Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 5,809 papers

Meta-analytic support vector machine for integrating multiple omics data.

  • SungHwan Kim‎ et al.
  • BioData mining‎
  • 2017‎

Of late, high-throughput microarray and sequencing data have been extensively used to monitor biomarkers and biological processes related to many diseases. Under this circumstance, the support vector machine (SVM) has been popularly used and been successful for gene selection in many applications. Despite surpassing benefits of the SVMs, single data analysis using small- and mid-size of data inevitably runs into the problem of low reproducibility and statistical power. To address this problem, we propose a meta-analytic support vector machine (Meta-SVM) that can accommodate multiple omics data, making it possible to detect consensus genes associated with diseases across studies.


Computational Detection of piRNA in Human Using Support Vector Machine.

  • Atefeh Seyeddokht‎ et al.
  • Avicenna journal of medical biotechnology‎
  • 2016‎

Piwi-interacting RNAs (piRNAs) are small non-coding RNAs (ncRNAs), with a length of about 24-32 nucleotides, which have been discovered recently. These ncRNAs play an important role in germline development, transposon silencing, epigenetic regulation, protecting the genome from invasive transposable elements, and the pathophysiology of diseases such as cancer. piRNA identification is challenging due to the lack of conserved piRNA sequences and structural elements.


Support Vector Machine with Ensemble Tree Kernel for Relation Extraction.

  • Xiaoyong Liu‎ et al.
  • Computational intelligence and neuroscience‎
  • 2016‎

Relation extraction is one of the important research topics in the field of information extraction research. To solve the problem of semantic variation in traditional semisupervised relation extraction algorithm, this paper proposes a novel semisupervised relation extraction algorithm based on ensemble learning (LXRE). The new algorithm mainly uses two kinds of support vector machine classifiers based on tree kernel for integration and integrates the strategy of constrained extension seed set. The new algorithm can weaken the inaccuracy of relation extraction, which is caused by the phenomenon of semantic variation. The numerical experimental research based on two benchmark data sets (PropBank and AIMed) shows that the LXRE algorithm proposed in the paper is superior to other two common relation extraction methods in four evaluation indexes (Precision, Recall, F-measure, and Accuracy). It indicates that the new algorithm has good relation extraction ability compared with others.


Support Vector Machine for Lung Adenocarcinoma Staging Through Variant Pathways.

  • Feng Di‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2020‎

Lung adenocarcinoma (LUAD) is one of the most common malignant tumors. How to effectively diagnose LUAD at an early stage and make an accurate judgement of the occurrence and progression of LUAD are still the focus of current research. Support vector machine (SVM) is one of the most effective methods for diagnosing LUAD of different stages. The study aimed to explore the dynamic change of differentially expressed genes (DEGs) in different stages of LUAD, and to assess the risk of LUAD through DEGs enriched pathways and establish a diagnostic model based on SVM method. Based on TMN stages and gene expression profiles of 517 samples in TCGA-LUAD database, coefficient of variation (CV) combined with one-way analysis of variance (ANOVA) were used to screen out feature genes in different TMN stages after data standardization. Unsupervised clustering analysis was conducted on samples and feature genes. The feature genes were analyzed by Pearson correlation coefficient to construct a co-expression network. Fisher exact test was conducted to verify the most enriched pathways, and the variation of each pathway in different stages was analyzed. SVM networks were trained and ROC curves were drawn based on the predicted results so as to evaluate the predictive effectiveness of the SVM model. Unsupervised hierarchical clustering analysis results showed that almost all the samples in stage III/IV were clustered together, while samples in stage I/II were clustered together. The correlation of feature genes in different stages was different. In addition, with the increase of malignant degree of lung cancer, the average shortest path of the network gradually increased, while the closeness centrality gradually decreased. Finally, four feature pathways that could distinguish different stages of LUAD were obtained and the ability was tested by the SVM model with an accuracy of 91%. Functional level differences were quantified based on the expression of feature genes in lung cancer patients of different stages, so as to help the diagnosis and prediction of lung cancer. The accuracy of our model in differentiating between stage I/II and stage III/IV could reach 91%.


A support vector machine approach for identification of pleural effusion.

  • Catur Edi Widodo‎ et al.
  • Heliyon‎
  • 2024‎

In this research, we investigated the method which was based on a support vector machine (SVM) to identify pleural effusion on the thoracic image. SVM is a method of machine learning that works well when applied to data outside the training set. We formulated the detection of pleural effusion and applied SVM to develop the identification algorithm. We applied SVM to detect thoracic images whether they identified as pleural effusion or normal. The identification of pleural effusion on the thoracic image was conducted through some processes such as the determination of the region of interest (ROI), segmentation, morphology operation, measurement of the sharpness value and slope value, training as well as testing. Determining ROI was intended to focus the measurement on the left side of the chest. Segmentation was carried out to separate lungs object from the background. Morphology operation was carried out for cavities on the object as the segmentation result to obtain the entire object so that the measurement of the slope's lower part image could be done perfectly. The training was carried out on 100 thoracic images, 50 of them were identified with pleural effusion and the other 50 were normal. The objective was to find the hyperplane with the parameter input such as the sharpness value and slope value of the lungs on the thoracic image. We tested the method proposed based on doctors' diagnosis using 50 thoracic images, 25 of which were identified with pleural effusion and the other 25 were normal. From the result of the test, the accuracy of the method we proposed was 96%.


Seismic Discrimination between Earthquakes and Explosions Using Support Vector Machine.

  • Sangkyeum Kim‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2020‎

The discrimination between earthquakes and explosions is a serious issue in seismic signal analysis. This paper proposes a seismic discrimination method using support vector machine (SVM), wherein the amplitudes of the P-wave and the S-wave of the seismic signals are selected as feature vectors. Furthermore, to improve the seismic discrimination performance using a heterodyne laser interferometer for seismic wave detection, the Hough transform is applied as a compensation method for the periodic nonlinearity error caused by the frequency-mixing in the laser interferometric seismometer. In the testing procedure, different kernel functions of SVM are used to discriminate between earthquakes and explosions. The outstanding performance of a laser interferometer and Hough transform method for precision seismic measurement and nonlinearity error compensation is confirmed through some experiments using a linear vibration stage. In addition, the effectiveness of the proposed discrimination method using a heterodyne laser interferometer is verified through a receiver operating characteristic curve and other performance indices obtained from practical experiments.


Modified Support Vector Machine for Detecting Stress Level Using EEG Signals.

  • Richa Gupta‎ et al.
  • Computational intelligence and neuroscience‎
  • 2020‎

Stress is categorized as a condition of mental strain or pressure approaches because of upsetting or requesting conditions. There are various sources of stress initiation. Researchers consider human cerebrum as the primary wellspring of stress. To study how each individual encounters stress in different forms, researchers conduct surveys and monitor it. The paper presents the fusion of 5 algorithms to enhance the accuracy for detection of mental stress using EEG signals. The Whale Optimization Algorithm has been modified to select the optimal kernel in the SVM classifier for stress detection. An integrated set of algorithms (NLM, DCT, and MBPSO) has been used for preprocessing, feature extraction, and selection. The proposed algorithm has been tested on EEG signals collected from 14 subjects to identify the stress level. The proposed approach was validated using accuracy, sensitivity, specificity, and F1 score with values of 96.36%, 96.84%, 90.8%, and 97.96% and was found to be better than the existing ones. The algorithm may be useful to psychiatrists and health consultants for diagnosing the stress level.


Prediction of protein-protein interaction with pairwise kernel support vector machine.

  • Shao-Wu Zhang‎ et al.
  • International journal of molecular sciences‎
  • 2014‎

Protein-protein interactions (PPIs) play a key role in many cellular processes. Unfortunately, the experimental methods currently used to identify PPIs are both time-consuming and expensive. These obstacles could be overcome by developing computational approaches to predict PPIs. Here, we report two methods of amino acids feature extraction: (i) distance frequency with PCA reducing the dimension (DFPCA) and (ii) amino acid index distribution (AAID) representing the protein sequences. In order to obtain the most robust and reliable results for PPI prediction, pairwise kernel function and support vector machines (SVM) were employed to avoid the concatenation order of two feature vectors generated with two proteins. The highest prediction accuracies of AAID and DFPCA were 94% and 93.96%, respectively, using the 10 CV test, and the results of pairwise radial basis kernel function are considerably improved over those based on radial basis kernel function. Overall, the PPI prediction tool, termed PPI-PKSVM, which is freely available at http://159.226.118.31/PPI/index.html, promises to become useful in such areas as bio-analysis and drug development.


A multigene support vector machine predictor for metastasis of cutaneous melanoma.

  • Dong Wei‎
  • Molecular medicine reports‎
  • 2018‎

Gene expression profiles of cutaneous melanoma were analyzed to identify critical genes associated with metastasis. Two gene expression datasets were downloaded from Gene Expression Omnibus (GEO) and another dataset was obtained from The Cancer Genome Atlas (TCGA). Differentially expression genes (DEGs) between metastatic and non‑metastatic melanoma were identified by meta‑analysis. A protein‑protein interaction (PPI) network was constructed for the DEGs using information from BioGRID, HPRD and DIP. Betweenness centrality (BC) was calculated for each node in the network and the top feature genes ranked by BC were selected to construct the support vector machine (SVM) classifier using the training set. The SVM classifier was then validated in another independent dataset. Pathway enrichment analysis was performed for the feature genes using Fisher's exact test. A total of 798 DEGs were identified and a PPI network including 337 nodes and 466 edges was then constructed. Top 110 feature genes ranked by BC were included in the SVM classifier. The prediction accuracies for the three datasets were 96.8, 100 and 94.4%, respectively. A total of 11 KEGG pathways and 13 GO biological pathways were significantly over‑represented in the 110 feature genes, including endometrial cancer, regulation of actin cytoskeleton, focal adhesion, ubiquitin mediated proteolysis, regulation of apoptosis and regulation of cell proliferation. A SVM classifier of high prediction accuracy was acquired. Several critical genes implicated in melanoms metastasis were also revealed. These results may advance understanding of the molecular mechanisms underlying metastasis, and also provide potential therapeutic targets.


Support Vector Machine-based Spontaneous Intracranial Hypotension Detection on Brain MRI.

  • Philipp G Arnold‎ et al.
  • Clinical neuroradiology‎
  • 2022‎

To develop a fully automatic algorithm for the magnetic resonance imaging (MRI) identification of patients with spontaneous intracranial hypotension (SIH).


Identification of Peptide Inhibitors of Enveloped Viruses Using Support Vector Machine.

  • Yongtao Xu‎ et al.
  • PloS one‎
  • 2015‎

The peptides derived from envelope proteins have been shown to inhibit the protein-protein interactions in the virus membrane fusion process and thus have a great potential to be developed into effective antiviral therapies. There are three types of envelope proteins each exhibiting distinct structure folds. Although the exact fusion mechanism remains elusive, it was suggested that the three classes of viral fusion proteins share a similar mechanism of membrane fusion. The common mechanism of action makes it possible to correlate the properties of self-derived peptide inhibitors with their activities. Here we developed a support vector machine model using sequence-based statistical scores of self-derived peptide inhibitors as input features to correlate with their activities. The model displayed 92% prediction accuracy with the Matthew's correlation coefficient of 0.84, obviously superior to those using physicochemical properties and amino acid decomposition as input. The predictive support vector machine model for self- derived peptides of envelope proteins would be useful in development of antiviral peptide inhibitors targeting the virus fusion process.


Classification of Autism Spectrum Disorder Using Random Support Vector Machine Cluster.

  • Xia-An Bi‎ et al.
  • Frontiers in genetics‎
  • 2018‎

Autism spectrum disorder (ASD) is mainly reflected in the communication and language barriers, difficulties in social communication, and it is a kind of neurological developmental disorder. Most researches have used the machine learning method to classify patients and normal controls, among which support vector machines (SVM) are widely employed. But the classification accuracy of SVM is usually low, due to the usage of a single SVM as classifier. Thus, we used multiple SVMs to classify ASD patients and typical controls (TC). Resting-state functional magnetic resonance imaging (fMRI) data of 46 TC and 61 ASD patients were obtained from the Autism Brain Imaging Data Exchange (ABIDE) database. Only 84 of 107 subjects are utilized in experiments because the translation or rotation of 7 TC and 16 ASD patients has surpassed ±2 mm or ±2°. Then the random SVM cluster was proposed to distinguish TC and ASD. The results show that this method has an excellent classification performance based on all the features. Furthermore, the accuracy based on the optimal feature set could reach to 96.15%. Abnormal brain regions could also be found, such as inferior frontal gyrus (IFG) (orbital and opercula part), hippocampus, and precuneus. It is indicated that the method of random SVM cluster may apply to the auxiliary diagnosis of ASD.


Tyrosine Kinase Ligand-Receptor Pair Prediction by Using Support Vector Machine.

  • Masayuki Yarimizu‎ et al.
  • Advances in bioinformatics‎
  • 2015‎

Receptor tyrosine kinases are essential proteins involved in cellular differentiation and proliferation in vivo and are heavily involved in allergic diseases, diabetes, and onset/proliferation of cancerous cells. Identifying the interacting partner of this protein, a growth factor ligand, will provide a deeper understanding of cellular proliferation/differentiation and other cell processes. In this study, we developed a method for predicting tyrosine kinase ligand-receptor pairs from their amino acid sequences. We collected tyrosine kinase ligand-receptor pairs from the Database of Interacting Proteins (DIP) and UniProtKB, filtered them by removing sequence redundancy, and used them as a dataset for machine learning and assessment of predictive performance. Our prediction method is based on support vector machines (SVMs), and we evaluated several input features suitable for tyrosine kinase for machine learning and compared and analyzed the results. Using sequence pattern information and domain information extracted from sequences as input features, we obtained 0.996 of the area under the receiver operating characteristic curve. This accuracy is higher than that obtained from general protein-protein interaction pair predictions.


Identification of microRNA precursors with support vector machine and string kernel.

  • Jian-Hua Xu‎ et al.
  • Genomics, proteomics & bioinformatics‎
  • 2008‎

MicroRNAs (miRNAs) are one family of short (21-23 nt) regulatory non-coding RNAs processed from long (70-110 nt) miRNA precursors (pre-miRNAs). Identifying true and false precursors plays an important role in computational identification of miRNAs. Some numerical features have been extracted from precursor sequences and their secondary structures to suit some classification methods; however, they may lose some usefully discriminative information hidden in sequences and structures. In this study, pre-miRNA sequences and their secondary structures are directly used to construct an exponential kernel based on weighted Levenshtein distance between two sequences. This string kernel is then combined with support vector machine (SVM) for detecting true and false pre-miRNAs. Based on 331 training samples of true and false human pre-miRNAs, 2 key parameters in SVM are selected by 5-fold cross validation and grid search, and 5 realizations with different 5-fold partitions are executed. Among 16 independent test sets from 3 human, 8 animal, 2 plant, 1 virus, and 2 artificially false human pre-miRNAs, our method statistically outperforms the previous SVM-based technique on 11 sets, including 3 human, 7 animal, and 1 false human pre-miRNAs. In particular, premiRNAs with multiple loops that were usually excluded in the previous work are correctly identified in this study with an accuracy of 92.66%.


GISMO--gene identification using a support vector machine for ORF classification.

  • Lutz Krause‎ et al.
  • Nucleic acids research‎
  • 2007‎

We present the novel prokaryotic gene finder GISMO, which combines searches for protein family domains with composition-based classification based on a support vector machine. GISMO is highly accurate; exhibiting high sensitivity and specificity in gene identification. We found that it performs well for complete prokaryotic chromosomes, irrespective of their GC content, and also for plasmids as short as 10 kb, short genes and for genes with atypical sequence composition. Using GISMO, we found several thousand new predictions for the published genomes that are supported by extrinsic evidence, which strongly suggest that these are very likely biologically active genes. The source code for GISMO is freely available under the GPL license.


Detecting Succinylation sites from protein sequences using ensemble support vector machine.

  • Qiao Ning‎ et al.
  • BMC bioinformatics‎
  • 2018‎

Lysine succinylation is a new kind of post-translational modification which plays a key role in protein conformation regulation and cellular function control. To understand the mechanism of succinylation profoundly, it is necessary to identify succinylation sites in proteins accurately. However, traditional methods, experimental approaches, are labor-intensive and time-consuming. Computational prediction methods have been proposed recent years, and they are popular because of their convenience and high speed. In this study, we developed a new method to predict succinylation sites in protein combining multiple features, including amino acid composition, binary encoding, physicochemical property and grey pseudo amino acid composition, with a feature selection scheme (information gain). And then, it was trained using SVM (Support Vector Machine) and an ensemble learning algorithm.


Prediction of piRNAs using transposon interaction and a support vector machine.

  • Kai Wang‎ et al.
  • BMC bioinformatics‎
  • 2014‎

Piwi-interacting RNAs (piRNAs) are a class of small non-coding RNA primarily expressed in germ cells that can silence transposons at the post-transcriptional level. Accurate prediction of piRNAs remains a significant challenge.


Support vector machine classification of arterial volume-weighted arterial spin tagging images.

  • Yash S Shah‎ et al.
  • Brain and behavior‎
  • 2016‎

In recent years, machine-learning techniques have gained growing popularity in medical image analysis. Temporal brain-state classification is one of the major applications of machine-learning techniques in functional magnetic resonance imaging (fMRI) brain data. This article explores the use of support vector machine (SVM) classification technique with motor-visual activation paradigm to perform brain-state classification into activation and rest with an emphasis on different acquisition techniques.


Phylogeography and support vector machine classification of colour variation in panther chameleons.

  • Djordje Grbic‎ et al.
  • Molecular ecology‎
  • 2015‎

Lizards and snakes exhibit colour variation of adaptive value for thermoregulation, camouflage, predator avoidance, sexual selection and speciation. Furcifer pardalis, the panther chameleon, is one of the most spectacular reptilian endemic species in Madagascar, with pronounced sexual dimorphism and exceptionally large intraspecific variation in male coloration. We perform here an integrative analysis of molecular phylogeography and colour variation after collecting high-resolution colour photographs and blood samples from 324 F. pardalis individuals in locations spanning the whole species distribution. First, mitochondrial and nuclear DNA sequence analyses uncover strong genetic structure among geographically restricted haplogroups, revealing limited gene flow among populations. Bayesian coalescent modelling suggests that most of the mitochondrial haplogroups could be considered as separate species. Second, using a supervised multiclass support vector machine approach on five anatomical components, we identify patterns in 3D colour space that efficiently predict assignment of male individuals to mitochondrial haplogroups. We converted the results of this analysis into a simple visual classification key that can assist trade managers to avoid local population overharvesting.


Classification of EEG signals using a multiple kernel learning support vector machine.

  • Xiaoou Li‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2014‎

In this study, a multiple kernel learning support vector machine algorithm is proposed for the identification of EEG signals including mental and cognitive tasks, which is a key component in EEG-based brain computer interface (BCI) systems. The presented BCI approach included three stages: (1) a pre-processing step was performed to improve the general signal quality of the EEG; (2) the features were chosen, including wavelet packet entropy and Granger causality, respectively; (3) a multiple kernel learning support vector machine (MKL-SVM) based on a gradient descent optimization algorithm was investigated to classify EEG signals, in which the kernel was defined as a linear combination of polynomial kernels and radial basis function kernels. Experimental results showed that the proposed method provided better classification performance compared with the SVM based on a single kernel. For mental tasks, the average accuracies for 2-class, 3-class, 4-class, and 5-class classifications were 99.20%, 81.25%, 76.76%, and 75.25% respectively. Comparing stroke patients with healthy controls using the proposed algorithm, we achieved the average classification accuracies of 89.24% and 80.33% for 0-back and 1-back tasks respectively. Our results indicate that the proposed approach is promising for implementing human-computer interaction (HCI), especially for mental task classification and identifying suitable brain impairment candidates.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: