Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Angiotensin (ang) 1-7 inhibits ang II-induced atrial fibrosis through regulating the interaction of proto-oncogene tyrosine-protein kinase Src (c-Src) and Src homology region 2 domain-containing phosphatase-1 (SHP-1)).

  • Li Lu‎ et al.
  • Bioengineered‎
  • 2021‎

To verify whether Ang-(1-7) produces an antagonistic effect on Ang II-mediated atrial remodeling. Ang II-induced HL-1 cell model and a rat model of Ang II-induced atrial remodeling were constructed and intervened with Ang II Ang-(1-7), AngII +Ang-(1-7), Ang II+ c-Src specific inhibitor (SU6656), and Ang II + Ang-(1-7) + SSG (SHP-1/2 specific inhibitor, stibogluconate), respectively. The systolic blood pressure of the rat caudal artery was detected. And trial fibrosis was detected by Picrosirius red staining and Masson's trichrome staining. Expressions of transforming growth factor-β (TGF-β), tissue inhibitor of metalloproteinases 1 (TIMP1), Matrix metalloproteinase 2 (MMP-2), connective tissue growth factor (CTGF), galectin-3, α-smooth muscle actin (α-SMA), and collagen I/III were subjected to qPCR and western blot. Furthermore, SHP-1 binding to c-Src was verified by co-immunoprecipitation (Co-IP). Results showed that the expressions of TGF-β, TIMP1, MMP-2, CTGF, α-SMA, galectin-3, and collagen I were increased markedly in the Ang II intervention group, and the expressions of p-ERK1/2, p-Akt, and p-p38MAPK were also increased dramatically. Ang-(1-7) or SU6656 addition could inhibit the action of Ang II factor, thereby minimizing the expressions of the previously described genes and proteins. Simultaneously, SSG supplement reversed the antagonistic effect of Ang-(1-7) on Ang II, and the latter elevated the blood pressure and induced atrial fibrosis in rats. Ang-(1-7) could reverse the changes related to Ang II-induced atrial fibrosis in rats. In conclusion, Ang-(1-7) antagonized Ang II-induced atrial remodeling by regulating SHP-1 and c-Src, thereby affecting the MAPKs/Akt signaling pathway.


A roadmap to generate renewable protein binders to the human proteome.

  • Karen Colwill‎ et al.
  • Nature methods‎
  • 2011‎

Despite the wealth of commercially available antibodies to human proteins, research is often hindered by their inconsistent validation, their poor performance and the inadequate coverage of the proteome. These issues could be addressed by systematic, genome-wide efforts to generate and validate renewable protein binders. We report a multicenter study to assess the potential of hybridoma and phage-display technologies in a coordinated large-scale antibody generation and validation effort. We produced over 1,000 antibodies targeting 20 SH2 domain proteins and evaluated them for potency and specificity by enzyme-linked immunosorbent assay (ELISA), protein microarray and surface plasmon resonance (SPR). We also tested selected antibodies in immunoprecipitation, immunoblotting and immunofluorescence assays. Our results show that high-affinity, high-specificity renewable antibodies generated by different technologies can be produced quickly and efficiently. We believe that this work serves as a foundation and template for future larger-scale studies to create renewable protein binders.


Fli-1 Activation through Targeted Promoter Activity Regulation Using a Novel 3', 5'-diprenylated Chalcone Inhibits Growth and Metastasis of Prostate Cancer Cells.

  • Youfen Ma‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

The friend leukemia integration 1 (Fli-1) gene is involved in the expression control of key genes in multiple pathogenic/physiological processes, including cell growth, differentiation, and apoptosis; this implies that Fli-1 is a strong candidate for drug development. In our previous study, a 3',5'-diprenylated chalcone, (E)-1-(2-hydroxy-4-methoxy-3,5-diprenyl) phenyl-3-(3-pyridinyl)-propene-1-one (C10), was identified as a novel anti-prostate cancer (PCa) agent. Here, we investigated the molecular mechanisms underlying the anti-cancer effects of C10 on the growth, metastasis, and invasion of PC3 cells in vitro. Our results show that C10 exhibited a strong inhibitory effect on proliferation and metastasis of PC3 cells via several cellular and flow cytometric analyses. Further mechanism studies revealed that C10 likely serves as an Fli-1 agonist for regulating the expression of Fli-1 target genes including phosphatidylinositol 3-kinase (P110), murine double minute2 (MDM2), B-cell lymphoma-2 (Bcl-2), Src homology-2 domain-containing inositol 5-phosphatase 1 (SHIP-1), and globin transcription factor-1 (Gata-1) as well as the phosphorylation of extracellular-regulated protein kinases 1 (ERK1). Further, we confirmed that C10 can regulate the expressions of vascular endothelial growth factor 1 (VEGF-1), transforming growth factor-β2 (TGF-β2), intercellular cell adhesion molecule-1 (ICAM-1), p53, and matrix metalloproteinase 1 (MMP-1) genes associated with tumor apoptosis, migration, and invasion. Thus, C10 exhibits stronger anticancer activity with novel molecular targets and regulatory molecular mechanisms, indicating its great potency for development as a novel targeted anticancer drug.


Positive Association of Human SHC3 Gene with Schizophrenia in a Northeast Chinese Han Population.

  • Ye Lv‎ et al.
  • Psychiatry investigation‎
  • 2020‎

Schizophrenia is one of the most devastating neuropsychiatric disorders. Genetic epidemiological studies have confirmed that schizophrenia is a genetic disease. Genes promoting neurodevelopment may be potential candidates for schizophrenia. As an adaptor linking a number of tyrosine kinase receptors in multiple intracellular signaling cascades, Src homology 2 domain containing transforming protein 3 (SHC3) is a member of the Shc-like adaptor protein family, and expressed predominantly in the mature neurons of the central nervous system (CNS). In the present study, we aimed to investigate the association of SHC3 and schizophrenia.


ProteomeBinders: planning a European resource of affinity reagents for analysis of the human proteome.

  • Michael J Taussig‎ et al.
  • Nature methods‎
  • 2007‎

ProteomeBinders is a new European consortium aiming to establish a comprehensive resource of well-characterized affinity reagents, including but not limited to antibodies, for analysis of the human proteome. Given the huge diversity of the proteome, the scale of the project is potentially immense but nevertheless feasible in the context of a pan-European or even worldwide coordination.


RHEX, a novel regulator of human erythroid progenitor cell expansion and erythroblast development.

  • Rakesh Verma‎ et al.
  • The Journal of experimental medicine‎
  • 2014‎

Ligation of erythropoietin (EPO) receptor (EPOR) JAK2 kinase complexes propagates signals within erythroid progenitor cells (EPCs) that are essential for red blood cell production. To reveal hypothesized novel EPOR/JAK2 targets, a phosphotyrosine (PY) phosphoproteomics approach was applied. Beyond known signal transduction factors, 32 new targets of EPO-modulated tyrosine phosphorylation were defined. Molecular adaptors comprised one major set including growth factor receptor-bound protein 2 (GRB2)-associated binding proteins 1-3 (GAB1-3), insulin receptor substrate 2 (IRS2), docking protein 1 (DOK1), Src homology 2 domain containing transforming protein 1 (SHC1), and sprouty homologue 1 (SPRY1) as validating targets, and SPRY2, SH2 domain containing 2A (SH2D2A), and signal transducing adaptor molecule 2 (STAM2) as novel candidate adaptors together with an ORF factor designated as regulator of human erythroid cell expansion (RHEX). RHEX is well conserved in Homo sapiens and primates but absent from mouse, rat, and lower vertebrate genomes. Among tissues and lineages, RHEX was elevated in EPCs, occurred as a plasma membrane protein, was rapidly PY-phosphorylated >20-fold upon EPO exposure, and coimmunoprecipitated with the EPOR. In UT7epo cells, knockdown of RHEX inhibited EPO-dependent growth. This was associated with extracellular signal-regulated kinase 1,2 (ERK1,2) modulation, and RHEX coupling to GRB2. In primary human EPCs, shRNA knockdown studies confirmed RHEX regulation of erythroid progenitor expansion and further revealed roles in promoting the formation of hemoglobinizing erythroblasts. RHEX therefore comprises a new EPO/EPOR target and regulator of human erythroid cell expansion that additionally acts to support late-stage erythroblast development.


Genome-wide analysis of murine bone marrow‑derived very small embryonic-like stem cells reveals that mitogenic growth factor signaling pathways play a crucial role in the quiescence and ageing of these cells.

  • Katarzyna Mierzejewska‎ et al.
  • International journal of molecular medicine‎
  • 2013‎

It has been postulated that the most primitive population of stem cells, Oct4(+)Sca-1(+)Lin(-)CD45(-) very small embryonic-like stem cells (VSELs), differentiate into tissue-committed stem cells in adult mice. However, Oct4(+) VSELs remain quiescent in adult tissues and do not form teratomas. In thi study, we report the characteristics of the VSEL transcriptome by gene set enrichment analysis employing a microarray database established from 20 murine bone marrow-derived, FACS-sorted VSELs in comparison with hematopoietic stem cells and embryonic stem cells. In the Oct4(+) VSELs, we observed the upregulation of tissue-specific gene sets and a gene set encoding the complement-coagulation cascade. By contrast, in the VSELs, we observed the downregulation of genes involved in the UV radiation response, mRNA processing and mitogenic growth factor signaling [e.g., insulin-like growth factor‑1 (IGF-1) and neurotrophic tyrosine kinase receptor A (TRKA), as well as the ERK and PI3K pathways]. Employing leading-edge subset analysis and real-time PCR assays, we observed that several genes, such as growth factor receptor-bound protein 2 (Grb2), son of sevenless homolog 1 (Sos1), SHC (Src homology 2 domain containing) transforming protein 1 (Shc1), mitogen-activated protein kinase kinase 1 (Map2k1), v-akt murine thymoma viral oncogene homolog 3 (Akt3), Elk1, ribosomal protein S6 kinase, 90 kDa, polypeptide 3 (Rps6kA3), glycogen synthase kinase 3β (Gsk3β) and casein kinase 2, alpha 1 polypeptide (Csnk2A1), which are involved in mitogenic growth factor signaling pathways, were commonly downregulated in the VSELs. Notably, this repression was reversed in the VSELs co-cultured over a C2C12 supportive cell-line, whereby they are induced to form VSEL-derived spheres (VSEL-DSs); thus, they are enriched, forming more differentiated stem cells. Therefore, we suggest that the repression of mitogenic growth factor signaling (e.g., through the IGF-1 receptor) may prevent uncontrolled Oct4(+) VSEL proliferation and teratoma formation. Thus, restoring the responsiveness to mitogenic growth factors may be a crucial step in employing these cells in regenerative medicine.


Effect of maternal methionine supplementation on the transcriptome of bovine preimplantation embryos.

  • Francisco Peñagaricano‎ et al.
  • PloS one‎
  • 2013‎

Maternal nutrition exclusively during the periconceptional period can induce remarkable effects on both oocyte maturation and early embryo development, which in turn can have lifelong consequences. The objective of this study was to evaluate the effect of maternal methionine supplementation on the transcriptome of bovine preimplantation embryos. Holstein cows were randomly assigned to one of two treatments differing in level of dietary methionine (1.89 Met vs. 2.43 Met % of metabolizable protein) from calving until embryo flushing. High quality preimplantation embryos from individual cows were pooled and then analyzed by RNA sequencing. Remarkably, a subtle difference in methionine supplementation in maternal diet was sufficient to cause significant changes in the transcriptome of the embryos. A total of 276 genes out of 10,662 showed differential expression between treatments (FDR <0.10). Interestingly, several of the most significant genes are related to embryonic development (e.g., VIM, IFI6, BCL2A1, and TBX15) and immune response (e.g., NKG7, TYROBP, SLAMF7, LCP1, and BLA-DQB). Likewise, gene set enrichment analysis revealed that several Gene Ontology terms, InterPro entries, and KEGG pathways were enriched (FDR <0.05) with differentially expressed genes involved in embryo development and immune system. The expression of most genes was decreased by maternal methionine supplementation, consistent with reduced transcription of genes with increased methylation of specific genes by increased methionine. Overall, our findings provide evidence that supplementing methionine to dams prior to conception and during the preimplantation period can modulate gene expression in bovine blastocysts. The ramifications of the observed gene expression changes for subsequent development of the pregnancy and physiology of the offspring warrant further investigation in future studies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: