Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 735 papers

Biomimetic Nanopillar Silicon Surfaces Rupture Fungal Spores.

  • Denver P Linklater‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

The mechano-bactericidal action of nanostructured surfaces is well-documented; however, synthetic nanostructured surfaces have not yet been explored for their antifungal properties toward filamentous fungal species. In this study, we developed a biomimetic nanostructured surface inspired by dragonfly wings. A high-aspect-ratio nanopillar topography was created on silicon (nano-Si) surfaces using inductively coupled plasma reactive ion etching (ICP RIE). To mimic the superhydrophobic nature of insect wings, the nano-Si was further functionalised with trichloro(1H,1H,2H,2H-perfluorooctyl)silane (PFTS). The viability of Aspergillus brasiliensis spores, in contact with either hydrophobic or hydrophilic nano-Si surfaces, was determined using a combination of standard microbiological assays, confocal laser scanning microscopy (CLSM), and focused ion beam scanning electron microscopy (FIB-SEM). Results indicated the breakdown of the fungal spore membrane upon contact with the hydrophilic nano-Si surfaces. By contrast, hydrophobised nano-Si surfaces prevented the initial attachment of the fungal conidia. Hydrophilic nano-Si surfaces exhibited both antifungal and fungicidal properties toward attached A. brasisiensis spores via a 4-fold reduction of attached spores and approximately 9-fold reduction of viable conidia from initial solution after 24 h compared to their planar Si counterparts. Thus, we reveal, for the first time, the physical rupturing of attaching fungal spores by biomimetic hydrophilic nanostructured surfaces.


Nutritional benefit of fungal spores for honey bee workers.

  • Jorgiane B Parish‎ et al.
  • Scientific reports‎
  • 2020‎

The collection of fungal spores by honey bees, Apis mellifera, can be classified as active or passive, the latter when spores are associated with pollen, nectar or honey dew. While low quality and shortage of pollen have been raised as hypotheses for fungal spore collection, the nutritional value of fungal spores for honey bees is poorly understood. Here we investigated the effect of consumption of fungal spores on survival, ovarian activation and the development of the hypopharyngeal glands (HPGs) in honey bee workers. Two pollen diets (Eucalyptus sp. pollen and a multifloral pollen) supplemented or not with spores of Botrytis cinerea, Cladosporium sp. or Colletotrichum acutatum were used. Consumption of diets that contained fungal spores increased the longevity of honey bee workers but had no significant effect on the development of their HPGs and ovaries. This demonstrates that fungal spores may have nutritional value for honey bees and that the consumption of fungal spores may compensate for nutritional imbalances of poor-quality pollen diets.


Characterizing aeroallergens by infrared spectroscopy of fungal spores and pollen.

  • Boris Zimmermann‎ et al.
  • PloS one‎
  • 2015‎

Fungal spores and plant pollen cause respiratory diseases in susceptible individuals, such as asthma, allergic rhinitis and hypersensitivity pneumonitis. Aeroallergen monitoring networks are an important part of treatment strategies, but unfortunately traditional analysis is time consuming and expensive. We have explored the use of infrared spectroscopy of pollen and spores for an inexpensive and rapid characterization of aeroallergens.


Demulsification of crude oil-in-water emulsions by means of fungal spores.

  • Alba Adriana Vallejo-Cardona‎ et al.
  • PloS one‎
  • 2017‎

The present feature describes for the first time the application of spores from Aspergillus sp. IMPMS7 to break out crude oil-in-water emulsions (O/W). The fungal spores were isolated from marine sediments polluted with petroleum hydrocarbons. The spores exhibited the ability to destabilize different O/W emulsions prepared with medium, heavy or extra-heavy Mexican crude oils with specific gravities between 10.1 and 21.2°API. The isolated fungal spores showed a high hydrophobic power of 89.3 ± 1.9% and with 2 g of spores per liter of emulsion, the half-life for emulsion destabilization was roughly 3.5 and 0.7 h for extra-heavy and medium crude oil, respectively. Then, the kinetics of water separation and the breaking of the O/W emulsion prepared with heavy oil through a spectrofluorometric technique were studied. A decrease in the fluorescence ratio at 339 and 326 nm (I339/I326) was observed in emulsions treated with spores, which is similar to previously reported results using chemical demulsifiers.


The pleiotropic functions of intracellular hydrophobins in aerial hyphae and fungal spores.

  • Feng Cai‎ et al.
  • PLoS genetics‎
  • 2021‎

Higher fungi can rapidly produce large numbers of spores suitable for aerial dispersal. The efficiency of the dispersal and spore resilience to abiotic stresses correlate with their hydrophobicity provided by the unique amphiphilic and superior surface-active proteins-hydrophobins (HFBs)-that self-assemble at hydrophobic/hydrophilic interfaces and thus modulate surface properties. Using the HFB-enriched mold Trichoderma (Hypocreales, Ascomycota) and the HFB-free yeast Pichia pastoris (Saccharomycetales, Ascomycota), we revealed that the rapid release of HFBs by aerial hyphae shortly prior to conidiation is associated with their intracellular accumulation in vacuoles and/or lipid-enriched organelles. The occasional internalization of the latter organelles in vacuoles can provide the hydrophobic/hydrophilic interface for the assembly of HFB layers and thus result in the formation of HFB-enriched vesicles and vacuolar multicisternal structures (VMSs) putatively lined up by HFBs. These HFB-enriched vesicles and VMSs can become fused in large tonoplast-like organelles or move to the periplasm for secretion. The tonoplast-like structures can contribute to the maintenance of turgor pressure in aerial hyphae supporting the erection of sporogenic structures (e.g., conidiophores) and provide intracellular force to squeeze out HFB-enriched vesicles and VMSs from the periplasm through the cell wall. We also show that the secretion of HFBs occurs prior to the conidiation and reveal that the even spore coating of HFBs deposited in the extracellular matrix requires microscopic water droplets that can be either guttated by the hyphae or obtained from the environment. Furthermore, we demonstrate that at least one HFB, HFB4 in T. guizhouense, is produced and secreted by wetted spores. We show that this protein possibly controls spore dormancy and contributes to the water sensing mechanism required for the detection of germination conditions. Thus, intracellular HFBs have a range of pleiotropic functions in aerial hyphae and spores and are essential for fungal development and fitness.


Detection Method of Fungal Spores Based on Fingerprint Characteristics of Diffraction-Polarization Images.

  • Yafei Wang‎ et al.
  • Journal of fungi (Basel, Switzerland)‎
  • 2023‎

The most significant aspect of promoting greenhouse productivity is the timely monitoring of disease spores and applying proactive control measures. This paper introduces a method to classify spores of airborne disease in greenhouse crops by using fingerprint characteristics of diffraction-polarized images and machine learning. Initially, a diffraction-polarization imaging system was established, and the diffraction fingerprint images of disease spores were taken in polarization directions of 0°, 45°, 90° and 135°. Subsequently, the diffraction-polarization images were processed, wherein the fingerprint features of the spore diffraction-polarization images were extracted. Finally, a support vector machine (SVM) classification algorithm was used to classify the disease spores. The study's results indicate that the diffraction-polarization imaging system can capture images of disease spores. Different spores all have their own unique diffraction-polarization fingerprint characteristics. The identification rates of tomato gray mold spores, cucumber downy mold spores and cucumber powdery mildew spores were 96.02%, 94.94% and 96.57%, respectively. The average identification rate of spores was 95.85%. This study can provide a research basis for the identification and classification of disease spores.


A New Technique for the Extraction of Arbuscular Mycorrhizae Fungal Spores from Rhizosphere.

  • Gökhan Boyno‎ et al.
  • Journal of fungi (Basel, Switzerland)‎
  • 2023‎

Monitoring the dynamics of the spore bank of arbuscular mycorrhizal fungi (AMF) is essential for the sustainable management and protection of agroecosystems. The most common method for extracting AMF spores from soil is the wet-sieving technique (WST). However, this method has many disadvantages. In this study, we modified the WST using new approaches: the ultrasound wet-sieving technique (UWST) and the ultrasound centrifuge technique (UCT). We enumerated and compared the numbers and quality of spores obtained from WST, UWST, and UCT to validate the new modified techniques. We extracted AMF spores from the rhizospheres of different plants, including wheat (Triticum aestivum L.), bean (Phaseolus vulgaris L.), tomato (Solanum lycopersicum L.), pepper (Piper nigrum L.), parsley (Petroselinum crispum Mill.), and turfgrass (Lolium perenne L.) collected from the Van Lake basin, Turkey. The highest and lowest AMF spore numbers were observed in wheat and turfgrass rhizospheres. The UCT allowed for the extraction of the highest number of spores from all rhizospheres, followed by the UWST and WST. The UWST and WST allowed for the extraction of similar spore numbers from wheat, pepper, parsley, and turfgrass rhizospheres. Beyond the high extracted spore number, UCT was shown to be a fast and low-material-consuming approach. These findings demonstrate that the UCT can be used to efficiently extract AMF spores in future research.


Assessment of fungal spores and spore-like diversity in environmental samples by targeted lysis.

  • Andrea Corona Ramirez‎ et al.
  • BMC microbiology‎
  • 2023‎

At particular stages during their life cycles, fungi use multiple strategies to form specialized structures to survive unfavorable environmental conditions. These strategies encompass sporulation, as well as cell-wall melanization, multicellular tissue formation or even dimorphism. The resulting structures are not only used to disperse to other environments, but also to survive long periods of time awaiting favorable growth conditions. As a result, these specialized fungal structures are part of the microbial seed bank, which is known to influence the microbial community composition and contribute to the maintenance of diversity. Despite the importance of the microbial seed bank in the environment, methods to study the diversity of fungal structures with improved resistance only target spores dispersing in the air, omitting the high diversity of these structures in terms of morphology and environmental distribution. In this study, we applied a separation method based on cell lysis to enrich lysis-resistant fungal structures (for instance, spores, sclerotia, melanized yeast) to obtain a proxy of the composition of the fungal seed bank. This approach was first evaluated in-vitro in selected species. The results obtained showed that DNA from fungal spores and from yeast was only obtained after the application of the enrichment method, while mycelium was always lysed. After validation, we compared the diversity of the total and lysis-resistant fractions in the polyextreme environment of the Salar de Huasco, a high-altitude athalassohaline wetland in the Chilean Altiplano. Environmental samples were collected from the salt flat and from microbial mats in small surrounding ponds. Both the lake sediments and microbial mats were dominated by Ascomycota and Basidiomycota, however, the diversity and composition of each environment differed at lower taxonomic ranks. Members of the phylum Chytridiomycota were enriched in the lysis-resistant fraction, while members of the phylum Rozellomycota were never detected in this fraction. Moreover, we show that the community composition of the lysis-resistant fraction reflects the diversity of life cycles and survival strategies developed by fungi in the environment. To the best of our knowledge this is the first time that the fungal diversity is explored in the Salar de Huasco. In addition, the method presented here provides a simple and culture independent approach to assess the diversity of fungal lysis-resistant cells in the environment.


Phenotypic and genotypic diversity of airborne fungal spores in Demänovská Ice Cave (Low Tatras, Slovakia).

  • Rafał Ogórek‎ et al.
  • Aerobiologia‎
  • 2018‎

This paper is the first aero-mycological report from Demänovská Ice Cave. Fungal spores were sampled from the internal and external air of the cave in June, 2014, using the impact method with a microbiological air sampler. Airborne fungi cultured on PDA medium were identified using a combination of classical phenotypic and molecular methods. Altogether, the presence of 18 different fungal spores, belonging to 3 phyla, 9 orders and 14 genera, was detected in the air of the cave. All of them were isolated from the indoor samples, and only 9 were obtained from the outdoor samples. Overall, airborne fungal spores belonging to the genus Cladosporium dominated in this study. However, the spores of Trametes hirsuta were most commonly found in the indoor air samples of the cave and the spores of C. herbarum in the outdoor air samples. On the other hand, the spores of Alternaria abundans, Arthrinium kogelbergense, Cryptococcus curvatus, Discosia sp., Fomes fomentarius, Microdochium seminicola and T. hirsuta were discovered for the first time in the air of natural and artificial underground sites. The external air of the cave contains more culturable airborne fungal spores (755 colony-forming units (CFU) per 1 m3 of air) than the internal air (from 47 to 273 CFU in 1 m3), and these levels of airborne spore concentration do not pose a threat to the health of tourists. Probably, the specific microclimate in the cave, including the constant presence of ice caps and low temperature, as well as the location and surrounding environment, contributes to the unique species composition of aeromycota and their spores in the cave. Thus, aero-mycological monitoring of underground sites seems to be very important for their ecosystems, and it may help reduce the risk of fungal infections in humans and other mammals that may arise in particular due to climate change.


Divergent TLR2 and TLR4 Activation by Fungal Spores and Species Diversity in Dust from Waste Sorting Plants.

  • Anani K Afanou‎ et al.
  • Applied and environmental microbiology‎
  • 2023‎

This manuscript presents the results of an exploratory study on the relationships between NF-κB response through Toll-like receptor (TLR) activation by dust characterized by fungal spore concentrations and species diversity. Personal total dust samples were collected from Norwegian waste sorting plants and then characterized for fungal spores and fungal species diversity, as well as for other bioaerosol components, including endotoxins and actinobacteria. The ability of the dust to induce an NF-κB response by activating TLR2 and TLR4 in vitro was evaluated, as well as the relationship between such responses and quantifiable bioaerosol components. The average concentrations of bioaerosols were 7.23 mg total dust m-3, 4.49 × 105 fungal spores m-3, 814 endotoxin units m-3, and 0.6 × 105 actinobacteria m-3. The mean diversity measurements were 326, 0.59, and 3.39 for fungal richness, evenness, and Shannon index, respectively. Overall, fungal operational taxonomic units (OTUs) belonging to the Ascomycota phylum were most abundant (55%), followed by Basidiomycota (33%) and Mucoromycota (3%). All samples induced significant NF-κB responses through TLR2 and TLR4 activation. While fungal spore levels were positively associated with TLR2 and TLR4 activation, there was a trend that fungal species richness was negatively associated with the activation of these receptors. This observation supports the existence of divergent immunological response relationships between TLR activation and fungal spore levels on one hand and between TLR activation and fungal species diversity on the other. Such relationships seem to be described for the first time for dust from waste facilities. IMPORTANCE This manuscript presents results on multifactorial characterization of bioaerosol exposure in Norwegian waste sorting plants and the potential of such airborne dust to induce NF-κB reactions through TLR2 and TLR4 activations in an in vitro reporter cell model system. Our data revealed that increasing fungal spore levels in the dust is associated with increased activation of TLR2 and TLR4, whereas increasing fungal OTU richness is associated with decreasing activation of these receptors. The NF-κB-induced responses by the collected dust represent, therefore, effective measures of potential key immunological effects induced by a complex mixture of hazardous components, including characterized factors such as endotoxins, fungal spores, bacteria, and many other uncharacterized components. The key immunological events reported here are suggested as holistic alternatives to today's bioaerosol exposure characterization approaches for epidemiological studies in the future.


Increased Production of Pathogenic, Airborne Fungal Spores upon Exposure of a Soil Mycobiota to Chlorinated Aromatic Hydrocarbon Pollutants.

  • Celso Martins‎ et al.
  • Microbiology spectrum‎
  • 2023‎

Organic pollutants are omnipresent and can penetrate all environmental niches. We evaluated the hypothesis that short-term (acute) exposure to aromatic hydrocarbon pollutants could increase the potential for fungal virulence. Specifically, we analyzed whether pentachlorophenol and triclosan pollution results in the production of airborne fungal spores with greater virulence than those derived from an unpolluted (Control) condition. Each pollutant altered the composition of the community of airborne spores compared to the control, favoring an increase in strains with in vivo infection capacity (the wax moth Galleria mellonella was used as an infection model). Fungi subsisting inside larvae at 72 h postinjection with airborne spore inocula collected in polluted and unpolluted conditions exhibited comparable diversity (mainly within Aspergillus fumigatus). Several virulent Aspergillus strains were isolated from larvae infected with the airborne spores produced in a polluted environment. Meanwhile, strains isolated from larvae injected with spores from the control, including one A. fumigatus strain, showed no virulence. Potential pathogenicity increased when two Aspergillus virulent strains were assembled, suggesting the existence of synergisms that impact pathogenicity. None of the observed taxonomic or functional traits could separate the virulent from the avirulent strains. Our study emphasizes pollution stress as a possible driver of phenotypic adaptations that increase Aspergillus pathogenicity, as well as the need to better understand the interplay between pollution and fungal virulence. IMPORTANCE Fungi colonizing soil and organic pollutants often meet. The consequences of this encounter constitute an outstanding question. We scrutinized the potential for virulence of airborne fungal spores produced under unpolluted and polluted scenarios. The airborne spores showed increased diversity of strains with higher infection capacity in Galleria mellonella whenever pollution is present. Inside the larvae injected with either airborne spore community, the surviving fungi demonstrated a similar diversity, mainly within Aspergillus fumigatus. However, the isolated Aspergillus strains greatly differ since virulence was only observed for those associated with a polluted environment. The interplay between pollution and fungal virulence still hides many unresolved questions, but the encounter is costly: pollution stress promotes phenotypic adaptations that may increase Aspergillus pathogenicity.


Combination of supercritical CO2 and high-power ultrasound for the inactivation of fungal and bacterial spores in lipid emulsions.

  • Angela Gomez-Gomez‎ et al.
  • Ultrasonics sonochemistry‎
  • 2021‎

For the first time, this study addresses the intensification of supercritical carbon dioxide (SC-CO2) treatments using high-power ultrasound (HPU) for the inactivation of fungal (Aspergillus niger) and bacterial (Clostridium butyricum) spores in oil-in-water emulsions. The inactivation kinetics were analyzed at different pressures (100, 350 and 550 bar) and temperatures (50, 60, 70, 80, 85 °C), depending on the microorganism, and compared to the conventional thermal treatment. The inactivation kinetics were satisfactorily described using the Weibull model. Experimental results showed that SC-CO2 enhanced the inactivation level of both spores when compared to thermal treatments. Bacterial spores (C.butyricum) were found to be more resistant to SC-CO2 + HPU, than fungal (A.niger) ones, as also observed in the thermal and SC-CO2 treatments. The application of HPU intensified the SC-CO2 inactivation of C.butyricum spores, e.g. shortening the total inactivation time from 10 to 3 min at 85 °C. However, HPU did not affect the SC-CO2 inactivation of A.niger spores. The study into the effect of a combined SC-CO2 + HPU treatment has to be necessarily extended to other fungal and bacterial spores, and future studies should elucidate the impact of HPU application on the emulsion's stability.


A Rapid Detection Method for Fungal Spores from Greenhouse Crops Based on CMOS Image Sensors and Diffraction Fingerprint Feature Processing.

  • Yafei Wang‎ et al.
  • Journal of fungi (Basel, Switzerland)‎
  • 2022‎

The detection and control of fungal spores in greenhouse crops are important for stabilizing and increasing crop yield. At present, the detection of fungal spores mainly adopts the method of combining portable volumetric spore traps and microscope image processing. This method is problematic as it is limited by the small field of view of the microscope and has low efficiency. This study proposes a rapid detection method for fungal spores from greenhouse crops based on CMOS image sensors and diffraction fingerprint feature processing. We built a diffraction fingerprint image acquisition system for fungal spores of greenhouse crops and collected diffraction fingerprint images of three kinds of fungal spores. A total of 13 diffraction fingerprint features were selected for the classification of fungal spores. These 13 characteristic values were divided into 3 categories, main bright fringe, main dark fringe, and center fringe. Then, these three features were calculated to obtain the Peak to Center ratio (PCR), Valley to Center ratio, and Peak to Valley ratio (PVR). Based on these features, logistics regression (LR), K nearest neighbor (KNN), random forest (RF), and support vector machine (SVM) classification models were built. The test results show that the SVM model has a better overall classification performance than the LR, KNN, and RF models. The average accuracy rate of the recognition of three kinds of fungal spores from greenhouse crops under the SVM model was 92.72%, while the accuracy rates of the LR, KNN, and RF models were 84.97%, 87.44%, and 88.72%, respectively. The F1-Score value of the SVM model was higher, and the overall average value reached 89.41%, which was 11.12%, 7.18%, and 5.57% higher than the LR, KNN, and RF models, respectively. Therefore, the method proposed in this study can be used for the remote identification of three fungal spores which can provide a reference for the identification of fungal spores in greenhouse crops and has the advantages of low cost and portability.


Estimating the abundance of airborne pollen and fungal spores at variable elevations using an aircraft: how high can they fly?

  • Athanasios Damialis‎ et al.
  • Scientific reports‎
  • 2017‎

Airborne pollen and fungal spores are monitored mainly in highly populated, urban environments, for allergy prevention purposes. However, their sources can frequently be located outside cities' fringes with more vegetation. So as to shed light to this paradox, we investigated the diversity and abundance of airborne pollen and fungal spores at various environmental regimes. We monitored pollen and spores using an aircraft and a car, at elevations from sea level to 2,000 m above ground, in the region of Thesssaloniki, Greece. We found a total of 24 pollen types and more than 15 spore types. Pollen and spores were detected throughout the elevational transect. Lower elevations exhibited higher pollen concentrations in only half of plant taxa and higher fungal spore concentrations in only Ustilago. Pinaceae and Quercus pollen were the most abundant recorded by airplane (>54% of the total). Poaceae pollen were the most abundant via car measurements (>77% of the total). Cladosporium and Alternaria spores were the most abundant in all cases (aircraft: >69% and >17%, car: >45% and >27%, respectively). We conclude that pollen and fungal spores can be diverse and abundant even outside the main source area, evidently because of long-distance transport incidents.


Control of Strongyles in First-Season Grazing Ewe Lambs by Integrating Deworming and Thrice-Weekly Administration of Parasiticidal Fungal Spores.

  • Mathilde Voinot‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2021‎

Parasiticidal fungi have been used in several in vivo experiments in livestock farms worldwide, constituting an effective tool for the biocontrol of gastrointestinal parasites in grazing animals. In the first year of study, two groups of eight first-season pasturing ewe lambs infected by strongyles were dewormed with albendazole, and then, the test group received an oral dose of 106 chlamydospores of Mucor circinelloides and 106 Duddingtonia flagrans individually and thrice a week from mid-September to May (FS1), while the control group remained without fungi (CT1). In the second year, two new groups of first-season grazing ewe lambs were treated with ivermectin and subjected to the same experimental design (FS2 and CT2, respectively). The anthelmintic efficacy was 96.6% (CT1), 95.6% (FS1), 96.1% (CT2), and 95.1% (FS2). The counts of strongyle egg output increased in the control groups (CT1 and CT2) throughout the study and reached numbers higher than 600 eggs per gram of feces (EPG), while in FS1 and FS2, they were <250 EPG. The values of red blood cell parameters registered for CT1 and CT2 were lower than those of the reference standards, while a significant increment was recorded in FS1 and FS2, and values within the physiological range were attained. It is concluded that integrating efficient anthelminthic deworming with rotational pasturing and the regular intake of chlamydospores of M. circinelloides and D. flagrans provides a helpful strategy for maintaining low levels of strongyle egg output in first-season grazing ewe lambs and improves their health status.


Methods for Manipulating Cryptococcus Spores.

  • Anna B Frerichs‎ et al.
  • Journal of fungi (Basel, Switzerland)‎
  • 2021‎

Spores are essential for the long-term survival of many diverse organisms, due to their roles in reproduction and stress resistance. In the environmental human fungal pathogen, Cryptococcus, basidiospores are robust cells with the ability to cause disease in animal models of infection. Here we describe methods for producing and purifying Cryptococcus basidiospores in quantities sufficient for large-scale analyses. The production of high numbers of pure spores has facilitated the development of new assays, including quantitative germination assays, and enabled transcriptomic, proteomic, and virulence studies, leading to discoveries of behaviors and properties unique to spores and spore-mediated disease.


Treatment of Microsporidium Nosema bombycis Spores with the New Antiseptic M250 Helps to Avoid Bacterial and Fungal Contamination of Infected Cultures without Affecting Parasite Polar Tube Extrusion.

  • Igor V Senderskiy‎ et al.
  • Microorganisms‎
  • 2024‎

Microsporidia are a group of widespread eukaryotic spore-forming intracellular parasites of great economic and scientific importance. Since microsporidia cannot be cultured outside of a host cell, the search for new antimicrosporidian drugs requires an effective antiseptic to sterilize microsporidian spores to infect cell lines. Here, we show that a new polyhexamethylene guanidine derivative M250, which is active against fungi and bacteria at a concentration of 0.5-1 mg/L, is more than 1000 times less effective against spores of the microsporidium Nosema bombycis, a highly virulent pathogen of the silkworm Bombyx mori (LC50 is 0.173%). Treatment of N. bombycis spores that were isolated non-sterilely from silkworm caterpillars with 0.1% M250 solution does not reduce the rate of spore polar tube extrusion. However, it completely prevents contamination of the Sf-900 III cell culture medium by microorganisms in the presence of antibiotics. The addition of untreated spores to the medium results in contamination, whether antibiotics are present or not. Since 0.1% M250 does not affect spore discharging, this compound may be promising for preventing bacterial and fungal contamination of microsporidia-infected cell cultures.


Aspergillus niger Spores Are Highly Resistant to Space Radiation.

  • Marta Cortesão‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

The filamentous fungus Aspergillus niger is one of the main contaminants of the International Space Station (ISS). It forms highly pigmented, airborne spores that have thick cell walls and low metabolic activity, enabling them to withstand harsh conditions and colonize spacecraft surfaces. Whether A. niger spores are resistant to space radiation, and to what extent, is not yet known. In this study, spore suspensions of a wild-type and three mutant strains (with defects in pigmentation, DNA repair, and polar growth control) were exposed to X-rays, cosmic radiation (helium- and iron-ions) and UV-C (254 nm). To assess the level of resistance and survival limits of fungal spores in a long-term interplanetary mission scenario, we tested radiation doses up to 1000 Gy and 4000 J/m2. For comparison, a 360-day round-trip to Mars yields a dose of 0.66 ± 0.12 Gy. Overall, wild-type spores of A. niger were able to withstand high doses of X-ray (LD90 = 360 Gy) and cosmic radiation (helium-ion LD90 = 500 Gy; and iron-ion LD90 = 100 Gy). Drying the spores before irradiation made them more susceptible toward X-ray radiation. Notably, A. niger spores are highly resistant to UV-C radiation (LD90 = 1038 J/m2), which is significantly higher than that of other radiation-resistant microorganisms (e.g., Deinococcus radiodurans). In all strains, UV-C treated spores (1000 J/m2) were shown to have decreased biofilm formation (81% reduction in wild-type spores). This study suggests that A. niger spores might not be easily inactivated by exposure to space radiation alone and that current planetary protection guidelines should be revisited, considering the high resistance of fungal spores.


Velvet-mediated repression of β-glucan synthesis in Aspergillus nidulans spores.

  • Hee-Soo Park‎ et al.
  • Scientific reports‎
  • 2015‎

Beta-glucans are a heterologous group of fibrous glucose polymers that are a major constituent of cell walls in Ascomycetes and Basidiomycetes fungi. Synthesis of β (1,3)- and (1,6)-glucans is coordinated with fungal cell growth and development, thus, is under tight genetic regulation. Here, we report that β-glucan synthesis in both asexual and sexual spores is turned off by the NF-kB like fungal regulators VosA and VelB in Aspergillus nidulans. Our genetic and genomic analyses have revealed that both VosA and VelB are necessary for proper down-regulation of cell wall biosynthetic genes including those associated with β-glucan synthesis in both types of spores. The deletion of vosA or velB results in elevated accumulation of β-glucan in asexual spores. Double mutant analyses indicate that VosA and VelB play an inter-dependent role in repressing β-glucan synthesis in asexual spores. In vivo chromatin immuno-precipitation analysis shows that both VelB and VosA bind to the promoter region of the β-glucan synthase gene fksA in asexual spores. Similarly, VosA is required for proper repression of β-glucan synthesis in sexual spores. In summary, the VosA-VelB hetero-complex is a key regulatory unit tightly controlling proper levels of β-glucan synthesis in asexual and sexual spores.


Two new rare species of Candolleomyces with pale spores from China.

  • Tolgor Bau‎ et al.
  • MycoKeys‎
  • 2021‎

Most species of Candolleomyces have brown or dark brown spores. Although pale-spored members are rare in the genus we frequently collected two such species from many Provinces during our investigations in subtropical China from 2016-2020. As revealed by morphological characterisation and multigene phylogenetic analyses (ITS LSU β-tub and tef-1α) these species which we have named C. subcacao and C. subminutisporus are unique and distinct from known taxa. In addition a new combination C. cladii-marisci is proposed on the basis of ITS sequence analysis of the type specimen. Detailed descriptions colour photos illustrations and a key to related species are presented.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: