Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 237 papers

Stromal interaction molecule 2 regulates C2C12 myoblast differentiation.

  • Tam Thi Thanh Phuong‎ et al.
  • Integrative medicine research‎
  • 2015‎

Enhanced intracellular Ca2+ signaling by stromal interaction molecule 1 (STIM1)-mediated store-operated Ca2+ entry (SOCE) is required for skeletal muscle differentiation. However, the contribution of STIM2, STIM1's analogue protein, on muscle cell differentiation has not been clearly elucidated. The present study aimed to explore the contribution of STIM2-mediated SOCE on C2C12 myoblast differentiation.


Swing-out opening of stromal interaction molecule 1.

  • Ferdinand Horvath‎ et al.
  • Protein science : a publication of the Protein Society‎
  • 2023‎

Stromal interaction molecule 1 (STIM1) resides in the endoplasmic reticulum (ER) membrane and senses luminal calcium (Ca2+ ) concentration. STIM1 activation involves a large-scale conformational transition that exposes a STIM1 domain termed "CAD/SOAR", - which is required for activation of the calcium channel Orai. Under resting cell conditions, STIM1 assumes a quiescent state where CAD/SOAR is suspended in an intramolecular clamp formed by the coiled-coil 1 domain (CC1) and CAD/SOAR. Here, we present a structural model of the cytosolic part of the STIM1 resting state using molecular docking simulations that take into account previously reported interaction sites between the CC1α1 and CAD/SOAR domains. We corroborate and refine previously reported interdomain coiled-coil contacts. Based on our model, we provide a detailed analysis of the CC1-CAD/SOAR binding interface using molecular dynamics simulations. We find a very similar binding interface for a proposed domain-swapped configuration of STIM1, where the CAD/SOAR domain of one monomer interacts with the CC1α1 domain of another monomer of STIM1. The rich structural and dynamical information obtained from our simulations reveals novel interaction sites such as M244, I409, or E370, which are crucial for STIM1 quiescent state stability. We tested our predictions by electrophysiological and Förster resonance energy transfer experiments on corresponding single-point mutants. These experiments provide compelling support for the structural model of the STIM1 quiescent state reported here. Based on transitions observed in enhanced-sampling simulations paired with an analysis of the quiescent STIM1 conformational dynamics, our work offers a first atomistic model for CC1α1-CAD/SOAR detachment.


Calsequestrin 1 Is an Active Partner of Stromal Interaction Molecule 2 in Skeletal Muscle.

  • Seung Yeon Jeong‎ et al.
  • Cells‎
  • 2021‎

Calsequestrin 1 (CASQ1) in skeletal muscle buffers and senses Ca2+ in the sarcoplasmic reticulum (SR). CASQ1 also regulates store-operated Ca2+ entry (SOCE) by binding to stromal interaction molecule 1 (STIM1). Abnormal SOCE and/or abnormal expression or mutations in CASQ1, STIM1, or STIM2 are associated with human skeletal, cardiac, or smooth muscle diseases. However, the functional relevance of CASQ1 along with STIM2 has not been studied in any tissue, including skeletal muscle. First, in the present study, it was found by biochemical approaches that CASQ1 is bound to STIM2 via its 92 N-terminal amino acids (C1 region). Next, to examine the functional relevance of the CASQ1-STIM2 interaction in skeletal muscle, the full-length wild-type CASQ1 or the C1 region was expressed in mouse primary skeletal myotubes, and the myotubes were examined using single-myotube Ca2+ imaging experiments and transmission electron microscopy observations. The CASQ1-STIM2 interaction via the C1 region decreased SOCE, increased intracellular Ca2+ release for skeletal muscle contraction, and changed intracellular Ca2+ distributions (high Ca2+ in the SR and low Ca2+ in the cytosol were observed). Furthermore, the C1 region itself (which lacks Ca2+-buffering ability but has STIM2-binding ability) decreased the expression of Ca2+-related proteins (canonical-type transient receptor potential cation channel type 6 and calmodulin 1) and induced mitochondrial shape abnormalities. Therefore, in skeletal muscle, CASQ1 plays active roles in Ca2+ movement and distribution by interacting with STIM2 as well as Ca2+ sensing and buffering.


Autophagic degradation of stromal interaction molecule 2 mediates disruption of neuronal dendrites by endoplasmic reticulum stress.

  • Jing Zhou‎ et al.
  • Journal of neurochemistry‎
  • 2019‎

Endoplasmic reticulum (ER) stress has been highlighted as one of the factors involved in axon/dendrite degeneration, which is an early event in Alzheimer's, Parkinson's diseases as well as in acute disorders such as ischemia and axotomy-induced retinal ganglion cell degeneration. These lines of evidence suggest critical roles of ER stress at the early stage of neurodegeneration, but the relevant mechanism is rarely exploited. In this study, we report that treatment with sublethal level of ER stressors, tunicamycin or brefeldin A, in primary rat neuronal cultures, significantly reduced dendrite arbor. Under the same treatment, either stressor reduced store-operated calcium entry (SOCE) and cytosolic calcium, [Ca2+ ]i , which were associated with autophagic degradation of stromal interaction molecule 2 (STIM2). Knockdown of ATG7 or activating transcription factor 4 completely reversed the reduction of STIM2 and significantly reversed the inhibition of SOCE under ER stress. Overexpression of STIM2 in neurons significantly prevented the ER stress-induced disruption of dendrite arbor. Altogether, our data reveal an unprecedented mechanism by which ER stress induces dendrite degeneration, that is, ER stress induces autophagic degradation of STIM2, leading to ensued SOCE inhibition and reduced [Ca2+ ]i , resulting in trimming effect on dendrites.


A stromal interaction molecule 1 variant up-regulates matrix metalloproteinase-2 expression by strengthening nucleoplasmic Ca2+ signaling.

  • Fengrong Chen‎ et al.
  • Biochimica et biophysica acta‎
  • 2016‎

Very recent studies hold promise to reveal the role of stromal interaction molecule 1 (STIM1) in non-store-operated Ca2+ entry. Here we showed that in contrast to cytoplasmic membrane redistribution as previously noted, human umbilical vein endothelial STIM1 with a T-to-C nucleotide transition resulting in an amino acid substitution of leucine by proline in the signal peptide sequence translocated to perinuclear membrane upon intracellular Ca2+ depletion, amplified nucleoplasmic Ca2+ signaling through ryanodine receptor-dependent pathway, and enhanced the subsequent cAMP responsive element binding protein activity, matrix metalloproteinase-2 (MMP-2) gene expression, and endothelial tube forming. The abundance of mutated STIM1 and the MMP-2 expression were higher in native human umbilical vein endothelial cells of patients with gestational hypertension than controls and were significantly correlated with blood pressure. These findings broaden our understanding about structure-function bias of STIM1 and offer unique insights into its application in nucleoplasmic Ca2+, MMP-2 expression, endothelial dysfunction, and pathophysiological mechanism(s) of gestational hypertension.


Molecular evolution and functional divergence of the Ca(2+) sensor protein in store-operated Ca(2+) entry: stromal interaction molecule.

  • Xinjiang Cai‎
  • PloS one‎
  • 2007‎

Receptor-mediated Ca(2+) signaling in many non-excitable cells initially induces Ca(2+) release from intracellular Ca(2+) stores, followed by Ca(2+) influx across the plasma membrane. Recent findings have suggested that stromal interaction molecules (STIMs) function as the Ca(2+) sensor to detect changes of Ca(2+) content in the intracellular Ca(2+) stores. Human STIMs and invertebrate STIM share several functionally important protein domains, but diverge significantly in the C-terminus. To better understand the evolutionary significance of STIM activity, phylogenetic analysis of the STIM protein family was conducted after extensive database searching. Results from phylogeny and sequence analysis revealed early adaptation of the C-terminal divergent domains in Urochordata, before the expansion of STIMs in Vertebrata. STIMs were subsequently subjected to one round of gene duplication as early as in the Euteleostomi lineage in vertebrates, with a second round of fish-specific gene duplication. After duplication, STIM-1 and STIM-2 molecules appeared to have undergone purifying selection indicating strong evolutionary constraints within each group. Furthermore, sequence analysis of the EF-hand Ca(2+) binding domain and the SAM domain, together with functional divergence studies, identified critical regions/residues likely underlying functional changes, and provided evidence for the hypothesis that STIM-1 and STIM-2 might have developed distinct functional properties after duplication.


Store-operated Ca(2+) channels and Stromal Interaction Molecule 1 (STIM1) are targets for the actions of bile acids on liver cells.

  • Edoardo C Aromataris‎ et al.
  • Biochimica et biophysica acta‎
  • 2008‎

Cholestasis is a significant contributor to liver pathology and can lead to primary sclerosis and liver failure. Cholestatic bile acids induce apoptosis and necrosis in hepatocytes but these effects can be partially alleviated by the pharmacological application of choleretic bile acids. These actions of bile acids on hepatocytes require changes in the release of Ca(2+) from intracellular stores and in Ca(2+) entry. However, the nature of the Ca(2+) entry pathway affected is not known. We show here using whole cell patch clamp experiments with H4-IIE liver cells that taurodeoxycholic acid (TDCA) and other choleretic bile acids reversibly activate an inwardly-rectifying current with characteristics similar to those of store-operated Ca(2+) channels (SOCs), while lithocholic acid (LCA) and other cholestatic bile acids inhibit SOCs. The activation of Ca(2+) entry was observed upon direct addition of the bile acid to the incubation medium, whereas the inhibition of SOCs required a 12 h pre-incubation. In cells loaded with fura-2, choleretic bile acids activated a Gd(3+)-inhibitable Ca(2+) entry, while cholestatic bile acids inhibited the release of Ca(2+) from intracellular stores and Ca(2+) entry induced by 2,5-di-(tert-butyl)-1,4-benzohydro-quinone (DBHQ). TDCA and LCA each caused a reversible redistribution of stromal interaction molecule 1 (STIM1, the endoplasmic reticulum Ca(2+) sensor required for the activation of Ca(2+) release-activated Ca(2+) channels and some other SOCs) to puncta, similar to that induced by thapsigargin. Knockdown of Stim1 using siRNA caused substantial inhibition of Ca(2+)-entry activated by choleretic bile acids. It is concluded that choleretic and cholestatic bile acids activate and inhibit, respectively, the previously well-characterised Ca(2+)-selective hepatocyte SOCs through mechanisms which involve the bile acid-induced redistribution of STIM1.


Synergistic stabilization by nitrosoglutathione-induced thiol modifications in the stromal interaction molecule-2 luminal domain suppresses basal and store operated calcium entry.

  • Matthew J Novello‎ et al.
  • Scientific reports‎
  • 2020‎

Stromal interaction molecule-1 and -2 (STIM1/2) are endoplasmic reticulum (ER) membrane-inserted calcium (Ca2+) sensing proteins that, together with Orai1-composed Ca2+ channels on the plasma membrane (PM), regulate intracellular Ca2+ levels. Recent evidence suggests that S-nitrosylation of the luminal STIM1 Cys residues inhibits store operated Ca2+ entry (SOCE). However, the effects of thiol modifications on STIM2 during nitrosative stress and their role in regulating basal Ca2+ levels remain unknown. Here, we demonstrate that the nitric oxide (NO) donor nitrosoglutathione (GSNO) thermodynamically stabilizes the STIM2 Ca2+ sensing region in a Cys-specific manner. We uncovered a remarkable synergism in this stabilization involving the three luminal Cys of STIM2, which is unique to this paralog. S-Nitrosylation causes structural perturbations that converge on the face of the EF-hand and sterile α motif (EF-SAM) domain, implicated in unfolding-coupled activation. In HEK293T cells, enhanced free basal cytosolic Ca2+ and SOCE mediated by STIM2 overexpression could be attenuated by GSNO or mutation of the modifiable Cys located in the luminal domain. Collectively, we identify the Cys residues within the N-terminal region of STIM2 as modifiable targets during nitrosative stress that can profoundly and cooperatively affect basal Ca2+ and SOCE regulation.


Knockdown of stromal interaction molecule 1 inhibits proliferation of colorectal cancer cells by inducing apoptosis.

  • Dong Yang‎ et al.
  • Oncology letters‎
  • 2018‎

Stromal interaction molecule 1 (STIM1) is an endoplasmic reticulum Ca2+ sensor which has been reported to be overexpressed in numerous types of cancer, and is involved in the cell proliferation, invasion, migration and metastasis frequently observed in cancer. However, the role of STIM1 in colorectal cancer (CRC) remains unknown. The purpose of the present study was to investigate the effect of STIM1 in human CRC. The expression of STIM1 was specifically knocked down using lentivirus-mediated small hairpin RNA (shRNA) interference techniques in the CRC cell lines HCT116 and SW1116. Subsequently, the efficiency of infection was confirmed using green fluorescent protein (GFP)-positive signals. The knockdown efficiency was further determined using the reverse transcription-quantitative polymerase chain reaction and western blotting analysis. As a result, CRC cell lines with STIM1 silenced were successfully constructed and subsequently employed in a series of cell function assays. Knockdown of STIM1 significantly suppressed cell proliferation and colony formation, as revealed by an MTT and colony formation assay. Furthermore, it was identified that STIM1 silencing may promote cell apoptosis through the induction of mitochondria-associated apoptosis, as was identified by increased expression levels of B-cell lymphoma 2 (Bcl-2)-associated death promoter, Bcl-2-associated X protein and poly(ADP-ribose) polymerase cleavage. Therefore, STIM1 may serve a critical role in the progression of CRC by regulating cell proliferation and apoptosis, which may provide a potential therapeutic target for the treatment of CRC.


Stromal Interaction Molecule 1 Promotes the Replication of vvIBDV by Mobilizing Ca2+ in the ER.

  • Nana Yan‎ et al.
  • Viruses‎
  • 2022‎

Infectious bursal disease virus (IBDV) is one of the main threats to the poultry industry worldwide. Very virulent IBDV (vvIBDV) is a fatal virus strain that causes heavy mortality in young chicken flocks. Ca2+ is one of the most universal and versatile signalling molecules and is involved in almost every aspect of cellular processes. Clinical examination showed that one of the characteristics of vvIBDV-infected chickens was severe metabolic disorders, and the chemical examination showed that their serum Ca2+ level decreased significantly. However, there are limited studies on how vvIBDV infection modulates the cellular Ca2+ level and the effect of Ca2+ level changes on vvIBDV replication. In our study, we found Ca2+ levels in the endoplasmic reticulum (ER) of vvIBDV-infected B cells were higher than that of mock-infected cells, and the expression level of stromal interaction molecule 1 (STIM1), an ER Ca2+ sensor, was significantly upregulated due to vvIBDV infection. The knock-down expression of STIM1 led to decreased Ca2+ level in the ER and suppressed vvIBDV replication, while the over-expressed STIM1 led to ER Ca2+ upregulation and promoted vvIBDV replication. We also showed that the inhibition of Ca2+-release-activated-Ca2+ (CRAC) channels could reduce vvIBDV infection by blocking Ca2+ from entering the ER. This study suggests a new mechanism that STIM1 promotes the replication of vvIBDV by mobilizing Ca2+ in the ER.


A coiled-coil clamp controls both conformation and clustering of stromal interaction molecule 1 (STIM1).

  • Marc Fahrner‎ et al.
  • The Journal of biological chemistry‎
  • 2014‎

Store-operated Ca(2+) entry, essential for the adaptive immunity, is initiated by the endoplasmic reticulum (ER) Ca(2+) sensor STIM1. Ca(2+) entry occurs through the plasma membrane resident Ca(2+) channel Orai1 that directly interacts with the C-terminal STIM1 domain, named SOAR/CAD. Depletion of the ER Ca(2+) store controls this STIM1/Orai1 interaction via transition to an extended STIM1 C-terminal conformation, exposure of the SOAR/CAD domain, and STIM1/Orai1 co-clustering. Here we developed a novel approach termed FRET-derived Interaction in a Restricted Environment (FIRE) in an attempt to dissect the interplay of coiled-coil (CC) interactions in controlling STIM1 quiescent as well as active conformation and cluster formation. We present evidence of a sequential activation mechanism in the STIM1 cytosolic domains where the interaction between CC1 and CC3 segment regulates both SOAR/CAD exposure and CC3-mediated higher-order oligomerization as well as cluster formation. These dual levels of STIM1 auto-inhibition provide efficient control over the coupling to and activation of Orai1 channels.


Members of the thrombospondin gene family bind stromal interaction molecule 1 and regulate calcium channel activity.

  • Mark Duquette‎ et al.
  • Matrix biology : journal of the International Society for Matrix Biology‎
  • 2014‎

The thrombospondins (TSPs) are a family of matricellular proteins that regulate cellular phenotype through interactions with a myriad of other proteins and proteoglycans. We have identified a novel interaction of the members of the TSP gene family with stromal interaction molecule 1 (STIM1). This association is robust since it is preserved in Triton X-100, can be detected with multiple anti-TSP-1 and anti-STIM1 antibodies, and is detected in a wide range of cell types. We have also found that STIM1 co-immunoprecipitates with TSP-4 and cartilage oligomeric matrix protein (COMP), and that a recombinant version of the N-terminal domain of STIM1 binds to the signature domain of TSP-1 and COMP. The association of the TSPs with STIM1 is observed in both the presence and absence of calcium indicating that the calcium-dependent conformation of the signature domain of TSPs is not required for binding. Thus, this interaction could occur in the ER under conditions of normal or low calcium concentration. Furthermore, we observed that the expression of COMP in HEK 293 cells decreases STIM1-mediated calcium release activated calcium (CRAC) channel currents and increases arachidonic acid calcium (ARC) channel currents. These data indicate that the TSPs regulate STIM1 function and participate in the reciprocal regulation of two channels that mediate calcium entry into the cell.


Stromal interaction molecule 1 regulates growth, cell cycle, and apoptosis of human tongue squamous carcinoma cells.

  • Xiaobo Cui‎ et al.
  • Bioscience reports‎
  • 2017‎

Oral tongue squamous cell carcinoma (OTSCC) is the most common type of oral carcinomas. However, the molecular mechanism by which OTSCC developed is not fully identified. Stromal interaction molecule 1 (STIM1) is a transmembrane protein, mainly located in the endoplasmic reticulum (ER). STIM1 is involved in several types of cancers. Here, we report that STIM1 contributes to the development of human OTSCC. We knocked down STIM1 in OTSCC cell line Tca-8113 with lentivirus-mediated shRNA and found that STIM1 knockdown repressed the proliferation of Tca-8113 cells. In addition, we also showed that STIM1 deficiency reduced colony number of Tca-8113 cells. Knockdown of STIM1 repressed cells to enter M phase of cell cycle and induced cellular apoptosis. Furthermore, we performed microarray and bioinformatics analysis and found that STIM1 was associated with p53 and MAPK pathways, which may contribute to the effects of STIM1 on cell growth, cell cycle, and apoptosis. Finally, we confirmed that STIM1 controlled the expression of MDM2, cyclin-dependent kinase 4 (CDK4), and growth arrest and DNA damage inducible α (GADD45A) in OTSCC cells. In conclusion, we provide evidence that STIM1 contributes to the development of OTSCC partially through regulating p53 and MAPK pathways to promote cell cycle and survival.


Germline Genetic Association between Stromal Interaction Molecule 1 (STIM1) and Clinical Outcomes in Breast Cancer Patients.

  • Chi-Cheng Huang‎ et al.
  • Journal of personalized medicine‎
  • 2020‎

Among all cancers in women, breast cancer has the highest incidence. The mortality of breast cancer is highly associated with metastasis. Migration and malignant transformation of cancer cells have been reported to be modulated by store-operated calcium (SOC) channels, which control calcium signaling and cell proliferation pathways. Stromal interaction molecule 1 (STIM1) is a calcium sensor in the endoplasmic reticulum, triggering the activation of store-operated calcium signaling. However, the clinical relevance of STIM1 in breast cancer is still unclear. Here, we recruited 348 breast cancer patients and conducted a genetic association study to address this question. Four tagging germline single nucleotide variants (SNVs) in STIM1 were selected and RNA sequencing data of 525 breast cancer samples from The Cancer Genome Atlas (TCGA) database were evaluated. The results show that rs2304891 and rs3750996 were correlated with clinical stage of breast cancer. Expression quantitative trait loci (eQTL) analysis indicated that risk G allele of STIM1 contributed to the higher expression of STIM1. In addition, we found an increased risk of rs2304891 G allele and rs3750996 A allele in estrogen receptor (ER) positive and progesterone receptor (PR) positive patients. In conclusion, our results suggest that germline SNV, rs2304891 and rs3750996 as well as STIM1 expression are important biomarkers for the prediction of clinical outcomes in breast cancer patients.


Calcium-sensing stromal interaction molecule 2 upregulates nuclear factor of activated T cells 1 and transforming growth factor-β signaling to promote breast cancer metastasis.

  • Yutian Miao‎ et al.
  • Breast cancer research : BCR‎
  • 2019‎

Stromal interaction molecule (STIM) 2 is a key calcium-sensing molecule that regulates the stabilization of calcium ions (Ca2+) and therefore regulates downstream Ca2+-associated signaling and cellular events. We hypothesized that STIM2 regulates epithelial-mesenchymal transition (EMT) to promote breast cancer metastasis.


The 2β Splice Variation Alters the Structure and Function of the Stromal Interaction Molecule Coiled-Coil Domains.

  • Steve Chung‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Stromal interaction molecule (STIM)-1 and -2 regulate agonist-induced and basal cytosolic calcium (Ca2+) levels after oligomerization and translocation to endoplasmic reticulum (ER)-plasma membrane (PM) junctions. At these junctions, the STIM cytosolic coiled-coil (CC) domains couple to PM Orai1 proteins and gate these Ca2+ release-activated Ca2+ (CRAC) channels, which facilitate store-operated Ca2+ entry (SOCE). Unlike STIM1 and STIM2, which are SOCE activators, the STIM2β splice variant contains an 8-residue insert located within the conserved CCs which inhibits SOCE. It remains unclear if the 2β insert further depotentiates weak STIM2 coupling to Orai1 or independently causes structural perturbations which prevent SOCE. Here, we use far-UV circular dichroism, light scattering, exposed hydrophobicity analysis, solution small angle X-ray scattering, and a chimeric STIM1/STIM2β functional assessment to provide insights into the molecular mechanism by which the 2β insert precludes SOCE activation. We find that the 2β insert reduces the overall α-helicity and enhances the exposed hydrophobicity of the STIM2 CC domains in the absence of a global conformational change. Remarkably, incorporation of the 2β insert into the STIM1 context not only affects the secondary structure and hydrophobicity as observed for STIM2, but also eliminates the more robust SOCE response mediated by STIM1. Collectively, our data show that the 2β insert directly precludes Orai1 channel activation by inducing structural perturbations in the STIM CC region.


Atomic force microscopy (AFM) imaging suggests that stromal interaction molecule 1 (STIM1) binds to Orai1 with sixfold symmetry.

  • Dilshan Balasuriya‎ et al.
  • FEBS letters‎
  • 2014‎

Depletion of Ca(2+) from the endoplasmic reticulum (ER) lumen triggers the opening of Ca(2+) release-activated Ca(2+) (CRAC) channels at the plasma membrane. CRAC channels are activated by stromal interaction molecule 1 (STIM1), an ER resident protein that senses Ca(2+) store depletion and interacts with Orai1, the pore-forming subunit of the channel. The subunit stoichiometry of the CRAC channel is controversial. Here we provide evidence, using atomic force microscopy (AFM) imaging, that Orai1 assembles as a hexamer, and that STIM1 binds to Orai1 with sixfold symmetry. STIM1 associates with Orai1 in the form of monomers, dimers, and multimeric string-like structures that form links between the Orai1 hexamers. Our results provide new insights into the nature of the interactions between STIM1 and Orai1.


Chronic dysfunction of Stromal interaction molecule by pulsed RNAi induction in fat tissue impairs organismal energy homeostasis in Drosophila.

  • Yanjun Xu‎ et al.
  • Scientific reports‎
  • 2019‎

Obesity is a progressive, chronic disease, which can be caused by long-term miscommunication between organs. It remains challenging to understand how chronic dysfunction in a particular tissue remotely impairs other organs to eventually imbalance organismal energy homeostasis. Here we introduce RNAi Pulse Induction (RiPI) mediated by short hairpin RNA (shRiPI) or double-stranded RNA (dsRiPI) to generate chronic, organ-specific gene knockdown in the adult Drosophila fat tissue. We show that organ-restricted RiPI targeting Stromal interaction molecule (Stim), an essential factor of store-operated calcium entry (SOCE), results in progressive fat accumulation in fly adipose tissue. Chronic SOCE-dependent adipose tissue dysfunction manifests in considerable changes of the fat cell transcriptome profile, and in resistance to the glucagon-like Adipokinetic hormone (Akh) signaling. Remotely, the adipose tissue dysfunction promotes hyperphagia likely via increased secretion of Akh from the neuroendocrine system. Collectively, our study presents a novel in vivo paradigm in the fly, which is widely applicable to model and functionally analyze inter-organ communication processes in chronic diseases.


Crucial Role of Stromal Interaction Molecule-Activated TRPC-ORAI Channels in Vascular Remodeling and Pulmonary Hypertension Induced by Intermittent Hypoxia.

  • Sebastián Castillo-Galán‎ et al.
  • Frontiers in physiology‎
  • 2022‎

Obstructive sleep apnea (OSA), a sleep breathing disorder featured by chronic intermittent hypoxia (CIH), is associate with pulmonary hypertension. Rats exposed to CIH develop lung vascular remodeling and pulmonary hypertension, which paralleled the upregulation of stromal interaction molecule (STIM)-activated TRPC-ORAI Ca2+ channels (STOC) in the lung, suggesting that STOC participate in the pulmonary vascular alterations. Accordingly, to evaluate the role played by STOC in pulmonary hypertension we studied whether the STOC blocker 2-aminoethoxydiphenyl borate (2-APB) may prevent the vascular remodeling and the pulmonary hypertension induced by CIH in a rat model of OSA. We assessed the effects of 2-APB on right ventricular systolic pressure (RVSP), pulmonary vascular remodeling, α-actin and proliferation marker Ki-67 levels in pulmonary arterial smooth muscle cells (PASMC), mRNA levels of STOC subunits, and systemic and pulmonary oxidative stress (TBARS) in male Sprague-Dawley (200 g) rats exposed to CIH (5% O2, 12 times/h for 8h) for 28 days. At 14 days of CIH, osmotic pumps containing 2-APB (10 mg/kg/day) or its vehicle were implanted and rats were kept for 2 more weeks in CIH. Exposure to CIH for 28 days raised RVSP > 35 mm Hg, increased the medial layer thickness and the levels of α-actin and Ki-67 in PASMC, and increased the gene expression of TRPC1, TRPC4, TRPC6 and ORAI1 subunits. Treatment with 2-APB prevented the raise in RVSP and the increment of the medial layer thickness, as well as the increased levels of α-actin and Ki-67 in PASMC, and the increased gene expression of STOC subunits. In addition, 2-APB did not reduced the lung and systemic oxidative stress, suggesting that the effects of 2-APB on vascular remodeling and pulmonary hypertension are independent on the reduction of the oxidative stress. Thus, our results supported that STIM-activated TRPC-ORAI Ca2+ channels contributes to the lung vascular remodeling and pulmonary hypertension induced by CIH.


Dynamic S-acylation of the ER-resident protein stromal interaction molecule 1 (STIM1) is required for store-operated Ca2+ entry.

  • Goutham Kodakandla‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

Many cell surface stimuli cause calcium release from endoplasmic reticulum (ER) stores to regulate cellular physiology. Upon ER calcium store depletion, the ER-resident protein stromal interaction molecule 1 (STIM1) physically interacts with plasma membrane protein Orai1 to induce calcium release-activated calcium (CRAC) currents that conduct calcium influx from the extracellular milieu. Although the physiological relevance of this process is well established, the mechanism supporting the assembly of these proteins is incompletely understood. Earlier we demonstrated a previously unknown post-translational modification of Orai1 with long-chain fatty acids, known as S-acylation. We found that S-acylation of Orai1 is dynamically regulated in a stimulus-dependent manner and essential for its function as a calcium channel. Here using the acyl resin-assisted capture assay, we show that STIM1 is also rapidly S-acylated at cysteine 437 upon ER calcium store depletion. Using a combination of live cell imaging and electrophysiology approaches with a mutant STIM1 protein, which could not be S-acylated, we determined that the S-acylation of STIM1 is required for the assembly of STIM1 into puncta with Orai1 and full CRAC channel function. Together with the S-acylation of Orai1, our data suggest that stimulus-dependent S-acylation of CRAC channel components Orai1 and STIM1 is a critical mechanism facilitating the CRAC channel assembly and function.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: