Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Synthesis of Canthardin Sulfanilamides and Their Acid Anhydride Analogues via a Ring-Opening Reaction of Activated Aziridines and Their Associated Pharmacological Effects.

  • Ling-Ling Chiang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2016‎

The cantharidinimide derivatives, 5a-h, including sulfanilamides containing pyrimidyl, pyrazinyl, hydrogen, thiazolyl, and oxazolyl groups were synthesized. Modification of cantharidinimide by means of the reaction of activated aziridine ring opening led to the discovery of a novel class of antitumor compounds. The analogues 10i-k, 11l-n, 12o-p, and 16q-s were obtained from treating cantharidinimide 6 and analogues (7, 8, and 13) with activated aziridines, which produced a series of ring-opened products including normal and abnormal types. Some of these compounds showed cytotoxic effects in vitro against HL-60, Hep3B, MCF7, and MDA-MB-231 cancer cells. The most potent cytostatic compound, N-cantharidinimido-sulfamethazine (5a), exhibited anti-HL-60 and anti-Hep3B cell activities. Two compounds 5g and 5h displayed slight effects on the Hep3B cell line, while the other compounds produced no response in these four cell lines.


N-Cycloamino substituent effects on the packing architecture of ortho-sulfanilamide molecular crystals and their in silico carbonic anhydrase II and IX inhibitory activities.

  • Sherif O Kolade‎ et al.
  • Acta crystallographica. Section C, Structural chemistry‎
  • 2022‎

In the search for new `sulfa drugs' with therapeutic properties, o-nitrosulfonamides and N-cycloamino-o-sulfanilamides were synthesized and characterized using techniques including 1H NMR, 13C NMR and FT-IR spectroscopy, and single-crystal X-ray diffraction (SC-XRD). The calculated density functional theory (DFT)-optimized geometry of the molecules showed similar conformations to those obtained by SC-XRD. Molecular docking of N-piperidinyl-o-sulfanilamide and N-indolinyl-o-sulfanilamide supports the notion that o-sulfanilamides are able to bind to human carbonic anhydrase II and IX inhibitors (hCA II and IX; PDB entries 4iwz and 5fl4). Hirshfeld surface analyses and DFT studies of three o-nitrosulfonamides {1-[(2-nitrophenyl)sulfonyl]pyrrolidine, C10H12N2O4S, 1, 1-[(2-nitrophenyl)sulfonyl]piperidine, C11H14N2O4S, 2, and 1-[(2-nitrophenyl)sulfonyl]-2,3-dihydro-1H-indole, C14H12N2O4S, 3} and three N-cycloamino-o-sulfanilamides [2-(pyrrolidine-1-sulfonyl)aniline, C10H14N2O2S, 4, 2-(piperidine-1-sulfonyl)aniline, C11H16N2O2S, 5, and 2-(2,3-dihydro-1H-indole-1-sulfonyl)aniline, C14H14N2O2S, 6] suggested that forces such as hydrogen bonding and π-π interactions hold molecules together and further showed that charge transfer could promote bioactivity and the ability to form biological interactions at the piperidinyl and phenyl moieties.


Co-driving factors of tidal effect on the abundance and distribution of antibiotic resistance genes in the Yongjiang Estuary, China.

  • Chun-Li Zheng‎ et al.
  • Environmental research‎
  • 2022‎

The unreasonable use of antibiotics and the transmission of antibiotic resistance genes (ARGs) induced by antibiotics have led to a large number of ARGs entered the water environment, which seriously threatened human health and environmental safety. The estuarine aquatic environment connects with inland rivers and sea and is frequently influenced by human activities. This study aims to reveal the occurrences and abundances of ARGs and bacterial community composition by high-throughput quantitative PCR including 296 primers and high-throughput sequencing in the tide rising and ebbing of surface water in the Yongjiang Estuary, China. The results showed that there were a large number of ARGs and mobile genetic elements (MGEs) detected in the rising tide and ebb tide water bodies. The numbers of detected ARGs in each sample at rising and ebb tide ranged from 16 to 77 and 61 to 88, respectively, and the absolute abundance ranges were 1.69 × 104-1.69 × 109 copies/L and 3.18 × 103-2.57 × 109 copies/L, respectively. Obvious tidal distribution characteristics of ARGs were showed. Most of ARGs conferred resistance to multidrug, aminoglycosides and sulfanilamides. Proteobacteria, Actinobacteria and Bacteroidetes were the dominantly bacterial phylum in the Yongjiang Estuary. Network analysis results indicated that multi-genera were identified as possible ARGs hosts, and they carried more than two types of ARGs genes. Partial least squares path modeling further revealed that MGEs and bacterial community composition were the most important driving factors. The results of the study can provide the corresponding scientific basis for the diffusion and control of ARGs in estuaries.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: