Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 127 papers

Chemoprevention of Colon Cancer by DFMO, Sulindac, and NO-Sulindac Administered Individually or in Combinations in F344 Rats.

  • Venkateshwar Madka‎ et al.
  • Cancers‎
  • 2023‎

Non-steroidal anti-inflammatory drugs (NSAIDs) are promising colorectal cancer (CRC) chemopreventive drugs; however, to overcome NSAIDs' associated side effects, there is a need to develop safer and efficacious approaches. The present study was designed to evaluate (i) the efficacy of nitric-oxide releasing (NO)-Sulindac as compared to Sulindac; (ii) whether NO-Sulindac is superior to Sulindac in enhancing low-dose difluoromethylornithine (DFMO)-induced chemopreventive efficacy, and (iii) assessing the key biomarkers associated with colon tumor inhibition by these combinations. In F344 rats, colonic tumors were induced by azoxymethane (AOM). At the adenoma stage (13 weeks post AOM), groups of rats were fed the experimental diets containing 0 ppm, 500 ppm DFMO, 150 ppm Sulindac, and 200 ppm NO-Sulindac, individually or in combinations, for 36 weeks. Colon tumors were evaluated histopathologically and assayed for expression levels of proliferative, apoptotic, and inflammatory markers. Results suggest that (except for NO-Sulindac alone), DFMO, Sulindac individually, and DFMO combined with Sulindac or NO-Sulindac significantly suppressed AOM-induced adenocarcinoma incidence and multiplicities. DFMO and Sulindac suppressed adenocarcinoma multiplicity by 63% (p < 0.0001) and 51% (p < 0.0011), respectively, whereas NO-Sulindac had a modest effect (22.8%, p = 0.09). Combinations of DFMO plus Sulindac or NO-Sulindac suppressed adenocarcinoma incidence (60%, p < 0.0001; 50% p < 0.0004), and multiplicity (81%, p < 0.0001; 62%, p < 0.0001). Rats that were fed the combination of DFMO plus Sulindac showed significant inhibition of tumor cell proliferation and induction of apoptosis. In addition, enhancement of p21, Bax, and caspases; downregulation of Ki-67, VEGF, and β-catenin; and modulation of iNOS, COX-2, and ODC activities in colonic tumors were observed. These observations show that a lower-dose of DFMO and Sulindac significantly enhanced CRC chemopreventive efficacy when compared to NO-Sulindac alone, and the combination of DFMO and NO-Sulindac was modestly efficacious as compared to DFMO alone.


Sulindac for stroke treatment: neuroprotective mechanism and therapy.

  • Jigar Pravinchandra Modi‎ et al.
  • Neural regeneration research‎
  • 2014‎

No abstract available


Sulindac plus a phospholipid is effective for polyp reduction and safer than sulindac alone in a mouse model of colorectal cancer development.

  • Jennifer S Davis‎ et al.
  • BMC cancer‎
  • 2020‎

Non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin and sulindac are effective for colorectal cancer prevention in humans and some animal models, but concerns over gastro-intestinal (GI) ulceration and bleeding limit their potential for chemopreventive use in broader populations. Recently, the combination of aspirin with a phospholipid, packaged as PL-ASA, was shown to reduce GI toxicity in a small clinical trial. However, these studies were done for relatively short periods of time. Since prolonged, regular use is needed for chemopreventive benefit, it is important to know whether GI safety is maintained over longer use periods and whether cancer prevention efficacy is preserved when an NSAID is combined with a phospholipid.


Sulindac metabolites inhibit epidermal growth factor receptor activation and expression.

  • Heather A Pangburn‎ et al.
  • Journal of carcinogenesis‎
  • 2005‎

Regular use of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with a decreased mortality from colorectal cancer (CRC). NSAIDs induce apoptotic cell death in colon cancer cells in vitro and inhibit growth of neoplastic colonic mucosa in vivo however, the biochemical mechanisms required for these growth inhibitory effects are not well defined. We previously reported that metabolites of the NSAID sulindac downregulate extracellular-signal regulated kinase 1/2 (ERK1/2) signaling and that this effect is both necessary and sufficient for the apoptotic effects of these drugs. The goal of this project was to specifically test the hypothesis that sulindac metabolites block activation and/or expression of the epidermal growth factor (EGF) receptor (EGFR).


Sulindac activates NF-κB signaling in colon cancer cells.

  • Dessislava Mladenova‎ et al.
  • Cell communication and signaling : CCS‎
  • 2013‎

The non-steroidal anti-inflammatory drug (NSAID) sulindac has shown efficacy in preventing colorectal cancer. This potent anti-tumorigenic effect is mediated through multiple cellular pathways but is also accompanied by gastrointestinal side effects, such as colon inflammation. We have recently shown that sulindac can cause up-regulation of pro-inflammatory factors in the mouse colon mucosa. The aim of this study was to determine the signaling pathways that mediate the transcriptional activation of pro-inflammatory cytokines in colon cancer epithelial cells treated with sulindac sulfide.


Combination of sulindac and dichloroacetate kills cancer cells via oxidative damage.

  • Kasirajan Ayyanathan‎ et al.
  • PloS one‎
  • 2012‎

Sulindac is an FDA-approved non-steroidal anti-inflammatory drug with documented anticancer activities. Our recent studies showed that sulindac selectively enhanced the killing of cancer cells exposed to oxidizing agents via production of reactive oxygen species (ROS) resulting in mitochondrial dysfunction. This effect of sulindac and oxidative stress on cancer cells could be related to the defect in respiration in cancer cells, first described by Warburg 50 years ago, known as the Warburg effect. We postulated that sulindac might enhance the selective killing of cancer cells when combined with any compound that alters mitochondrial respiration. To test this hypothesis we have used dichloroacetate (DCA), which is known to shift pyruvate metabolism away from lactic acid formation to respiration. One might expect that DCA, since it stimulates aerobic metabolism, could stress mitochondrial respiration in cancer cells, which would result in enhanced killing in the presence of sulindac. In this study, we have shown that the combination of sulindac and DCA enhances the selective killing of A549 and SCC25 cancer cells under the conditions used. As predicted, the mechanism of killing involves ROS production, mitochondrial dysfunction, JNK signaling and death by apoptosis. Our results suggest that the sulindac-DCA drug combination may provide an effective cancer therapy.


The influence of sulindac on experimental streptozotocin-induced diabetic neuropathy.

  • D W Zochodne‎ et al.
  • The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques‎
  • 1994‎

We studied the influence of sulindac, a nonsteroidal anti-inflammatory agent on experimental streptozotocin-induced diabetic neuropathy. Untreated diabetic rats were compared with nondiabetic rats, diabetic rats treated with low dose insulin and diabetic rats given sulindac (6.0 mg/kg by gavage 5 of 7 days weekly). Neuropathy was assessed by following serial in vivo motor and sensory caudal conduction, resistance to ischemic conduction failure, and in vitro conduction in sural myelinated and unmyelinated sensory fibers. The impact of low dose insulin and sulindac treatment on the microenvironment of the L4 dorsal root ganglion and sciatic endoneurium was assessed by measuring local perfusion and oxygen tension after 16 weeks of diabetes. Sulindac normalized conduction velocity in caudal sensory fibers, sural myelinated fibers and sural unmyelinated fibers, and reduced the number of diabetic cataracts. Sulindac also normalized a deficit in dorsal root ganglion blood flow and a reduction in sciatic endoneurial oxygen tension in diabetic rats. Low dose insulin improved neuropathy as well but the pattern of benefits was less robust than that of sulindac. Sulindac may be a candidate for a clinical trial in human diabetic polyneuropathy.


Sulindac prevents esophageal adenocarcinomas induced by gastroduodenal reflux in rats.

  • Sung Wook Kim‎ et al.
  • Yonsei medical journal‎
  • 2007‎

It is known that cyclooxygenase (COX)-2 expression is increased in Barrett's esophagus and esophageal adenocarcinomas. We studied COX-2 expression and the effect sulindac has on the genesis of Barrett's esophagus and adenocarcinoma in rats undergoing esophagogastroduodenal anastomosis (EGDA).


Phospho-sulindac inhibits pancreatic cancer growth: NFATc1 as a drug resistance candidate.

  • Onika T Murray‎ et al.
  • International journal of oncology‎
  • 2014‎

Phospho-sulindac (P-S), a promising anticancer agent, is efficacious in pre-clinical models of human cancer and is apparently safe. Here, we studied the effect of P-S on pancreatic cancer growth. We found that P-S strongly inhibits the growth of human pancreatic cancer cells in vitro, is efficacious in inhibiting the growth of pancreatic xenografts in nude mice, and has an excellent safety profile. Microarray analysis revealed that P-S induced the expression of nuclear factor of activated T-cells, isoform c1 (NFATc1) gene. NFATc1, a calcineurin-responsive transcription factor associated with aggressive pancreatic cancer. The role of increased NFATc1 expression on the growth inhibitory effect of P-S on cancer growth was evaluated by silencing or by overexpressing it both in vitro and in vivo. We found that when the expression of NFATc1 was abrogated by RNAi, pancreatic cancer cells were more responsive to treatment with P-S. Conversely, overexpressing the NFATc1 gene made the pancreatic cancer cells less responsive to treatment with P-S. NFATc1 likely mediates drug resistance to P-S and is an unfavorable prognostic factor that predicts poor tumor response. We also demonstrated that NFATc1-mediated resistance can be overcome by cyclosporin A (CsA), an NFAT inhibitor, and that the combination of P-S and CsA synergistically inhibited pancreatic cancer cell growth. In conclusion, our preclinical data establish P-S as an efficacious drug for pancreatic cancer in preclinical models, which merits further evaluation.


Sulindac has strong antifibrotic effects by suppressing STAT3-related miR-21.

  • Xue Zhou‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2015‎

Pulmonary fibrosis (PF) is a disease with an unknown cause and a poor prognosis. In this study, we aimed to explore the pathogenesis of PF and the mechanism of sulindac in attenuating bleomycin (BLM)-induced PF. The rat PF model was induced by BLM and verified through histological studies and hydroxyproline assay. The severity of BLM-induced PF in rats and other effects, such as the extent of the wet lung to bw ratios, thickening of alveolar interval or collagen deposition, was obviously ameliorated in sulindac-treated rat lungs compared with BLM-induced lungs. Sulindac also reversed the epithelial mesenchymal transition (EMT) and inhibited the PF process by restoring the levels of E-cadherin and α-smooth muscle actin (SMA) in A549 cells. Our results further demonstrated that the above effects of sulindac might be related to regulating of interferon gamma (IFN-γ) expression, which further affects signal transducers and activators of transcription 3 (STAT3) and phosphorylated STAT3 (p-STAT3) levels. Moreover, higher miR-21 levels with the decreased E-cadherin and increased α-SMA expressions were found in transforming growth factor-β1-treated A549 cells, which can be reversed by sulindac. Collectively, our results demonstrate that by decreasing IFN-γ-induced STAT3/p-STAT3 expression to down-regulate miR-21, sulindac could significantly reverse EMT in A549 cells and prevent BLM-induced PF.


Sulindac enhances the killing of cancer cells exposed to oxidative stress.

  • Maria Marchetti‎ et al.
  • PloS one‎
  • 2009‎

Sulindac is an FDA-approved non-steroidal anti-inflammatory drug (NSAID) that affects prostaglandin production by inhibiting cyclooxygenases (COX) 1 and 2. Sulindac has also been of interest for more than decade as a chemopreventive for adenomatous colorectal polyps and colon cancer.


Synergistic cytotoxic effect of sulindac and pyrrolidine dithiocarbamate against ovarian cancer cells.

  • Anna Jakubowska-Mućka‎ et al.
  • Oncology reports‎
  • 2012‎

Sulindac, a non-steroidal anti-inflammatory drug, suppresses carcinogenesis and inhibits growth of tumor cells. Pyrrolidine dithiocarbamate (PDTC), a potent NF-κB inhibitor, has been also identified as a potential anti-neoplastic agent. We hypothesized that combination of sulindac and PDTC could result in augmentation of cytotoxicity against ovarian cancer cells. The effect of sulindac and PDTC was examined on several ovarian cancer lines. Tumor cell viability was assessed using the MTT assay. Annexin-V/PI staining was used to detect apoptosis, cell cycle distribution was analyzed in FACS, and expression of cellular proteins was detected by western blotting. Incubation of OVA-14, OVP-10 and CAOV-1 ovarian cancer cells with sulindac and PDTC resulted in significantly greater inhibition of cell viability compared to either compound alone. In a model of OVA-14 cells it was evident that this effect was not related to the expression of COX enzymes since both active (sulindac sulfide) and inactive (sulindac) in vitro compounds affected the growth of tumor cells to a similar extent and synergized in cytotoxicity with PDTC. Combination of sulindac and PDTC lead to G0 arrest and massive apoptosis in co-treated cultures. Western blotting analysis argued for induction of the mitochondrial apoptotic pathway. These data demonstrate the synergistic cytotoxic effect of sulindac and PDTC on ovarian cancer cells through apoptosis and cell cycle arrest and prompt to test the efficacy of this combination in animal models.


Effect of sulindac sulfide on metallohydrolases in the human colon cancer cell line HT-29.

  • Hector Guillen-Ahlers‎ et al.
  • PloS one‎
  • 2011‎

Matrix metalloproteinase 7 (MMP7), a metallohydrolase involved in the development of several cancers, is downregulated in the Apc(Min/+) colon cancer mouse model following sulindac treatment. To determine whether this effect is relevant to the human condition, HT-29 human colon cancer cells were treated with sulindac and its metabolites, and compared to results obtained from in vivo mouse studies. The expression of MMP7 was monitored. The results demonstrated that sulindac sulfide effectively downregulated both MMP7 expression and activity. Furthermore, activity-based proteomics demonstrated that sulindac sulfide dramatically decreased the activity of leukotriene A4 hydrolase in HT-29 cells as reflected by a decrease in the level of its product, leukotriene B4. This study demonstrates that the effect of sulindac treatment in a mouse model of colon cancer may be relevant to the human counterpart and highlights the effect of sulindac treatment on metallohydrolases.


Longitudinal analysis of colon crypt stem cell dynamics in sulindac treated Familial Adenomatous Polyposis patients.

  • Huiying Ma‎ et al.
  • Scientific reports‎
  • 2017‎

The non-steroidal anti-inflammatory drug sulindac decreases size and number of adenomas after 4-6 months of treatment for familial adenomatous polyposis (FAP) patients. However, the underlying mechanism remains unknown. As stem cells are thought to be the tumor precursor cells, visualizing their behavior is crucial for monitoring tumor progression. Increased tag diversity in inactive genes is indicative of a protracted clonal evolution and consequently, increased risk for tumor formation. Therefore, the effect of sulindac on stem cell dynamics was studied. Normal appearing single crypts were laser microdissected in placebo- and sulindac- treated FAP patient tissue after which the methylation patterns were visualized by Next Generation Sequencing. A significant difference in tag diversity over time was found in the sulindac group compared to the placebo group (*p = 0.018), indicative of a shortened clonal evolution treated sulindac. The rate of change in tag diversity over time was correlated with polyp number change over time. No significant difference over time was observed in the percent methylation when comparing placebo vs sulindac. In conclusion, daily sulindac administration in FAP patients significantly altered colorectal stem cell dynamics, which might explain the chemopreventive action of this drug indicating that tag diversity may be used as a predictive biomarker.


Sulindac, a non-steroidal anti-inflammatory drug, mediates breast cancer inhibition as an immune modulator.

  • Tao Yin‎ et al.
  • Scientific reports‎
  • 2016‎

The cooperation of adaptive immunity with pharmacologic therapy influences cancer progression. Though non-steroidal anti-inflammatory drugs (NSAIDs) have a long history of cancer prevention, it is unclear whether adaptive immune system affects the action of those drugs. In present study, we revealed a novel immunological mechanism of sulindac. Our data showed that sulindac had substantial efficacy as a single agent against 4T1 murine breast cancer and prolonged the survival of tumor-bearing mice. However, in the athymic nude mice, sulindac treatment was ineffective. Further in vivo T cell subsets depletion experiments showed that CD8+ T lymphocytes deficiency reversed the anti-tumor effect of sulindac. In addition, sulindac significantly reduced M2 macrophages recruitment, cancer-related inflammation and tumor angiogenesis. Our results advance our understanding of the mechanisms of NSAIDs, and more importantly, this will provide insight into rational drug design or antitumor immunotherapy.


Sulindac selectively induces autophagic apoptosis of GABAergic neurons and alters motor behaviour in zebrafish.

  • Wenwei Sun‎ et al.
  • Nature communications‎
  • 2023‎

Nonsteroidal anti-inflammatory drugs compose one of the most widely used classes of medications, but the risks for early development remain controversial, especially in the nervous system. Here, we utilized zebrafish larvae to assess the potentially toxic effects of nonsteroidal anti-inflammatory drugs and found that sulindac can selectively induce apoptosis of GABAergic neurons in the brains of zebrafish larvae brains. Zebrafish larvae exhibit hyperactive behaviour after sulindac exposure. We also found that akt1 is selectively expressed in GABAergic neurons and that SC97 (an Akt1 activator) and exogenous akt1 mRNA can reverse the apoptosis caused by sulindac. Further studies showed that sulindac binds to retinoid X receptor alpha (RXRα) and induces autophagy in GABAergic neurons, leading to activation of the mitochondrial apoptotic pathway. Finally, we verified that sulindac can lead to hyperactivity and selectively induce GABAergic neuron apoptosis in mice. These findings suggest that excessive use of sulindac may lead to early neurodevelopmental toxicity and increase the risk of hyperactivity, which could be associated with damage to GABAergic neurons.


Sulindac inhibits tumor cell invasion by suppressing NF-κB-mediated transcription of microRNAs.

  • X Li‎ et al.
  • Oncogene‎
  • 2012‎

Non-steroidal anti-inflammatory drugs (NSAIDs) have been widely reported to display strong efficacy for cancer chemoprevention, although their mechanism of action is poorly understood. The most well-documented effects of NSAIDs include inhibition of tumor cell proliferation and induction of apoptosis, but their effect on tumor cell invasion has not been well studied. Here, we show that the NSAID, sulindac sulfide (SS) can potently inhibit the invasion of human MDA-MB-231 breast and HCT116 colon tumor cells in vitro at concentrations less than those required to inhibit tumor cell growth. To study the molecular basis for this activity, we investigated the involvement of microRNA (miRNA). A total of 132 miRNAs were found to be altered in response to SS treatment, including miR-10b, miR-17, miR-21 and miR-9, which have been previously implicated in tumor invasion and metastasis. We confirmed that these miRNA can stimulate tumor cell invasion and show that SS can attenuate their invasive effects by downregulating their expression. Employing luciferase and chromatin immunoprecipitation assays, NF-κB was found to bind the promoters of all four miRNAs to suppress their expression at the transcriptional level. We show that SS can inhibit the translocation of NF-κB to the nucleus by decreasing the phosphorylation of IKKβ and IκB. Analysis of the promoter sequences of the miRNAs suppressed by SS revealed that 81 of 115 sequences contained NF-κB-binding sites. These results show that SS can inhibit tumor cell invasion by suppressing NF-κB-mediated transcription of miRNAs.


Neutrophil-cytokine interactions in a rat model of sulindac-induced idiosyncratic liver injury.

  • Wei Zou‎ et al.
  • Toxicology‎
  • 2011‎

Previous studies indicated that lipopolysaccharide (LPS) interacts with the nonsteroidal anti-inflammatory drug sulindac (SLD) to produce liver injury in rats. In the present study, the mechanism of SLD/LPS-induced liver injury was further investigated. Accumulation of polymorphonuclear neutrophils (PMNs) in the liver was greater in SLD/LPS-cotreated rats compared to those treated with SLD or LPS alone. In addition, PMN activation occurred specifically in livers of rats cotreated with SLD/LPS. The hypothesis that PMNs and proteases released from them play critical roles in the hepatotoxicity was tested. SLD/LPS-induced liver injury was attenuated by prior depletion of PMNs or by treatment with the PMN protease inhibitor, eglin C. Previous studies suggested that tumor necrosis factor-α (TNF) and the hemostatic system play critical roles in the pathogenesis of liver injury induced by SLD/LPS. TNF and plasminogen activator inhibitor-1 (PAI-1) can contribute to hepatotoxicity by affecting PMN activation and fibrin deposition. Therefore, the role of TNF and PAI-1 in PMN activation and fibrin deposition in the SLD/LPS-induced liver injury model was tested. Neutralization of TNF or inhibition of PAI-1 attenuated PMN activation. TNF had no effect on PAI-1 production or fibrin deposition. In contrast, PAI-1 contributed to fibrin deposition in livers of rats treated with SLD/LPS. In summary, PMNs, TNF and PAI-1 contribute to the liver injury induced by SLD/LPS cotreatment. TNF and PAI-1 independently contributed to PMN activation, which is critical to the pathogenesis of liver injury. Moreover, PAI-1 contributed to liver injury by promoting fibrin deposition.


Sulindac-derived retinoid X receptor-α modulator attenuates atherosclerotic plaque progression and destabilization in ApoE-/- mice.

  • Linghong Shen‎ et al.
  • British journal of pharmacology‎
  • 2019‎

Atherosclerosis is a chronic inflammatory disease, and retinoid X receptor-α (RXRα) is an intriguing anti-atherosclerosis target. This study investigated whether and how an RXRα modulator, K-80003, derived from a non-steroidal anti-inflammatory drug attenuates atherosclerotic plaque progression and destabilization.


Curcumin enhances the lung cancer chemopreventive efficacy of phospho-sulindac by improving its pharmacokinetics.

  • Ka-Wing Cheng‎ et al.
  • International journal of oncology‎
  • 2013‎

Phospho-sulindac (PS) is a safe sulindac derivative with promising anticancer efficacy in colon cancer. We evaluated whether its combination with curcumin could enhance the efficacy in the treatment of lung cancer. Curcumin, the principal bioactive component in turmeric, has demonstrated versatile capabilities to modify the therapeutic efficacy of a wide range of anticancer agents. Here, we evaluated the effect of co-administration of curcumin on the anticancer activity of PS in a mouse xenograft model of human lung cancer. Curcumin enhanced the cellular uptake of PS in human lung and colon cancer cell lines. To assess the potential synergism between curcumin and PS in vivo, curcumin was suspended in 10% Tween-80 or formulated in micellar nanoparticles and given to mice by oral gavage prior to the administration of PS. Both formulations of curcumin significantly improved the pharmacokinetic profiles of PS, with the 10% Tween-80 suspension being much more effective than the nanoparticle formation. However, curcumin did not exhibit any significant modification of the metabolite profile of PS. Furthermore, in a mouse subcutaneous xenograft model of human lung cancer, PS (200 mg/kg) in combination with curcumin (500 mg/kg) suspended in 10% Tween-80 (51% inhibition, p<0.05) was significantly more efficacious than PS plus micelle curcumin (30%) or PS (25%) or curcumin alone (no effect). Consistent with the improved pharmacokinetics, the combination treatment group had higher levels of PS and its metabolites in the xenografts compared to PS alone. Our results show that curcumin substantially improves the pharmacokinetics of PS leading to synergistic inhibition of the growth of human lung cancer xenografts, representing a promising drug combination.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: