Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 196 papers

Superior Cervical Sympathetic Ganglion: Normal Imaging Appearance on 3T-MRI.

  • Joo Yeon Lee‎ et al.
  • Korean journal of radiology‎
  • 2016‎

To identify superior cervical sympathetic ganglion (SCSG) and describe their characteristic MR appearance using 3T-MRI.


Organic cation transporter mRNA and function in the rat superior cervical ganglion.

  • Doris Kristufek‎ et al.
  • The Journal of physiology‎
  • 2002‎

Reuptake of extracellular noradrenaline (NA) into superior cervical ganglion (SCG) neurones is mediated by means of the noradrenaline transporter (NAT, uptake 1). We now demonstrate by single-cell RT-PCR that mRNA of the organic cation transporter 3 (OCT3, uptake 2) occurs in rat SCG neurones as well. Furthermore, our RT-PCR analyses reveal the presence of mRNA for novel organic cation transporters 1 and 2 (OCTN1 and OCTN2), but not for OCT1 or OCT2 in the ganglion. Making use of the NAT as a powerful, neurone-specific transporter system, we loaded[3H]-N-methyl-4-phenylpyridinium ([3H]-MPP+) into cultured rat SCG neurones. The ensuing radioactive outflow from these cultures was enhanced by desipramine and reserpine, but reduced (in the presence of desipramine) by the OCT3 inhibitors cyanine 863, oestradiol and corticosterone. In contrast, cyanine 863 enhanced the radioactive outflow from cultures preloaded with [3H]-NA. Two observations suggest that a depletion of storage vesicles by cyanine 863 accounts for the latter phenomenon: first, the primary radioactive product isolated from supernatants of cultures loaded with [3H]-NA was the metabolite [3H]-DHPG; and second, inhibition of MAO significantly reduced the radioactive outflow in response to cyanine 863. The outflow of [3H]-MPP+ was significantly enhanced by MPP+, guanidine, choline and amantadine as potential substrates for OCT-related transmembrane transporters. However, desipramine at a low concentration essentially blocked the radioactive outflow induced by all of these substances with the exception of MPP+, indicating the NAT and not an OCT as their primary site of action. The MPP+-induced release of [3H]-MPP+ was fully prevented by a combined application of desipramine and cyanine 863. No trans-stimulation of [3H]-MPP+ outflow was observed by the OCTN1 and OCTN2 substrate carnitine at 100 microM. Our observations indicate an OCT-mediated transmembrane transport of [3H]-MPP+. Amongst the three OCTs expressed in the SCG, OCT3 best fits the profile of substrates and antagonists that cause trans-stimulation and trans-inhibition, respectively, of [3H]-MPP+ release.


Presence of Functional Neurotrophin TrkB Receptors in the Rat Superior Cervical Ganglion.

  • Pablo Valle-Leija‎ et al.
  • Frontiers in physiology‎
  • 2017‎

Sympathetic neurons express the neurotrophin receptors TrkA, p75NTR, and a non-functional truncated TrkB isoform (TrkB-Tc), but are not thought to express a functional full-length TrkB receptor (TrkB-Fl). We, and others, have demonstrated that nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) modulate synaptic transmission and synaptic plasticity in neurons of the superior cervical ganglion (SCG) of the rat. To clarify whether TrkB is expressed in sympathetic ganglia and contributes to the effects of BDNF upon sympathetic function, we characterized the presence and activity of the neurotrophin receptors expressed in the adult SCG compared with their presence in neonatal and cultured sympathetic neurons. Here, we expand our previous study regarding the immunodetection of neurotrophin receptors. Immunohistochemical analysis revealed that 19% of adult ganglionic neurons expressed TrkB-Fl immunoreactivity (IR), 82% expressed TrkA-IR, and 51% expressed p75NTR-IR; TrkB-Tc would be expressed in 36% of neurons. In addition, using Western-blotting and reverse transcriptase polymerase chain reaction (RT-PCR) analyses, we confirmed the expression of TrkB-Fl and TrkB-Tc protein and mRNA transcripts in adult SCG. Neonatal neurons expressed significantly more TrkA-IR and TrkB-Fl-IR than p75NTR-IR. Finally, the application of neurotrophin, and high frequency stimulation, induced the activation of Trk receptors and the downstream PI3-kinase (phosphatidyl inositol-3-kinase) signaling pathway, thus evoking the phosphorylation of Trk and Akt. These results demonstrate that SCG neurons express functional TrkA and TrkB-Fl receptors, which may contribute to the differential modulation of synaptic transmission and long-term synaptic plasticity.


Diabetes mellitus alters electrophysiological properties in neurons of superior cervical ganglion of rats.

  • Nathalia Maria Silva-Dos-Santos‎ et al.
  • Brain research‎
  • 2020‎

Diabetic neuropathy is the most prevalent complication associated with diabetes mellitus (DM). The superior cervical ganglion (SCG) is an important sympathetic component of the autonomic nervous system. We investigated the changes in cellular electrophysiological properties and on Na+K+-ATPase activity of SCG neurons of rats with DM induced by streptozotocin (STZ). Three types of action potentials (AP) firing pattern were observed in response to a long (1 s) depolarizing pulse. Whilst some neurons fired a single AP (single firing phasic, SFP), others fired few APs (multiple firing phasic, MFP). A third type fired APs during more than 80% of the stimulus duration (tonic-like, TL). The occurrence of SFP, MFP and TL was 84.5, 13.8, and 1.7%, respectively. SFP and MFP differed significantly in their membrane input resistance (Rin). At the end of the 4th week of its time course, DM differently affected most types of neurons: DM induced depolarization of resting membrane potential (RMP), decreased AP amplitude in SFP, and decreased Rin in MFP. DM decreased spike after-hyperpolarization amplitude in MFP and the duration in SFP. Based on the RMP depolarization, we investigated the Na+K+-ATPase action and observed that DM caused a significant decrease in Na+K+-ATPase activity of SCG. In conclusion, we have demonstrated that DM affects several parameters of SCG physiology in a manner likely to have pathophysiological relevance.


Naringin Relieves Diabetic Cardiac Autonomic Neuropathy Mediated by P2Y14 Receptor in Superior Cervical Ganglion.

  • Gan Tang‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Diabetes mellitus (DM), an emerging chronic epidemic, contributes to mortality and morbidity around the world. Diabetic cardiac autonomic neuropathy (DCAN) is one of the most common complications associated with DM. Previous studies have shown that satellite glial cells (SGCs) in the superior cervical ganglia (SCG) play an indispensable role in DCAN progression. In addition, it has been shown that purinergic neurotransmitters, as well as metabotropic GPCRs, are involved in the pathophysiological process of DCAN. Furthermore, one traditional Chinese medicine, naringin may potently alleviate the effects of DCAN. Ferroptosis may be involved in DCAN progression. However, the role of naringin in DCAN as well as its detailed mechanism requires further investigation. In this research, we attempted to identify the effect and relevant mechanism of naringin in DCAN mitigation. We observed that compared with those of normal subjects, there were significantly elevated expression levels of P2Y14 and IL-1β in diabetic rats, both of which were remarkably diminished by treatment with either P2Y14 shRNA or naringin. In addition, abnormalities in blood pressure (BP), heart rate (HR), heart rate variability (HRV), sympathetic nerve discharge (SND), and cardiac structure in the diabetic model can also be partially returned to normal through the use of those treatments. Furthermore, a reduced expression of NRF2 and GPX4, as well as an elevated level of ROS, were detected in diabetic cases, which can also be improved with those treatments. Our results showed that naringin can effectively relieve DCAN mediated by the P2Y14 receptor of SGCs in the SCG. Moreover, the NRF2/GPX4 pathway involved in ferroptosis may become one of the principal mechanisms participating in DCAN progression, which can be modulated by P2Y14-targeted naringin and thus relieve DCAN. Hopefully, our research can supply one novel therapeutic target and provide a brilliant perspective for the treatment of DCAN.


Sympathetic reinnervation of peripheral targets following bilateral axotomy of the adult superior cervical ganglion.

  • Zoe C Hesp‎ et al.
  • Brain research‎
  • 2012‎

The ability of adult injured postganglionic axons to reinnervate cerebrovascular targets is unknown, yet these axons can influence cerebral blood flow, particularly during REM sleep. The objective of the present study was to assess quantitatively the sympathetic reinnervation of vascular as well as non-vascular targets following bilateral axotomy of the superior cervical ganglion (SCG) at short term (1 day, 7 day) and long term (8 weeks, 12 weeks) survival time points. The sympathetic innervation of representative extracerebral blood vessels [internal carotid artery (ICA), basilar artery (BA), middle cerebral artery (MCA)], the submandibular gland (SMG), and pineal gland was quantified following injury using an antibody to tyrosine hydroxylase (TH). Changes in TH innervation were related to TH protein content in the SCG. At 7 day following bilateral SCG axotomy, all targets were significantly depleted of TH innervation, and the exact site on the BA where SCG input was lost could be discerned. Complete sympathetic reinnervation of the ICA was observed at long term survival times, yet TH innervation of other vascular targets showed significant decreases even at 12 weeks following axotomy. The SMG was fully reinnervated by 12 weeks, yet TH innervation of the pineal gland remained significantly decreased. TH protein in the SCG was significantly decreased at both short term and long term time points and showed little evidence of recovery. Our data demonstrate a slow reinnervation of most vascular targets following axotomy of the SCG with only minimal recovery of TH protein in the SCG at 12 weeks following injury.


KISS1 and KISS1R expression in the human and rat carotid body and superior cervical ganglion.

  • A Porzionato‎ et al.
  • European journal of histochemistry : EJH‎
  • 2011‎

KISS1 and its receptor, KISS1R, have both been found to be expressed in central nervous system, but few data are present in the literature about their distribution in peripheral nervous structures. Thus, the aim of the present study was to investigate, through immunohistochemistry, the expression and distribution of KISS1 and KISS1R in the rat and human carotid bodies and superior cervical ganglia, also with particular reference to the different cellular populations. Materials consisted of carotid bodies and superior cervical ganglia were obtained at autopsy from 10 adult subjects and sampled from 10 adult Sprague-Dawley rats. Immunohistochemistry revealed diffuse expression of KISS1 and KISS1R in type I cells of both human and rat carotid bodies, whereas type II cells were negative. In both human and rat superior cervical ganglia positive anti-KISS1 and -KISS1R immunostainings were also selectively found in ganglion cells, satellite cells being negative. Endothelial cells also showed moderate immunostaining for both KISS1 and KISS1R. The expression of both kisspeptins and kisspeptin receptors in glomic type I cells and sympathetic ganglion cells supports a modulatory role of KISS1 on peripheral chemoreception and sympathetic function. Moreover, local changes in blood flow have been considered to be involved in carotid body chemoreceptor discharge and kisspeptins and kisspeptin receptors have also been found in the endothelial cells. As a consequence, a possible role of kisspeptins in the regulation of carotid body blood flow and, indirectly, in chemoreceptor discharge may also be hypothesized.


Ticagrelor Can Regulate the Ion Channel Characteristics of Superior Cervical Ganglion Neurons after Myocardial Infarction.

  • Lijun Cheng‎ et al.
  • Journal of cardiovascular development and disease‎
  • 2023‎

The superior cervical ganglion (SCG) plays a key role in cardiovascular diseases. The aim of this study was to determine the changes in the ion channel characteristics of the SCG following myocardial infarction (MI) and the role of pretreatment with the P2Y12 receptor antagonist ticagrelor (TIC).


Immunohistochemical evidence for extrinsic and intrinsic opioid systems in the guinea pig superior cervical ganglion.

  • W Kummer‎ et al.
  • Anatomy and embryology‎
  • 1986‎

Immunohistochemical localization of the opioid peptides alpha-neo-endorphin (alpha-neo-END), dynorphin A (DYN) and leu-enkephalin (leu-ENK) in the guinea pig superior cervical ganglion (SCG) was studied following central denervation, peripheral axotomy, and after application of the depleting drug reserpine and of the neurotoxin 6-hydroxydopamine. The paraganglionic cells of the SCG are shown to form an intrinsic opioid--(alpha-neo-END, DYN, leu-ENK)--immunoreactive system being not visibly responsive to the experimental procedures. Leu-ENK-immunoreactive fibres ascend in the preganglionic trunk and supply fibre baskets to defined clusters of postganglionic neurones. Principal ganglion cells of the SCG containing alpha-neo-END- and DYN-immunoreactivity project to extraganglionic targets via the postganglionic nerves. These findings are indicative of a sympathetic alpha-neo-END-ergic and DYN-ergic innervation of effector organs. They also point to a modulatory function of opioids on neuronal activity in a paravertebral ganglion.


Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons.

  • Fernando Lazcano-Pérez‎ et al.
  • Toxins‎
  • 2016‎

The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7), voltage-gated calcium channel (CaV2.2), the A-type transient outward (IA) and delayed rectifier (IDR) currents of KV channels of the superior cervical ganglion (SCG) neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels.


Regulation of Tau Expression in Superior Cervical Ganglion (SCG) Neurons In Vivo and In Vitro.

  • Ying Jin‎ et al.
  • Cells‎
  • 2023‎

The superior cervical ganglion (SCG) is part of the autonomic nervous system providing sympathetic innervation to the head and neck, and has been regularly used to prepare postnatal neuronal cultures for cell biological studies. We found that during development these neurons change tau expression from the low molecular weight (LMW) isoforms to Big tau, with the potential to affect functions associated with tau such as microtubule dynamic and axonal transport. Big tau contains the large 4a exon that transforms tau from LMW isoforms of 45-60 kDa to 110 kDa. We describe tau expression during postnatal development reporting that the transition from LMW tau to Big tau which started at late embryonic stages is completed by about 4-5 weeks postnatally. We confirmed the presence of Big tau in dissociated postnatal SCG neurons making them an ideal system to study the function of Big tau in neurons. We used SCG explants to examine the response of SCG neurons to lesion and found that Big tau expression returned gradually along the regrowing neurites suggesting that it does not drives regeneration, but facilitates the structure/function of mature SCG neurons. The structural/functional roles of Big tau remain unknown, but it is intriguing that neurons that express Big tau appear less vulnerable to tauopathies.


The superior cervical ganglion is involved in chronic chemoreflex sensitization during recovery from acute lung injury.

  • Kajal Kamra‎ et al.
  • Frontiers in physiology‎
  • 2023‎

Introduction: Acute lung injury (ALI) initiates an inflammatory cascade that impairs gas exchange, induces hypoxemia, and causes an increase in respiratory rate (fR). This stimulates the carotid body (CB) chemoreflex, a fundamental protective reflex that maintains oxygen homeostasis. Our previous study indicated that the chemoreflex is sensitized during the recovery from ALI. The superior cervical ganglion (SCG) is known to innervate the CB, and its electrical stimulation has been shown to significantly sensitize the chemoreflex in hypertensive and normotensive rats. We hypothesized that the SCG is involved in the chemoreflex sensitization post-ALI. Methods: We performed a bilateral SCG ganglionectomy (SCGx) or sham-SCGx (Sx) in male Sprague Dawley rats 2 weeks before inducing ALI (Week -2 i.e., W-2). ALI was induced using a single intra-tracheal instillation of bleomycin (bleo) (day 1). Resting-fR, Vt (Tidal Volume), and V̇ E (Minute Ventilation) were measured. The chemoreflex response to hypoxia (10% O2, 0% CO2) and normoxic-hypercapnia (21% O2, 5% CO2) were measured before surgery on W (-3), before bleo administration on W0 and on W4 post-bleo using whole-body plethysmography (WBP). Results: SCGx did not affect resting fR, Vt and V̇E as well as the chemoreflex responses to hypoxia and normoxic hypercapnia in either group prior to bleo. There was no significant difference in ALI-induced increase in resting fR between Sx and SCGx rats at W1 post-bleo. At W4 post-bleo, there were no significant differences in resting fR, Vt, and V̇E between Sx and SCGx rats. Consistent with our previous study, we observed a sensitized chemoreflex (delta fR) in response to hypoxia and normoxic hypercapnia in Sx rats at W4 post-bleo. However, at the same time, compared to Sx rats, the chemoreflex sensitivity was significantly less in SCGx rats in response to either hypoxia or normoxic hypercapnia. Discussion: These data suggest that SCG is involved in the chemoreflex sensitization during ALI recovery. Further understanding of the underlying mechanism will provide important information for the long-term goal of developing novel targeted therapeutic approaches to pulmonary diseases to improve clinical outcomes.


Origins and neurochemical complexity of preganglionic neurons supplying the superior cervical ganglion in the domestic pig.

  • Judyta K Juranek‎ et al.
  • Journal of molecular neuroscience : MN‎
  • 2015‎

The superior cervical ganglion (SCG) is a center of sympathetic innervation of all head and neck organs. SCG sympathetic preganglionic neurons (SPN) were found in the nucleus intermediolateralis pars principalis (IMLpp), the nucleus intermediolateralis pars funicularis (IMLpf), the nucleus intercalatus spinalis (IC), and the nucleus intercalatus spinalis pars paraependymalis (ICpe). Despite its importance, little is known of SCG innervation and chemical coding in the laboratory pig, a model that is physiologically and anatomically representative of humans. Here in our study, we established the distribution and chemical coding of Fast Blue (FB) retrogradely labelled SPN innervating porcine SCG. After unilateral injection of FB retrograde tracer into the left SCG, labeled neurons were found solely on the ipsilateral side with approximately 98% located in Th1-Th3 segments and predominantly distributed in the IMLpp and IMLpf. Neurochemical analysis revealed that approximately 80% of SPN were positive both to choline acetyltransferase (ChAT) and nitric oxide synthase (NOS) and were surrounded by a plethora of opioidergic and peptiergic nerve terminals. The results of our study provide a detailed description of the porcine preganglionic neuroarchitecture of neurons controlling the SCG, setting the stage for further studies concerning SPN plasticity under experimental/pathological conditions.


The Role of the Superior Cervical Sympathetic Ganglion in Ischemia Reperfusion-Induced Acute Kidney Injury in Rats.

  • Wencui Zhang‎ et al.
  • Frontiers in medicine‎
  • 2022‎

Acute kidney injury (AKI) has been found to be a serious clinical problem with high morbidity and mortality, and is associated with acute inflammatory response and sympathetic activation that subsequently play an important role in the development of AKI. It is well known that the sympathetic nervous system (SNS) and immune system intensely interact and mutually control each other in order to maintain homeostasis in response to stress or injury. Evidence has shown that the superior cervical sympathetic ganglion (SCG) participates in the bidirectional network between the immune and the SNS, and that the superior cervical ganglionectomy has protective effect on myocardial infarction, however, the role of the SCG in the setting of renal ischemic reperfusion injury has not been studied. Here, we sought to determine whether or not the SCG modulates renal ischemic reperfusion (IR) injury in rats. Our results showed that bilateral superior cervical ganglionectomy (SCGx) 14 days before IR injury markedly reduced the norepinephrine (NE) in plasma, and down-regulated the increased expression of tyrosine hydroxylase (TH) in the kidney and hypothalamus. Sympathetic denervation by SCGx in the AKI group increased the level of blood urea nitrogen (BUN) and kidney injury molecule-1 (KIM-1), and exacerbated renal pathological damage. Sympathetic denervation by SCGx in the AKI group enhanced the expression of pro-inflammatory cytokines in plasma, kidney and hypothalamus, and increased levels of Bax in denervated rats with IR injury. In addition, the levels of purinergic receptors, P2X3R and P2X7R, in the spinal cord were up-regulated in the denervated rats of the IR group. In conclusion, these results demonstrate that the sympathetic denervation by SCGx aggravated IR-induced AKI in rats via enhancing the inflammatory response, thus, the activated purinergic signaling in the spinal cord might be the potential mechanism in the aggravated renal injury.


Schisandrin B Alleviates Diabetic Cardiac Autonomic neuropathy Induced by P2X7 Receptor in Superior Cervical Ganglion via NLRP3.

  • Zhihua Zhang‎ et al.
  • Disease markers‎
  • 2023‎

Diabetic cardiovascular autonomic neuropathy (DCAN) is a common complication of diabetes mellitus which brings about high mortality, high morbidity, and large economic burden to the society. Compensatory tachycardia after myocardial ischemia caused by DCAN can increase myocardial injury and result in more damage to the cardiac function. The inflammation induced by hyperglycemia can increase P2X7 receptor expression in the superior cervical ganglion (SCG), resulting in nerve damage. It is proved that inhibiting the expression of P2X7 receptor at the superior cervical ganglion can ameliorate the nociceptive signaling dysregulation induced by DCAN. However, the effective drug used for decreasing P2X7 receptor expression has not been found. Schisandrin B is a traditional Chinese medicine, which has anti-inflammatory and antioxidant effects. Whether Schisandrin B can decrease the expression of P2X7 receptor in diabetic rats to protect the cardiovascular system was investigated in this study. After diabetic model rats were made, Schisandrin B and shRNA of P2X7 receptor were given to different groups to verify the impact of Schisandrin B on the expression of P2X7 receptor. Pathological blood pressure, heart rate, heart rate variability, and sympathetic nerve discharge were ameliorated after administration of Schisandrin B. Moreover, the upregulated protein level of P2X7 receptor, NLRP3 inflammasomes, and interleukin-1β in diabetic rats were decreased after treatment, which indicates that Schisandrin B can alleviate the chronic inflammation caused by diabetes and decrease the expression levels of P2X7 via NLRP3. These findings suggest that Schisandrin B can be a potential therapeutical agent for DCAN.


Advancing age alters the contribution of calcium release from smooth endoplasmic reticulum stores in superior cervical ganglion cells.

  • Erik J Behringer‎ et al.
  • The journals of gerontology. Series A, Biological sciences and medical sciences‎
  • 2009‎

In superior cervical ganglion (SCG) neurons calcium-induced calcium release (CICR), mediated by ryanodine receptors (RyRs), contributes to stimulation-evoked intracellular calcium ([Ca(2+)](i)) transients.


Appearance and distribution of neuronal cell surface and synaptic vesicle antigens in the developing rat superior cervical ganglion.

  • K F Greif‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 1982‎

Monoclonal antibodies directed against a neuronal cell surface heparan sulfate proteoglycan and against a synaptic vesicle protein were used to study the postnatal development of ganglionic neurons and synapses in the rat superior cervical ganglion. Antigen levels in developing ganglia were quantitated by radioimmune assays. Localization of antigens in adult and developing ganglia was carried out using peroxidase-antiperoxidase immunocytochemistry at the light microscopic level. Ultrastructural staining patterns in adult ganglia also were studied. The time course of antigen increases parallels those in previous reports on the accumulation of neurotransmitter enzymes within the ganglion. Both synaptic and surface antigens increase postnatally, with the most rapid changes occurring during the 2nd week. Antibodies stain adult tissue in patterns consistent with the expected distribution of antigens: antibodies directed against synaptic vesicles stain synaptic terminals and cell cytoplasm and those directed against surface proteoglycan stain the plasma membranes of neuronal cell bodies and processes. Variable staining of the cell cytoplasm also is observed. No apparent changes in antigen distribution are observed with the light microscope during development. Variations in the time course of the development of antigens associated with different portions of the proteoglycan molecule suggest that the intracellular processing of the molecule may vary during development.


Immunohistochemical localization of vesicular nucleotide transporter in small intensely fluorescent (SIF) cells of the rat superior cervical ganglion.

  • Takuya Yokoyama‎ et al.
  • Tissue & cell‎
  • 2022‎

Our previous study reported that a part of small intensely fluorescent (SIF) cells in the rat superior cervical ganglion were innervated by P2X3 purinoceptor-expressing glossopharyngeal sensory nerve endings, suggesting the occurrence of adenosine 5'-triphosphate (ATP)-mediated transmission between them. The present study investigated the immunolocalization of vesicular nucleotide transporter (VNUT) in SIF cells of the superior cervical ganglion in male Wistar rats. VNUT was immunohistochemically localized in tyrosine hydroxylase-immunoreactive SIF cells and sympathetic postganglionic neurons, but not in a few SIF cells with immunoreactivity for dopamine beta-hydroxylase. P2X3-immunoreactive ramified nerve endings formed flat leaf-like or spherical terminal parts to surround some VNUT-immunoreactive SIF cells, but not other VNUT-immunoreactive SIF cells attached to ganglionic neurons. VNUT-immunoreactive SIF cells contained bassoon-immunoreactive products at the contacting surface of P2X3-immunoreactive nerve endings. Immunoreactivity for ectonucleoside triphosphate diphosphohydrolase 2, which hydrolyzes extracellular ATP, was observed in S100B-immunoreactive satellite glial cells surrounding VNUT-immunoreactive SIF cells, but not in the attachment surfaces between SIF cells and nerve endings with P2X3 immunoreactivity. The present results suggest that SIF cells release ATP by exocytosis to modulate the excitability of sensory nerve endings and postganglionic neurons in the superior cervical ganglion.


Rostro-caudal variations in neuronal size reflect the topography of cellular phenotypes in the rat superior cervical sympathetic ganglion.

  • Drew B Headley‎ et al.
  • Brain research‎
  • 2005‎

The mammalian superior cervical ganglion (SCG) contains a complex mixture of neuronal phenotypes that selectively innervate different peripheral targets. The present study examined the rostro-caudal topography of sympathetic phenotypes in the rat SCG by analyzing the relation between cell position, size, and the expression of immunoreactivity for neuropeptide Y (NPY), calretinin, and calcitonin gene-related peptide (CGRP). We observed that 64% of SCG neurons expressed NPY and had an average diameter of approximately 24 microm throughout the ganglion. Previous studies indicate that most of these cells are vasoconstrictor in function. By contrast, the size of NPY-negative neurons varied from approximately 25 microm in the rostral ganglion near the internal carotid nerve to approximately 30 microm in the caudal ganglion between the external carotid nerve and cervical sympathetic trunk. Many of the large NPY-negative neurons in the caudal ganglion were surrounded by dense axonal baskets that were immunoreactive for calretinin and therefore are likely to be secretomotor neurons projecting to salivary glands. Consistent with earlier reports, the rostral ganglion contained low numbers of presumptive pupillomotor neurons, based on their expression of NPY and contact with fibers containing CGRP. The present results indicate that neuronal size may provide a useful aid to cellular identification, especially in the caudal ganglion, and they provide further evidence of a topographic organization within the mammalian SCG.


The role of the nAChR subunits α5, β2, and β4 on synaptic transmission in the mouse superior cervical ganglion.

  • Xenia Simeone‎ et al.
  • Physiological reports‎
  • 2019‎

Our previous immunoprecipitation analysis of nicotinic acetylcholine receptors (nAChRs) in the mouse superior cervical ganglion (SCG) revealed that approximately 55%, 24%, and 21% of receptors are comprised of α3β4, α3β4α5, and α3β4β2 subunits, respectively. Moreover, mice lacking β4 subunits do not express α5-containing receptors but still express a small number of α3β2 receptors. Here, we investigated how synaptic transmission is affected in the SCG of α5β4-KO and α5β2-KO mice. Using an ex vivo SCG preparation, we stimulated the preganglionic cervical sympathetic trunk and measured compound action potentials (CAPs) in the postganglionic internal carotid nerve. We found that CAP amplitude was unaffected in α5β4-KO and α5β2-KO ganglia, whereas the stimulation threshold for eliciting CAPs was significantly higher in α5β4-KO ganglia. Moreover, intracellular recordings in SCG neurons revealed no difference in EPSP amplitude. We also found that the ganglionic blocking agent hexamethonium was the most potent in α5β4-KO ganglia (IC50 : 22.1 μmol/L), followed by α5β2-KO (IC50 : 126.7 μmol/L) and WT ganglia (IC50 : 389.2 μmol/L). Based on these data, we estimated an IC50 of 568.6 μmol/L for a receptor population consisting solely of α3β4α5 receptors; and we estimated that α3β4α5 receptors comprise 72% of nAChRs expressed in the mouse SCG. Similarly, by measuring the effects of hexamethonium on ACh-induced currents in cultured SCG neurons, we found that α3β4α5 receptors comprise 63% of nAChRs. Thus, in contrast to our results obtained using immunoprecipitation, these data indicate that the majority of receptors at the cell surface of SCG neurons consist of α3β4α5.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: