling 1 (SOCS1) protein, which encodes a member of signal transducers and activators of transcription-induced inhibitors, takes part in a negative regulation of cytokine signaling. The mechanism of SOCS1 in tumor carcinogenesis is complex and there have been no studies concerning the clinic-biologic implication of SOCS1 expression in acute myeloid leukemia (AML). Here, we first identified that higher bone marrow (BM) SOCS1 expression was closely associated with older age, FLT3-ITD, NPM1 and DNMT3A mutations, but negatively correlated with CEBPA mutation in patients with de novo AML. Compared to patients with lower SOCS1 expression, those with higher expression had lower complete remission rates and shorter overall survival. Further, higher expression of SOCS1 in the BM was an independent unfavorable prognostic factor irrespective of age, white blood cell, cytogenetics and gene mutations. Next, we generated zebrafish model overexpressing SOCS1 by spi1 promoter, which showed kidney marrow from adult SOCS1 zebrafish had increased myelopoiesis, myeloid progenitors and the kidney or spleen structure were effaced and distorted, mimicking leukemia phenotype. The SOCS1/FLT3-ITD double transgenic fish could further facilitate the leukemic process. The results indicate SOCS1 plays an important role in AML and its higher expression serves as a new biomarker to risk-stratify AML patients.


MiR-122 modulates type I interferon expression through blocking suppressor of cytokine signaling 1.

  • Aimei Li‎ et al.
  • The international journal of biochemistry & cell biology‎
  • 2013‎

MiR-122 is a liver-specific miRNA. Recent studies demonstrated that the interferon (IFN) therapy efficacy is poor in the hepatitis C virus (HCV)-infected patients with lower miR-122 abundance in the livers. The hepatocarcinoma patients also have low miR-122 levels in their livers. We previously found that the IFN expression was reduced when miR-122 was knocked down in human oligodendrocytes. The mechanism is unclear. In this study, the miR-122-abundant cell Huh7 was used to explore the regulatory mechanism of miR-122 on type I IFN expression. We found that miR-122 significantly increased the type I IFN expression in Huh7 cells, while knocking down miR-122 decreased the type I IFN expression. By screening potential miR-122 targets among the negative regulators in IFN signaling pathways, we found that there were putative miR-122 targets in the suppressor of cytokine signaling 1 (SOCS1) mRNA. Over-expressing miR-122 decreased the SOCS1 expression by 50.55% in Huh7 cells, while knocking down miR-122 increased SOCS1 expression by 62.56%. Using a green fluorescence protein (EGFP) fused SOCS1-expressing plasmid, the SOCS1-EGFP fluorescence intensity and protein were lower in miR-122 mimic-treated cells than those in mock-miRNA-treated cells, while miR-122 knockdown significantly increased the SOCS1-EGFP fluorescence intensity and protein expression. Mutations in the nt359-nt375 region abandoned the impact of miR-122 on SOCS1-EGFP expression. Taken together, SOCS1 is a target of miR-122. MiR-122 can regulate the type I IFN expression through modulating the SOCS1 expression.


Methylation and mRNA expression levels of P15, death-associated protein kinase, and suppressor of cytokine signaling-1 genes in multiple myeloma.

  • Lin Liu‎ et al.
  • Iranian journal of basic medical sciences‎
  • 2016‎

The aim of this study was to investigate the methylation status and mRNA expression levels of P15, death-associated protein kinase (DAPK), and suppressor of cytokine signaling-1 (SOCS1) genes in multiple myeloma (MM).


Suppressor of Cytokine Signaling (SOCS) 5 utilises distinct domains for regulation of JAK1 and interaction with the adaptor protein Shc-1.

  • Edmond M Linossi‎ et al.
  • PloS one‎
  • 2013‎

Suppressor of Cytokine Signaling (SOCS)5 is thought to act as a tumour suppressor through negative regulation of JAK/STAT and epidermal growth factor (EGF) signaling. However, the mechanism/s by which SOCS5 acts on these two distinct pathways is unclear. We show for the first time that SOCS5 can interact directly with JAK via a unique, conserved region in its N-terminus, which we have termed the JAK interaction region (JIR). Co-expression of SOCS5 was able to specifically reduce JAK1 and JAK2 (but not JAK3 or TYK2) autophosphorylation and this function required both the conserved JIR and additional sequences within the long SOCS5 N-terminal region. We further demonstrate that SOCS5 can directly inhibit JAK1 kinase activity, although its mechanism of action appears distinct from that of SOCS1 and SOCS3. In addition, we identify phosphoTyr317 in Shc-1 as a high-affinity substrate for the SOCS5-SH2 domain and suggest that SOCS5 may negatively regulate EGF and growth factor-driven Shc-1 signaling by binding to this site. These findings suggest that different domains in SOCS5 contribute to two distinct mechanisms for regulation of cytokine and growth factor signaling.


Suppressor of cytokine signaling 1 counteracts rhesus macaque TRIM5α-induced inhibition of human immunodeficiency virus type-1 production.

  • Sayaka Sukegawa‎ et al.
  • PloS one‎
  • 2014‎

Old world monkey TRIM5α is a host factor that restricts human immunodeficiency virus type-1 (HIV-1) infection. Previously, we reported that rhesus macaque TRIM5α (RhTRIM5α) restricts HIV-1 production by inducing degradation of precursor Gag. Since suppressor of cytokine signaling 1 (SOCS1) is known to enhance HIV-1 production by rescuing Gag from lysosomal degradation, we examined if SOCS1 is involved in RhTRIM5α-mediated late restriction. Over-expression of SOCS1 restored HIV-1 production in the presence of RhTRIM5α to a level comparable to that in the absence of RhTRIM5α in terms of titer and viral protein expression. Co-immunoprecipitation studies revealed that SOCS1 physically interacted with RhTRIM5α. Over-expression of SOCS1 affected RhTRIM5α expression in a dose-dependent manner, which was not reversed by proteasome inhibitors. In addition, SOCS1 and RhTRIM5α were detected in virus-like particles. These results suggest that SOCS1 alleviates RhTRIM5α-mediated regulation in the late phase of HIV-1 life cycle probably due to the destabilization of RhTRIM5α.


Suppressor of cytokine signaling 1 gene mutation status as a prognostic biomarker in classical Hodgkin lymphoma.

  • Jochen K Lennerz‎ et al.
  • Oncotarget‎
  • 2015‎

Suppressor of cytokine signaling 1 (SOCS1) mutations are among the most frequent somatic mutations in classical Hodgkin lymphoma (cHL), yet their prognostic relevance in cHL is unexplored. Here, we performed laser-capture microdissection of Hodgkin/Reed-Sternberg (HRS) cells from tumor samples in a cohort of 105 cHL patients. Full-length SOCS1 gene sequencing showed mutations in 61% of all cases (n = 64/105). Affected DNA-motifs and mutation pattern suggest that many of these SOCS1 mutations are the result of aberrant somatic hypermutation and we confirmed expression of mutant alleles at the RNA level. Contingency analysis showed no significant differences of patient-characteristics with HRS-cells containing mutant vs. wild-type SOCS1. By predicted mutational consequence, mutations can be separated into those with non-truncating point mutations ('minor' n = 49/64 = 77%) and those with length alteration ('major'; n = 15/64 = 23%). Subgroups did not differ in clinicopathological characteristics; however, patients with HRS-cells that contained SOCS1 major mutations suffered from early relapse and significantly shorter overall survival (P = 0.03). The SOCS1 major status retained prognostic significance in uni-(P = 0.016) and multivariate analyses (P = 0.005). Together, our data indicate that the SOCS1 mutation type qualifies as a single-gene prognostic biomarker in cHL.


Regulation of hepatic suppressor of cytokine signaling 3 by zinc.

  • Juan P Liuzzi‎ et al.
  • The Journal of nutritional biochemistry‎
  • 2013‎

Promoter analysis of the family of suppressors of cytokine signaling (SOCS) revealed that the human SOCS3 gene contains four binding sites for the metal regulatory transcription factor 1 (MTF-1) located within 1600 bp relative to the transcription start site. A series of experiments were carried out with human hepatoma cells (HepG2) and C57BL/6 mice to examine the effect of zinc on the regulation of SOCS3. In addition, we tested the role of MTF-1 in the regulation of SOCS3 expression using EMSA, chromatin immunoprecipitation assay and siRNA. Lastly, the role of the zinc transporter SLC39A14 on the basal expression of SOCS3 was evaluated. Results indicate that SOCS3 expression is regulated by zinc through an MTF-1-dependent mechanism. In addition, results from siRNA experiments suggest that SLC39A14 is required for basal expression of SOCS3. Further studies are needed to determine whether zinc status affects SOCS3 function.


NOS1-derived nitric oxide promotes NF-κB transcriptional activity through inhibition of suppressor of cytokine signaling-1.

  • Mirza Saqib Baig‎ et al.
  • The Journal of experimental medicine‎
  • 2015‎

The NF-κB pathway is central to the regulation of inflammation. Here, we demonstrate that the low-output nitric oxide (NO) synthase 1 (NOS1 or nNOS) plays a critical role in the inflammatory response by promoting the activity of NF-κB. Specifically, NOS1-derived NO production in macrophages leads to proteolysis of suppressor of cytokine signaling 1 (SOCS1), alleviating its repression of NF-κB transcriptional activity. As a result, NOS1(-/-) mice demonstrate reduced cytokine production, lung injury, and mortality when subjected to two different models of sepsis. Isolated NOS1(-/-) macrophages demonstrate similar defects in proinflammatory transcription on challenge with Gram-negative bacterial LPS. Consistently, we found that activated NOS1(-/-) macrophages contain increased SOCS1 protein and decreased levels of p65 protein compared with wild-type cells. NOS1-dependent S-nitrosation of SOCS1 impairs its binding to p65 and targets SOCS1 for proteolysis. Treatment of NOS1(-/-) cells with exogenous NO rescues both SOCS1 degradation and stabilization of p65 protein. Point mutation analysis demonstrated that both Cys147 and Cys179 on SOCS1 are required for its NO-dependent degradation. These findings demonstrate a fundamental role for NOS1-derived NO in regulating TLR4-mediated inflammatory gene transcription, as well as the intensity and duration of the resulting host immune response.


Suppressor of cytokine signaling-1 mimetic peptides attenuate lymphocyte activation in the MRL/lpr mouse autoimmune model.

  • Jatin Sharma‎ et al.
  • Scientific reports‎
  • 2021‎

Autoimmune diseases are driven largely by a pathogenic cytokine milieu produced by aberrantly activated lymphocytes. Many cytokines, including interferon gamma (IFN-γ), utilize the JAK/STAT pathway for signal propagation. Suppressor of Cytokine Signaling-1 (SOCS1) is an inducible, intracellular protein that regulates IFN-γ signaling by dampening JAK/STAT signaling. Using Fas deficient, MRL/MpJ-Faslpr/J (MRL/lpr) mice, which develop lupus-like disease spontaneously, we tested the hypothesis that a peptide mimic of the SOCS1 kinase inhibitory region (SOCS1-KIR) would inhibit lymphocyte activation and modulate lupus-associated pathologies. Consistent with in vitro studies, SOCS1-KIR intraperitoneal administration reduced the frequency, activation, and cytokine production of memory CD8+ and CD4+ T lymphocytes within the peripheral blood, spleen, and lymph nodes. In addition, SOCS1-KIR administration reduced lymphadenopathy, severity of skin lesions, autoantibody production, and modestly reduced kidney pathology. On a cellular level, peritoneal SOCS1-KIR administration enhanced Foxp3 expression in total splenic and follicular regulatory T cells, reduced the effector memory/naïve T lymphocyte ratio for both CD4+ and CD8+ cells, and reduced the frequency of GL7+ germinal center enriched B cells. Together, these data show that SOCS1-KIR treatment reduced auto-reactive lymphocyte effector functions and suggest that therapeutic targeting of the SOCS1 pathway through peptide administration may have efficacy in mitigating autoimmune pathologies.


ORF3a Protein of Severe Acute Respiratory Syndrome Coronavirus 2 Inhibits Interferon-Activated Janus Kinase/Signal Transducer and Activator of Transcription Signaling via Elevating Suppressor of Cytokine Signaling 1.

  • Rong Wang‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Coronavirus disease 2019 (COVID-19) has caused a crisis to global public health since its outbreak at the end of 2019. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen of COVID-19, appears to efficiently evade the host immune responses, including interferon (IFN) signaling. Several SARS-CoV-2 viral proteins are believed to involve in the inhibition of IFN signaling. In this study, we discovered that ORF3a, an accessory protein of SARS-CoV-2, inhibited IFN-activated Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling via upregulating suppressor of cytokine signaling 1 (SOCS1), a negative regulator of cytokine signaling. ORF3a induced SOCS1 elevation in a dose- and time-dependent manner. RNAi-mediated silencing of SOCS1 efficiently abolished ORF3a-induced blockage of JAK/STAT signaling. Interestingly, we found that ORF3a also promoted the ubiquitin-proteasomal degradation of Janus kinase 2 (JAK2), an important kinase in IFN signaling. Silencing of SOCS1 by siRNA distinctly blocked ORF3a-induced JAK2 ubiquitination and degradation. These results demonstrate that ORF3a dampens IFN signaling via upregulating SOCS1, which suppressed STAT1 phosphorylation and accelerated JAK2 ubiquitin-proteasomal degradation. Furthermore, analysis of ORF3a deletion constructs showed that the middle domain of ORF3a (amino acids 70-130) was responsible for SOCS1 upregulation. These findings contribute to our understanding of the mechanism of SARS-CoV-2 antagonizing host antiviral response.


Suppressor of cytokine signaling (SOCS)5 ameliorates influenza infection via inhibition of EGFR signaling.

  • Lukasz Kedzierski‎ et al.
  • eLife‎
  • 2017‎

Influenza virus infections have a significant impact on global human health. Individuals with suppressed immunity, or suffering from chronic inflammatory conditions such as COPD, are particularly susceptible to influenza. Here we show that suppressor of cytokine signaling (SOCS) five has a pivotal role in restricting influenza A virus in the airway epithelium, through the regulation of epidermal growth factor receptor (EGFR). Socs5-deficient mice exhibit heightened disease severity, with increased viral titres and weight loss. Socs5 levels were differentially regulated in response to distinct influenza viruses (H1N1, H3N2, H5N1 and H11N9) and were reduced in primary epithelial cells from COPD patients, again correlating with increased susceptibility to influenza. Importantly, restoration of SOCS5 levels restricted influenza virus infection, suggesting that manipulating SOCS5 expression and/or SOCS5 targets might be a novel therapeutic approach to influenza.


Expression of suppressor of cytokine signaling 1 (SOCS1) impairs viral clearance and exacerbates lung injury during influenza infection.

  • Keer Sun‎ et al.
  • PLoS pathogens‎
  • 2014‎

Suppressor of cytokine signaling (SOCS) proteins are inducible feedback inhibitors of cytokine signaling. SOCS1-/- mice die within three weeks postnatally due to IFN-γ-induced hyperinflammation. Since it is well established that IFN-γ is dispensable for protection against influenza infection, we generated SOCS1-/-IFN-γ-/- mice to determine whether SOCS1 regulates antiviral immunity in vivo. Here we show that SOCS1-/-IFN-γ-/- mice exhibited significantly enhanced resistance to influenza infection, as evidenced by improved viral clearance, attenuated acute lung damage, and consequently increased survival rates compared to either IFN-γ-/- or WT animals. Enhanced viral clearance in SOCS1-/-IFN-γ-/- mice coincided with a rapid onset of adaptive immune responses during acute infection, while their reduced lung injury was associated with decreased inflammatory cell infiltration at the resolution phase of infection. We further determined the contribution of SOCS1-deficient T cells to antiviral immunity. Anti-CD4 antibody treatment of SOCS1-/-IFN-γ-/- mice had no significant effect on their enhanced resistance to influenza infection, while CD8+ splenocytes from SOCS1-/-IFN-γ-/- mice were sufficient to rescue RAG1-/- animals from an otherwise lethal infection. Surprisingly, despite their markedly reduced viral burdens, RAG1-/- mice reconstituted with SOCS1-/-IFN-γ-/- adaptive immune cells failed to ameliorate influenza-induced lung injury. In conclusion, in the absence of IFN-γ, the cytoplasmic protein SOCS1 not only inhibits adaptive antiviral immune responses but also exacerbates inflammatory lung damage. Importantly, these detrimental effects of SOCS1 are conveyed through discrete cell populations. Specifically, while SOCS1 expression in adaptive immune cells is sufficient to inhibit antiviral immunity, SOCS1 in innate/stromal cells is responsible for aggravated lung injury.


Regulation of insulin and leptin signaling by muscle suppressor of cytokine signaling 3 (SOCS3).

  • Zhenggang Yang‎ et al.
  • PloS one‎
  • 2012‎

Skeletal muscle resistance to the key metabolic hormones, leptin and insulin, is an early defect in obesity. Suppressor of cytokine signaling 3 (SOCS3) is a major negative regulator of both leptin and insulin signaling, thereby implicating SOCS3 in the pathogenesis of obesity and associated metabolic abnormalities. Here, we demonstrate that SOCS3 mRNA expression is increased in murine skeletal muscle in the setting of diet-induced and genetic obesity, inflammation, and hyperlipidemia. To further evaluate the contribution of muscle SOCS3 to leptin and insulin resistance in obesity, we generated transgenic mice with muscle-specific overexpression of SOCS3 (MCK/SOCS3 mice). Despite similar body weight, MCK/SOCS3 mice develop impaired systemic and muscle-specific glucose homeostasis and insulin action based on glucose and insulin tolerance tests, hyperinsulinemic-euglycemic clamps, and insulin signaling studies. With regards to leptin action, MCK/SOCS3 mice exhibit suppressed basal and leptin-stimulated activity and phosphorylation of alpha2 AMP-activated protein kinase (α2AMPK) and its downstream target, acetyl-CoA carboxylase (ACC). Muscle SOCS3 overexpression also suppresses leptin-regulated genes involved in fatty acid oxidation and mitochondrial function. These studies demonstrate that SOC3 within skeletal muscle is a critical regulator of leptin and insulin action and that increased SOCS may mediate insulin and leptin resistance in obesity.


Association of the suppressor of cytokine signaling 1 (SOCS1) gene polymorphisms with acute coronary syndrome in Mexican patients.

  • Gilberto Vargas-Alarcon‎ et al.
  • Molecular immunology‎
  • 2014‎

Recent studies provide evidence on the emerging role of the SOCS1 gene in the development and progression of atherosclerotic lesions. This gene encodes for the suppressor of the cytokine signaling-1 protein that interacts directly with the Janus kinases that are essential intracellular mediators of the immune cytokine action. The aim of this study was to test for associations between SOCS1 gene single nucleotide polymorphisms (SNPs) and the risk of developing acute coronary syndromes (ACS) in a group of Mexicans patients. Four SNPs [-3969 C>T (rs243327), -1656 G>A (rs243330), -820 G>T (rs33977706) and +1125 G>C (rs33932899)] of SOCS1 gene were determined for TaqMan genotyping assays in a group of 447 patients with ACS and 622 healthy controls. Under heterozygous model, the -3969 C>T (rs243327) SNP was associated with increased risk of ACS (OR=1.45, P(Het)=0.021). On the other hand, under co-dominant and heterozygous models, the -1656 G/A (rs243330) SNP was associated with increased risk of ACS (OR=1.47, P(Co-dom)=0.038 and OR=1.50, P(Het)=0.013, respectively). Moreover, under co-dominant, dominant, and heterozygous models, the -820T/G (rs33977706) SNP was associated with increased risk of ACS (OR=1.59, P(Co-dom)=0.03, OR=1.48, P(Dom)=0.028 and OR=1.61, P(Het)=0.01). Finally, under co-dominant and heterozygous models, the +1125 G/C (rs33932899) SNP was associated with increased risk of ACS (OR=1.54, P(Co-dom)=0.006, OR=1.58, P(Het)=0.012, respectively). Models were adjusted for gender, age, body index mass, dyslipidemia, alcohol consumption, and smoking. In summary, our data suggests that the four studied polymorphisms of the SOCS1 gene play an important role as susceptibility markers for developing ACS.


Resveratrol Suppresses Matrix Metalloproteinase-2 Activation Induced by Lipopolysaccharide in Mouse Osteoblasts via Interactions with AMP-Activated Protein Kinase and Suppressor of Cytokine Signaling 1.

  • Yaqiong Yu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Porphyromonas endodontalis (P. endodontalis) lipopolysaccharide (LPS) is associated with the progression of bone resorption in periodontal and periapical diseases. Matrix metalloproteinase-2 (MMP-2) expression and activity are elevated in apical periodontitis and have been suggested to participate in bone resorption. Therefore, inhibiting MMP-2 activation may be considered a therapeutic strategy for treating apical periodontitis. Resveratrol is a natural non-flavonoid polyphenol that has been reported to have antioxidant, anti-cancer, and anti-inflammatory properties. However, the capacity of resveratrol to protect osteoblast cells from P. endodontalis LPS insults and the mechanism of its inhibitory effects on MMP-2 activation is poorly understood. Here, we demonstrate that cell viability is unchanged when 10 mg L-1P. endodontalis LPS is used, and MMP-2 expression is drastically induced by P. endodontalis LPS in a concentration- and time-dependent manner. Twenty micromolar resveratrol did not reduce MC3T3-E1 cell viability. Resveratrol increased AMP-activated protein kinase (AMPK) phosphorylation, and Compound C, a specific AMPK inhibitor, partially abolished the resveratrol-mediated phosphorylation of AMPK. In addition, AMPK inhibition blocked the effects of resveratrol on MMP-2 expression and activity in LPS-induced MC3T3-E1 cells. Treatment with resveratrol also induced suppressor of cytokine signaling 1 (SOCS1) expression in MC3T3-E1 cells. SOCS1 siRNA negated the inhibitory effects of resveratrol on LPS-induced MMP-2 production. Additionally, resveratrol-induced SOCS1 upregulation was reduced by treatment with compound C. These results demonstrate that AMPK and SOCS1 activation are important signaling events during resveratrol-mediated inhibition of MMP-2 production in response to LPS in MC3T3-E1 cells, and there is crosstalk between AMPK and SOCS1 signaling.


Comprehensive analysis of suppressor of cytokine signaling proteins in human breast Cancer.

  • Mingyu Sun‎ et al.
  • BMC cancer‎
  • 2021‎

Abnormal expression of suppressor of cytokine signaling (SOCS) proteins regulates tumor angiogenesis and development in cancers. In this study, we aimed to perform a comprehensive bioinformatic analysis of SOCS proteins in breast invasive carcinoma (BRCA).


MiR-122 directly inhibits human papillomavirus E6 gene and enhances interferon signaling through blocking suppressor of cytokine signaling 1 in SiHa cells.

  • Junming He‎ et al.
  • PloS one‎
  • 2014‎

Human Papillomavirus (HPV) 16 infection is considered as one of the significant causes of human cervical cancer. The expression of the viral oncogenes like E6 and E7 play an important role in the development of the cancer. MiR-122 has been reported to exhibit a strong relationship with hepatitis viruses and take part in several tumor development, while the effects of miR-122 on HPV infection and the HPV viral oncogenes expression still remain unexplored. In this study, using RNAhybrid software, the potential binding sites between miR-122 and HPV16 E6 and E7 mRNAs were identified. Over and loss of miR-122 function showed that miR-122 could directly bind with HPV16 E6 mRNA and significantly inhibit its expression in SiHa cells, which was further confirmed by constructing the miR-122-E6-mu to eliminate the miR-122 binding effects with E6. The increase of the expression of type I interferon (IFN) and its classical effective molecules and the phosphorylation of signal transducers and activators of transcription (STAT1) protein indicated that miR-122 might enhance type I interferon in cervical carcinoma cells, which explained the significant reduction of HPV16 E7 and E6*I mRNA expression. This might be due to the binding between miR-122 and suppressor of cytokine signaling 1 (SOCS1) mRNA, which is the suppressor of interferon signaling pathway. Moreover, it was identified that the miR-122 binding position was nt359-nt375 in SOCS1 mRNA. Taken together, this study indicated that HPV16 could be effectively inhibited by miR-122 through both direct binding with E6 mRNA and promoting SOCS1-dependent IFN signaling pathway. Thus, miR-122 may serve as a new therapeutic option for inhibiting HPV infection.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: