Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Surface chemical compositions and dispersity of starch nanocrystals formed by sulfuric and hydrochloric acid hydrolysis.

  • Benxi Wei‎ et al.
  • PloS one‎
  • 2014‎

Surface chemical compositions of starch nanocrystals (SNC) prepared using sulfuric acid (H2SO4) and hydrochloric acid (HCl) hydrolysis were analyzed by X-ray photoelectron spectroscopy (XPS) and FT-IR. The results showed that carboxyl groups and sulfate esters were presented in SNC after hydrolysis with H2SO4, while no sulfate esters were detected in SNC during HCl-hydrolysis. TEM results showed that, compared to H2SO4-hydrolyzed sample, a wider size distribution of SNC prepared by HCl-hydrolysis were observed. Zeta-potentials were -23.1 and -5.02 mV for H2SO4- and HCl-hydrolyzed SNC suspensions at pH 6.5, respectively. Nevertheless, the zeta-potential values decreased to -32.3 and -10.2 mV as the dispersion pH was adjusted to 10.6. After placed 48 h at pH 10.6, zeta-potential increased to -24.1 mV for H2SO4-hydrolyzed SNC, while no change was detected for HCl-hydrolyzed one. The higher zeta-potential and relative small particle distribution of SNC caused more stable suspensions compared to HCl-hydrolyzed sample.


Epoxidation of Fatty Acid Methyl Esters Derived from Algae Biomass to Develop Sustainable Bio-Based Epoxy Resins.

  • Pamela Hidalgo‎ et al.
  • Polymers‎
  • 2020‎

The objective of this research was to investigate the development of epoxides from Chlorella vulgaris lipids to obtain a novel bio-based resin. The process involved the production of fatty acid methyl esters (FAMEs) by in situ transesterification of microalgal biomass, followed by epoxidation of the FAMEs to obtain bioresin. During the FAME production process, an assessment was made of the main factors affecting the production of unsaturated fatty acid methyl esters (UFAMEs), such as catalyst dosage and methanol:hexane volume ratio. For step epoxidation, an evaluation of the catalyst concentration, temperature and formic acid:hydrogen peroxide ratio was made. From the results obtained, UFAME production was maximized using 20 wt% of catalyst dosage and a volume ratio of 1:2 (v/v, methanol:hexane). Then, in the epoxidation stage, a higher yield was obtained using 1 wt% of catalyst with a volume ratio of 1:1 and maintaining a temperature of 70 °C. The bioresin was blended with neat epoxy resin (DGEBA) and cured with tetraethylenepentamine (TEPA). Bio-based resin was characterized via Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA) to evaluate this material as an alternative source for oleochemistry.


Furan-2,5- and Furan-2,3-dicarboxylate Esters Derived from Marine Biomass as Plasticizers for Poly(vinyl chloride).

  • TanPhat Nguyen‎ et al.
  • ACS omega‎
  • 2020‎

Esters of furan dicarboxylic acids (DAFs) were synthesized by a one-pot reaction between marine biomass-derived galactaric acid and bioalcohol under solvent-free conditions and were fully characterized. The catalyst amount could be reduced without loss of reaction yields using p-xylene as the material separation agent. Also, a possible mechanism was proposed for the first time. Then the properties of four DAFs as plasticizers on the poly(vinyl chloride) (PVC) matrix were investigated. The experimental results showed that DAFs exhibit competitive efficiencies of plasticization when compared to the most commercialized plasticizer, DOP. It was found that the combination of DAFs and PVC produced homogeneous smooth-surface films, indicating miscibility between them. ATR-FTIR depicted the upshift of carbonyl absorption bands after mixing with the PVC matrix, with a magnitude of at most 18-21 cm-1. TGA, DSC, and UTM data illustrated equivalent plasticization efficiencies. Due to their small molecular weights, the investigated DAFs are more volatile. However, due to bearing an oxygen atom in the aromatic furan ring, the degree of polarization of DAFs was boosted and helped inhibit leaching into the surrounding media. In brief, these synthetic compounds have promising feasibility as biobased plasticizers. Moreover, another interesting point is that the properties of furan-2,3-dicarboxylic acid derivatives were studied for the first time and herein reported.


Biodiesel Production by Acid Methanolysis of Slaughterhouse Sludge Cake.

  • Jung-Jeng Su‎ et al.
  • Animals : an open access journal from MDPI‎
  • 2019‎

Biosludge is a normal form of accumulating microbial populations inside the sewage or wastewater treatment facilities. Excessive sludge in the wastewater treatment basins has to be removed periodically to ensure good water quality of the effluent. This study aims to evaluate the feasibility of biodiesel production by transesterification of slaughterhouse sludge cake. The sludge cake was collected from a selected commercial slaughterhouse and transesterified with methanol, n-hexane, and acids (e.g., sulfuric acid or hydrochloric acid) at 55 °C. Three acid concentrations (2%, 4%, and 8%, v/v) in methanol under four reaction time periods (4, 8, 16, and 24 h) were applied. Results showed that the highest accumulated fatty acid methyl ester (FAME) yields of 2.51 ± 0.08% and 2.27 ± 0.09% were achieved when 8% (v/v) of H2SO4 or HCl were added in a 4 h reaction time, respectively. Methyl esters of palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), and oleic acid (C18:1n9c) were the major components of biodiesel from acid methanolysis of slaughterhouse sludge cake. Experimental and analytical results of acid methanolysis of slaughterhouse sludge cake showed that acid methanolysis of sludge cake was one of the feasible and practical options to recycle sludge waste and produce renewable energy.


Biocompatible sulfated valproic acid-coupled polysaccharide-based nanocarriers with HDAC inhibitory activity.

  • Marie Kühne‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2021‎

The development of bio-based nanoparticles (NPs) as drug containers is of increasing interest to circumvent several obstacles in drug therapy such as rapid drug metabolization, short serum half-life, and unspecific side effects. The histone deacetylase inhibitor valproic acid (VPA) is known for its anti-inflammatory as well as for its anti-cancer activity. Here, recently developed VPA-loaded NPs based on cellulose- and dextran VPA esters were modified with sulfuric acid half ester moieties to improve intracellular drug release. The NPs show rapid cellular uptake, are non-toxic in vitro and in vivo, and able to induce histone H3 hyperacetylation. Thus, they represent a potent drug delivery system for the application in a variety of treatment settings, such as inflammation, sepsis and defined cancer types. In addition, the flexible NP-system offers a broad range of further options for modification, e.g. for targeting strategies and multi-drug approaches.


Application of Chemometrics Tools to the Study of the Fe(III)-Tannic Acid Interaction.

  • Silvia Berto‎ et al.
  • Frontiers in chemistry‎
  • 2020‎

Chemometric techniques were applied to the study of the interaction of iron(III) and tannic acid (TA). Modeling the interaction of Fe(III)-TA is a challenge, as can be the modeling of the metal complexation upon natural macromolecules without a well-defined molecular structure. The chemical formula for commercial TA is often given as C76H52O46, but in fact, it is a mixture of polygalloyl glucoses or polygalloyl quinic acid esters with the number of galloyl moieties per molecule ranging from 2 up to 12. Therefore, the data treatment cannot be based on just the stoichiometric approach. In this work, the redox behavior and the coordination capability of the TA toward Fe(III) were studied by UV-vis spectrophotometry and fluorescence spectroscopy. Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and Parallel Factor Analysis (PARAFAC) were used for the data treatment, respectively. The pH range in which there is the redox stability of the system Fe(III)-TA was evaluated. The binding capability of TA toward Fe(III), the spectral features of coordination compounds, and the concentration profiles of the species in solution as a function of pH were defined. Moreover, the stability of the interaction between TA and Fe(III) was interpreted through the chemical models usually employed to depict the interaction of metal cations with humic substances and quantified using the concentration profiles estimated by MCR-ALS.


Increased accumulation of isoflavonoids in common bean (Phaseolus vulgaris L.) tissues treated with 1-oxo-indane-4-carboxylic acid derivatives.

  • Leidy Botero‎ et al.
  • Biotechnology reports (Amsterdam, Netherlands)‎
  • 2021‎

Isoflavonoid phytoalexins (isoflavones: genistein, 2'-hydroxygenistein, and daidzein; isoflavanones: dalbergioidin and kievitone; coumestrol; pterocarpans: phaseollidin and phaseollin; and the isoflavan: phaseollinisoflavan) production in response to the application of eleven 1-oxo-indane-4-carboxylic acid derivatives (indanoyl esters and indanoyl amino acids conjugates), in cotyledons and hypocotyl/root of two common bean (Phaseolus vulgaris L.) cultivars was evaluated. The content of isoflavonoids depended on the cultivar, the treated tissue, the time after induction, the structure and concentration of the elicitor. The highest isoflavonoid contents were found when 1-oxo-indanoyl-amino acids conjugates were used as elicitors. Cotyledons and hypocotyl/root of the anthracnose-resistant cultivar produced significantly higher isoflavonoid contents as compared to the susceptible one. Maximum levels of phaseollin were obtained using 0.66 mM 1-oxo-indanoyl-l-isoleucyl methyl ester and between 72 and 96 h post-induction. So, 1-oxo-indane-4-carboxylic acid derivatives, may be used to enhance the amount of isoflavonoid phytoalexins in common bean and protect crops from phytopathogenic microorganisms.


Heating effect on quality characteristics of mixed canola cooking oils.

  • Ayesha Baig‎ et al.
  • BMC chemistry‎
  • 2022‎

The subcontinent is famous for its variety of seasonal foods cooked in vegetable seed cooking oils at elevated heating. Oils are often of poor quality that effect to consumer health. The work, therefore, planned to examine the effects of heat on the quality of mixed canola cooking oils (MCCOs). MCCOs were analyzed by preparing volatile fatty acid methyl esters (FAMEs) and for physiochemical properties.


Preparation of sulfonated carbon-based catalysts from murumuru kernel shell and their performance in the esterification reaction.

  • Ana Paula da Luz Corrêa‎ et al.
  • RSC advances‎
  • 2020‎

In the present study, heterogeneous acid catalysts for fatty acid esterification reactions were synthesized using agro-industrial waste from murumuru kernel shells. The waste was carbonized and functionalized with concentrated sulfuric acid under different sulfonation conditions, obtaining the sulfonated biochar. The results indicate that the best sulfonation conditions were obtained with a contact time of 4 h, the temperature of 200 °C, and a solid-acid ratio of 1 : 10 (w/v). The best catalyst was characterized by acid-base titration for the determination of total acid density, X-ray diffraction, scanning electron microscopy, X-ray energy dispersion spectroscopy, Fourier transform infrared spectroscopy and thermal analysis. Reaction conditions of oleic acid with methanol and the viability of catalyst reuse were also investigated. A conversion of 97.2% was achieved under optimum esterification reaction conditions, employing 5% catalyst, 10 : 1 molar ratio of methanol to oleic acid, during 1.5 h at a temperature of 90 °C. After 4 reaction cycles, the catalyst preserved its efficiency at 66.3% conversion. The catalyst activity was evaluated in reactions using palmitic acid, soybean fatty acid distillate, palm fatty acid distillate, and coconut fatty acid distillate. The results demonstrate that the catalyst is applicable and efficient in esterification reactions of raw materials, containing different fatty acid compositions since different carbonized materials have varying abilities to combine acid groups. This work reveals the promising feasibility of using biomass generated in large quantities by the agroindustry for the development of a new heterogeneous acid catalyst for biodiesel production.


Dialkyl Succinates and Adipates as Alternative Plasticizers-Even More Efficient Synthesis.

  • Natalia Barteczko‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2021‎

As a result of strict regulations of phthalate plasticizers, alternative non-phthalate forms are desired and increasingly used. This work presents a synthetic method for alternative plasticizers (dialkyl succinates and adipates) via esterification of succinic and adipic acid with alcohols: butan-1-ol and 2-ethylhexan-1-ol. Ionic liquids were synthesized by the reaction of triethylamine with over-equimolar (1:2.7) amounts of sulfuric(VI) acid, which were used as an acidic catalyst and solvent. The two-phase liquid-liquid system was formed during the reaction due to immiscibility of the esters with the ionic liquid. This phenomenon is a driving force of this process, shifting the equilibrium toward the product formation. As a result, dialkyl succinates and adipates were obtained in high yields (99%) and selectivities (>99%), under mild reaction conditions at 70-80 °C and using a 4:1 molar ratio of alcohol to acid and 15 mol% of catalyst. The catalyst was recycled 10 times without any loss of activity. This alternative method is highly competitive: it involves a simple procedure for product isolation as well as a high yield and purity of the resulting esters. These advantages make this method sustainable and promising for industrial applications.


Lipase immobilized on functionalized superparamagnetic few-layer graphene oxide as an efficient nanobiocatalyst for biodiesel production from Chlorella vulgaris bio-oil.

  • Tahereh Nematian‎ et al.
  • Biotechnology for biofuels‎
  • 2020‎

Microalgae, due to its well-recognized advantages have gained renewed interest as potentially good feedstock for biodiesel. Production of fatty acid methyl esters (FAMEs) as a type of biodiesel was carried out from Chlorella vulgaris bio-oil. Biodiesel was produced in the presence of nano-biocatalysts composed of immobilized lipase on functionalized superparamagnetic few-layer graphene oxide via a transesterification reaction. A hybrid of few-layer graphene oxide and Fe3O4 (MGO) was prepared and characterized. The MGO was functionalized with 3-aminopropyl triethoxysilane (MGO-AP) as well as with a couple of AP and glutaraldehyde (MGO-AP-GA). The Rhizopus oryzae lipase (ROL) was immobilized on MGO and MGO-AP using electrostatic interactions as well as on MGO-AP-GA using covalent bonding. The supports, MGO, MGO-AP, and MGO-AP-GA, as well as nano-biocatalyst, ROL/MGO, ROL/MGO-AP, and ROL/MGO-AP-GA, were characterized using FESEM, VSM, FTIR, and XRD. The few-layer graphene oxide was characterized using AFM and the surface charge of supports was evaluated with the zeta potential technique. The nano-biocatalysts assay was performed with an evaluation of kinetic parameters, loading capacity, relative activity, time-course thermal stability, and storage stability. Biodiesel production was carried out in the presence of nano-biocatalysts and their reusability was evaluated in 5 cycles of transesterification reaction.


In Vivo Performances, Carcass Traits, and Meat Quality of Pigs Fed Olive Cake Processing Waste.

  • Luigi Liotta‎ et al.
  • Animals : an open access journal from MDPI‎
  • 2019‎

The aim of the study was to assess the inclusion of different levels of olive cake in pigs' diet as a strategy to replace conventional ingredients and to improve meat quality traits. Seventy-two Pietrain pigs, during the growing-finishing period (50-120 kg BW), were fed with three dietary treatments that contained or did not contain olive cake: 0% (Ctrl), 5% (Low), and 10% (High). The trial lasted 90 days. Weekly, individual body weight (BW) and feed intake (FI) were recorded to calculate average daily gain (ADG) and feed conversion ratio (FCR). At slaughter, the dressing percentage was calculated and carcass weight and backfat thickness were measured. On a section of Longissimus thoracis muscle (LT), pH, color, chemical, and fatty acid composition were determined. Fatty acid profile was also determined in backfat. The statistical model included the effects of diet (Ctrl, Low, and High). The inclusion of 5% of olive cake in the diet improved significantly (p < 0.05) BW and FCR. Both levels of inclusion (5% and 10%) significantly reduced (p < 0.05) backfat thickness and intramuscular fat and modified their fatty acid composition, increasing (p < 0.05) the concentration of MUFA and PUFA and improving (p < 0.05) quality indices. Results suggest that olive cake did not negatively affect the productive performances.


Removal of biogenic amines from wines by chemisorption on functionalized silica and effects on other wine components.

  • Juan José Rodríguez-Bencomo‎ et al.
  • Scientific reports‎
  • 2020‎

The effectiveness of several functionalized silica materials (cation-exchange materials) for the removal of biogenic amines from wines, and the effects on other wine components and organoleptic characteristics were evaluated. Results have shown that mesoporous silica material bi-functionalized with phosphonic and sulfonic acids allowed the removal of histamine, putrescine, cadaverine, spermine and spermidine from wines, although the dose must be adapted for each wine according to the removal requirements and wine characteristics. A plus of the adsorbent developed is that it can be recovered and re-used for at least 3 treatments. Immediately following the treatments, a decrease in the levels of linear ethyl esters (ethyl hexanoate, ethyl octanoate and ethyl decanoate) was observed, although these levels were re-equilibrated after several days reducing this undesired side effect. A slight, but perceptible, effect on wine color was observed, probably due to the slight decrease in the pH of the wine produced by the treatments. On the basis of the sensory analysis that focused only on the aroma of the wines, the proposed technique would be more adequate for wines aged in barrels than for young wines.


Use of Torulaspora delbrueckii Co-fermentation With Two Saccharomyces cerevisiae Strains With Different Aromatic Characteristic to Improve the Diversity of Red Wine Aroma Profile.

  • Bo-Qin Zhang‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

The use of selected Saccharomyces and non-Saccharomyces strains as mixed starters has advantages over pure fermentation due to achieving wine products with distinctive and diversified aroma expected by consumers. To obtain a way to improve the aroma diversity and increase the differentiation of wine product, in this study, the aromatic effect of multi-culture of indigenous Torulaspora delbrueckii (TD12), simultaneous and sequential inoculation with two Saccharomyces strains (indigenous icewine yeast SC45 and commercial yeast BDX) with different enological characteristics were investigated in laboratory-scale 20 L fermenter, respectively. The results showed that T. delbrueckii co-fermented with different S. cerevisiae strain could generate diversified physicochemical and aromatic quality of wine as evidenced by PCA. Mixed fermentation of SC45/TD12 produced higher contents of higher alcohol (3-methyl-1-pentanol and phenylethyl alcohol), ethyl esters (ethyl decanoate and ethyl butanoate), terpenes and phenylacetaldehyde with less fatty acids (hexanoic acid, octanoic acid) and acetic acid, while BDX/TD12 generated more C6 alcohol (1-hexanol) and acetate esters (ethyl acetate and isoamyl acetate). Compared to simultaneous inoculation, sequential inoculation could achieve higher aroma diversity, and generate higher intensity of fruity, flowery and sweet attributes of wine as assessed by calculating the odor activity values. The different S. cerevisiae strain and inoculation method in alcoholic fermentation could further influence the formations of aromatic compounds in malolactic fermentation. Our results highlighted the importance of S. cerevisiae strain in shaping the aromatic quality of wine in mixed fermentation, and also suggested that using different S. cerevisiae strains with distinct aromatic characteristics co-fermentation with specific non-Saccharomyces strain is a potential way to increase the aromatic diversity and quality of wine product, which could provide an alternative way to meet the requirement of wine consumers for diversified aromatic quality.


Current lipid extraction methods are significantly enhanced adding a water treatment step in Chlorella protothecoides.

  • Xiaojie Ren‎ et al.
  • Microbial cell factories‎
  • 2017‎

Microalgae have the potential to rapidly accumulate lipids of high interest for the food, cosmetics, pharmaceutical and energy (e.g. biodiesel) industries. However, current lipid extraction methods show efficiency limitation and until now, extraction protocols have not been fully optimized for specific lipid compounds. The present study thus presents a novel lipid extraction method, consisting in the addition of a water treatment of biomass between the two-stage solvent extraction steps of current extraction methods. The resulting modified method not only enhances lipid extraction efficiency, but also yields a higher triacylglycerols (TAG) ratio, which is highly desirable for biodiesel production.


Composition characterization of oyster polysaccharides from Crassostrea hongkongensis and their protective effect against H2O2-induced oxidative damage in IEC-6 cells.

  • Bingna Cai‎ et al.
  • International journal of biological macromolecules‎
  • 2019‎

The proliferative activity of oyster polysaccharides in intestine epithelial cells (IEC-6) alleviated 5-fluorouracil-induced intestinal inflammation. In this study, we aimed to measure the ability of oyster polysaccharides to promote IEC-6 cell migration and antioxidant activity and further describe their cytoprotective effect on H2O2-challenged IEC-6 cells. The C30-60% fraction of polysaccharides (CHP2) showed rapid stimulation of IEC-6 cell migration after wounding. Then, CHP2 was fractionated into four fractions, namely, CHP2-1, CHP2-2, CHP2-3 and CHP2-4. The CHP2-3 fraction possessed high scavenging activities against 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and oxygen radical absorbance capacity (ORAC), in comparison with other fractions. And CHP2-3 was heteropolysaccharide with sulfuric esters, and it was mainly composed of glucose, galactose and arabinose and had an average molecular weight of 41.81 kDa. Pretreatment with CHP2 and CHP2-3 significantly improved the survival rate of H2O2-treated IEC-6 cells, and reduced intracellular reactive oxygen species (ROS) levels. Moreover, CHP2-3 also significantly decreased H2O2-mediated increases in the secretion of interleukin-1β (IL-1β) and interleukin-6 (IL-6), and attenuated nuclear factor-κB (NF-κB) p65 activation. These results indicate that CHP2-3 may play a vital role in reducing oxidative damage in IEC-6 cells via radical scavenging, decreasing proinflammatory factors secretion, inhibiting the NF-κB pathway, and thus, reducing cell apoptosis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: