Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 14,329 papers

Telocytes in the Spleen.

  • Yuqiao Chang‎ et al.
  • PloS one‎
  • 2015‎

Telocytes, a novel type of interstitial cells with very long and thin prolongations, have been identified in many organs in mammals. At present, the ultrastructural, immunocytochemical and electrophysiological properties of telocytes in multiple organs have been understood. However, telocytes in spleen, especially their roles in spleen have not been reported. The aim of this study was to investigate the ultrastructure, distribution and immunophenotypes of splenic telocytes. Rat spleen was harvested for the ultrastructure analysis by transmission electron microscopy (TEM). The primary culture of telocytes was performed after combined enzymatic digestion. The characteristic morphology was analyzed by a scanning electron microscopy (SEM). It was shown that telocytes displayed a piriform/spindle/triangular shape with long and slender telopods and extremely long prolongation contracting with surrounding cells in the spleen. Their dynamic profiles of cytoplasmic separation were recorded by the Live Cell Imaging System. The length of telopods was mostly distributing in 20-30 μm, in accordance with normal distribution. Most telocytes had three or two telopods (28.71% and 22.58% respectively). Immunostaining indicated that these cells were positive for vimentin, CD34, nanog and sca-1, but negative for c-kit. These data prove the existence of telocytes in the spleen, which may serve as the experimental base for exploring their roles in the spleen.


Gut-Spleen Axis: Microbiota via Vascular and Immune Pathways Improve Busulfan-Induced Spleen Disruption.

  • Hanhan Fang‎ et al.
  • mSphere‎
  • 2023‎

Fecal microbiota transplantation (FMT) is an effective means of modulating gut microbiota for the treatment of many diseases, including Clostridioides difficile infections. The gut-spleen axis has been established, and this is involved in the development and function of the spleen. However, it is not understood whether gut microbiota can be used to improve spleen function, especially in spleens disrupted by a disease or an anti-cancer treatment. In the current investigation, we established that alginate oligosaccharide (AOS)-improved gut microbiota (A10-FMT) can rescue anticancer drug busulfan-disrupted spleen vasculature and spleen function. A10-FMT improved the gene and/or protein expression of genes involved in vasculature development, increased the cell proliferation rate, enhanced the endothelial progenitor cell capability, and elevated the expression of the cell junction molecules to increase the vascularization of the spleen. This investigation found for the first time that the reestablishment of spleen vascularization restored spleen function by improving spleen immune cells and iron metabolism. These findings may be used as a strategy to minimize the side effects of anti-cancer drugs or to improve spleen vasculature-related diseases. IMPORTANCE Alginate oligosaccharide (AOS)-improved gut microbiota (A10-FMT) can rescue busulfan disrupted spleen vasculature. A10-FMT improved the cell proliferation rate, endothelial progenitor cell capability, and cell junction molecules to increase vasculature formation in the spleen. This reestablishment restored spleen function by improving spleen immune cells and iron metabolism. These findings are useful for the treatment of spleen vasculature-related diseases.


Hit the spleen, JAK!

  • Steven W Lane‎ et al.
  • Blood‎
  • 2014‎

In this issue of Blood, Wang et al report on the response of splenic-derived hematopoietic stem and progenitor cells from patients with myelofibrosis (MF) to the Janus kinase (JAK) inhibitor, AZD1480.


Morphology of the Spleen in Oreochromis niloticus: Splenic Subregions and the Blood-Spleen Barrier.

  • Yang He‎ et al.
  • Animals : an open access journal from MDPI‎
  • 2021‎

The spleen is a separate organ of the teleost, playing an essential role in immune reactions. The morphology of the spleen is different from the fish species. Little knowledge about the spleen structure and the blood splenic barrier (BSB) in Nile tilapia has been reported. To address this issue, we studied the histology of the spleen and the BSB in healthy Nile tilapia. The morphology of the spleen was observed, then H&E staining, modified Jame's staining, and ultrastructural techniques were performed to portion the spleen into three subregions and analyze the location of components and fibers. Thereafter, vital staining of Nile tilapia with Trypan blue was conducted to elucidate the composition and function of BSB. Histologically, the spleen could be divided into three subregions (inner, middle, and outer). The venules, clumps of lymphocytes, and vessels were separately characterized features of the outer, middle, and inner layers. Post injection, Trypan blue was intercepted in the endotheliocytes of ellipsoids in the middle layer (i.p.) or was deposited to the reticular fibers surrounding the ellipsoids (i.v.). Additionally, the amount of Trypan blue was shown to be positively correlated to that of the Acid phosphatase expressed. In conclusion, the spleen could be portioned into three subregions, and the BSB lay in the middle layer, composed of the cuboidal-shaped endotheliocytes and the surrounding reticular fibers of the ellipsoid capillaries. The present study enriched the research of immune tissues and system in tilapia and provided reference for the study of spleen in other fish species.


Correlation between elevated inflammatory cytokines of spleen and spleen index in acute spinal cord injury.

  • Feng Wu‎ et al.
  • Journal of neuroimmunology‎
  • 2020‎

Spinal cord injury (SCI) is a devastating disorder. After SCI, it initiates a robust immune response. Considering the spleen is one of the most important immune organs, the present study further characterizes the inflammatory cytokine profile of spleen in acute SCI.


Per1/Per2 knockout Affects Spleen Immune Function in Elderly Mice via Inducing Spleen Lymphocyte Ferroptosis.

  • Ruyi He‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Disturbances in circadian rhythms are known to affect immune functions. However, the long-term impact of abnormal circadian rhythms on the immune-related functions of the spleen are poorly understood. Hence, we aimed to investigate the immune-related functions of spleen in Per1/Per2 double-knockout (DKO) and wild-type (WT) mice aged 4, 9, and 14 months. Compared to the WT mice, the DKO mice had smaller spleen white pulp (WP) and lymphocyte germinal area, as well as fewer immune cells with age-these differences were especially clear. The spleen lymphocyte mortality, malondialdehyde (MDA) levels, reactive oxygen species (ROS) levels, and ferritin-binding receptor (TFR1) levels were significantly higher in the 14-month-old DKO mice than in WT mice of the same age. Transcriptome analysis showed that most of the differentially expressed mRNAs were enriched in DNA damage repair-related pathways. In DKO mice, spleen cells showed up-regulation of pro-ferroptosis genes, such as Cd36,Atm, and Acsl4, and down-regulation of anti-ferroptosis genes, such as GPX4. We found that long-term abnormalities in the circadian rhythm can induce DNA damage and ferroptosis in mouse spleen.


The dynamics of spleen morphogenesis.

  • Sally F Burn‎ et al.
  • Developmental biology‎
  • 2008‎

The mammalian spleen has important functions in immunity and haematopoiesis but little is known about the events that occur during its early embryonic development. Here we analyse the origin of the cells that gives rise to the splenic mesenchyme and the process by which the precursors assume their position along the left lateral side of the stomach. We report a highly conserved regulatory element that regulates the Nkx2-5 gene throughout early spleen development. A transgenic mouse line carrying this element driving a reporter gene was used to show that morphogenesis of the spleen initiates bilaterally and posterior to the stomach, before the splenic precursors grow preferentially leftward. In addition the transgenic line was used in an organ culture system to track spleen precursor cells during development. Spleen cells were shown to move from the posterior mesenchyme and track along the left side of the stomach. Removal of tissue from the anterior stomach resulted in splenic cells randomly scattering suggesting a guidance role for the anterior stomach. Using a mouse line carrying a conditional Cre recombinase to mark early precursor cell populations, the spleen was found to derive from posterior mesenchyme distinct from the closely adjacent stomach mesenchyme.


Ectopic prostatic tissue in the spleen.

  • U Vogel‎ et al.
  • Virchows Archiv : an international journal of pathology‎
  • 1996‎

Ectopic prostatic tissue was found in the spleen in a 49-year-old white man who died of wide-spread malignant mesothelioma. The prostatic origin of the tissue was affirmed by positive immunohistochemical staining for prostatic specific antigen and prostatic acid phosphatase.


Spleen and head kidney differential gene expression patterns in trout infected with Lactococcus garvieae correlate with spleen granulomas.

  • Rosario Castro‎ et al.
  • Veterinary research‎
  • 2019‎

Lactococcus garvieae is a significant pathogen in aquaculture with a potential zoonotic risk. To begin to characterize the late immune response of trout to lactococcosis, we selected infected individuals showing clinical signs of lactococcosis. At the time lactococcosis clinical signs appeared, infection by L. garvieae induced a robust inflammatory response in the spleen of rainbow trout, which correlated with abundant granulomatous lesions. The response in kidney goes in parallel with that of spleen, and most of the gene regulations are similar in both organs. A correlation existed between the early inflammatory granulomas in spleen (containing macrophages with internalized L. garvieae) and up-regulated gene sets, which defined the presence of macrophages and neutrophils. This is the first analysis of the immune transcriptome of rainbow trout following L. garvieae infection during the initiation of adaptive immune mechanisms and shows a transcriptome induction of antibody response by both IgM (+) and IgT (+) spleen B cells to respond to systemic infection. These results increase our understanding of lactococcosis and pave the way for future research to improve control measures of lactococcosis on fish farms.


Computed tomography of the spleen in chickens.

  • Yasamin Vali‎ et al.
  • Frontiers in veterinary science‎
  • 2023‎

The avian spleen is an important immune organ in birds and its size can be used as an index of immune system responses in different conditions. Based on the lack of knowledge in computed tomography of the spleen in chickens, the present study was conducted to assess the inter-and intraobserver reliability in the measurement of the spleen dimensions and attenuation, as well as the feasibility of utilization of these measurements as a predictor of different diseases. For these purposes, the spleens of 47 chickens were included in the study. Two observers measured the dimensions and attenuations of the spleen, which were finally compared with the clinical diagnosis. The results showed an excellent interobserver reliability in the length, width, and height of the spleen (ICC: 0.944, 0.906, and 0.938, retrospectively), and a good interobserver reliability was observed during the evaluation of the average Hounsfield units of the spleen (ICC: 0.818). The intraobserver reliability was excellent in all the measurements (ICC > 0.940). Additionally, no statistical differences were detected in the spleen size and attenuation between the normal and diseased groups. Based on the present results, the computed tomographic measurements of the spleen could not predict the clinical diseases of the chickens; however, the low rates of the inter- and intraobserver variability suggest the reliable utilization of these computed tomographic measurements in routine clinical application and follow-up examinations.


Redefining Myeloid Cell Subsets in Murine Spleen.

  • Ying-Ying Hey‎ et al.
  • Frontiers in immunology‎
  • 2015‎

Spleen is known to contain multiple dendritic and myeloid cell subsets, distinguishable on the basis of phenotype, function and anatomical location. As a result of recent intensive flow cytometric analyses, splenic dendritic cell (DC) subsets are now better characterized than other myeloid subsets. In order to identify and fully characterize a novel splenic subset termed "L-DC" in relation to other myeloid cells, it was necessary to investigate myeloid subsets in more detail. In terms of cell surface phenotype, L-DC were initially characterized as a CD11b(hi)CD11c(lo)MHCII(-)Ly6C(-)Ly6G(-) subset in murine spleen. Their expression of CD43, lack of MHCII, and a low level of CD11c was shown to best differentiate L-DC by phenotype from conventional DC subsets. A complete analysis of all subsets in spleen led to the classification of CD11b(hi)CD11c(lo)MHCII(-)Ly6C(lo)Ly6G(-) cells as monocytes expressing CX3CR1, CD43 and CD115. Siglec-F expression was used to identify a specific eosinophil population, distinguishable from both Ly6C(lo) and Ly6C(hi) monocytes, and other DC subsets. L-DC were characterized as a clear subset of CD11b(hi)CD11c(lo)MHCII(-)Ly6C(-)Ly6G(-) cells, which are CD43(+), Siglec-F(-) and CD115(-). Changes in the prevalence of L-DC compared to other subsets in spleens of mutant mice confirmed the phenotypic distinction between L-DC, cDC and monocyte subsets. L-DC development in vivo was shown to occur independently of the BATF3 transcription factor that regulates cDC development, and also independently of the FLT3L and GM-CSF growth factors which drive cDC and monocyte development, so distinguishing L-DC from these commonly defined cell types.


Strain-specific spleen remodelling in Plasmodium yoelii infections in Balb/c mice facilitates adherence and spleen macrophage-clearance escape.

  • Lorena Martin-Jaular‎ et al.
  • Cellular microbiology‎
  • 2011‎

Knowledge of the dynamic features of the processes driven by malaria parasites in the spleen is lacking. To gain insight into the function and structure of the spleen in malaria, we have implemented intravital microscopy and magnetic resonance imaging of the mouse spleen in experimental infections with non-lethal (17X) and lethal (17XL) Plasmodium yoelii strains. Noticeably, there was higher parasite accumulation, reduced motility, loss of directionality, increased residence time and altered magnetic resonance only in the spleens of mice infected with 17X. Moreover, these differences were associated with the formation of a strain-specific induced spleen tissue barrier of fibroblastic origin, with red pulp macrophage-clearance evasion and with adherence of infected red blood cells to this barrier. Our data suggest that in this reticulocyte-prone non-lethal rodent malaria model, passage through the spleen is different from what is known in other Plasmodium species and open new avenues for functional/structural studies of this lymphoid organ in malaria.


Spleen Tyrosine Kinase Inhibition Modulates p53 Activity.

  • Mohammad Althubiti‎
  • Journal of cell death‎
  • 2017‎

Spleen tyrosine kinase (SYK) is a cytoplasmic enzyme that promotes survival and proliferation of B cells. SYK inhibition has shown promising results in the treatment of arthritis and chronic lymphocytic leukemia (CLL). However, in other context, it has been shown that SYK overexpression in epithelial cancer cells induced senescence in p53-dependent mechanism, which underscored its antineoplastic activity in vitro. Here, we show that SYK was induced in response of DNA damage in parallel with p53 levels. In addition, using chemical inhibitors of SYK reduced p53 levels in HCT116 and HT1080 cell lines, which underlines the role of SYK inhibition on p53 activity. Furthermore, SYK inhibition modulated the cell growth, which resulted in a decreasing in cell death. Interestingly, SYK expression showed a positive prognosis in patients with solid tumors in correlations with their survival rates, as expected negative correlation was seen between SYK expression and survival rate of patients with CLL. In conclusion, these findings demonstrate that SYK inhibition modulates p53 expression and activity in HCT116 and HT1080 cells. Reconsidering using of SYK inhibitors in clinical setting in the future should be evaluated carefully in accordance with these findings to prevent the formation of secondary malignancies.


Liver-spleen axis dysfunction in COVID-19.

  • Sara Cococcia‎ et al.
  • World journal of gastroenterology‎
  • 2021‎

Coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an acute infectious disease that spreads mainly through the respiratory route. Besides interstitial pneumonia, a number of other clinical manifestations were noticed in COVID-19 patients. In particular, liver and spleen dysfunctions have been described both as complications of COVID-19 and as potential predisposing factors for severe COVID-19. Liver damage is rather common in COVID-19 patients, and it is most likely multifactorial, caused by the direct insult of SARS-CoV-2 to the liver by the cytokine storm triggered by the virus, by the use of hepatotoxic drugs, and as a consequence of hypoxia. Although generally mild, liver impairment has been found to be associated with a higher rate of intensive care unit admission. A higher mortality rate was reported among chronic liver disease patients. Instead, spleen impairment in patients with COVID-19 has been poorly described. The main anatomical changes are the architectural derangement of the B cell compartment, white pulp atrophy, and reduction or absence of lymphoid follicles, while, from a functional point of view, the IgM memory B cell pool is markedly depleted. The outcome of COVID-19 in asplenic or hyposplenic patients is yet to be defined. In this review, we will summarise the current knowledge regarding the impact of SARS-CoV-2 on the liver and spleen function, as well as the outcome of patients with a pre-existent liver disease or defective spleen function.


Stromal Cell Subsets Directing Neonatal Spleen Regeneration.

  • Jonathan K H Tan‎ et al.
  • Scientific reports‎
  • 2017‎

Development of lymphoid tissue is determined by interactions between stromal lymphoid tissue organiser (LTo) and hematopoietic lymphoid tissue inducer (LTi) cells. A failure for LTo to receive appropriate activating signals during embryogenesis through lymphotoxin engagement leads to a complete cessation of lymph node (LN) and Peyer's patch development, identifying LTo as a key stromal population for lymphoid tissue organogenesis. However, little is known about the equivalent stromal cells that induce spleen development. Here, by dissociating neonatal murine spleen stromal tissue for re-aggregation and transplant into adult mouse recipients, we have identified a MAdCAM-1+CD31+CD201+ spleen stromal organizer cell-type critical for new tissue formation. This finding provides an insight into the regulation of post-natal spleen tissue organogenesis, and could be exploited in the development of spleen regenerative therapies.


Evaluation of a Deep Learning Algorithm for Automated Spleen Segmentation in Patients with Conditions Directly or Indirectly Affecting the Spleen.

  • Aymen Meddeb‎ et al.
  • Tomography (Ann Arbor, Mich.)‎
  • 2021‎

The aim of this study was to develop a deep learning-based algorithm for fully automated spleen segmentation using CT images and to evaluate the performance in conditions directly or indirectly affecting the spleen (e.g., splenomegaly, ascites). For this, a 3D U-Net was trained on an in-house dataset (n = 61) including diseases with and without splenic involvement (in-house U-Net), and an open-source dataset from the Medical Segmentation Decathlon (open dataset, n = 61) without splenic abnormalities (open U-Net). Both datasets were split into a training (n = 32.52%), a validation (n = 9.15%) and a testing dataset (n = 20.33%). The segmentation performances of the two models were measured using four established metrics, including the Dice Similarity Coefficient (DSC). On the open test dataset, the in-house and open U-Net achieved a mean DSC of 0.906 and 0.897 respectively (p = 0.526). On the in-house test dataset, the in-house U-Net achieved a mean DSC of 0.941, whereas the open U-Net obtained a mean DSC of 0.648 (p < 0.001), showing very poor segmentation results in patients with abnormalities in or surrounding the spleen. Thus, for reliable, fully automated spleen segmentation in clinical routine, the training dataset of a deep learning-based algorithm should include conditions that directly or indirectly affect the spleen.


Existence of Neural Stem Cells in Mouse Spleen.

  • Koichi Tomita‎ et al.
  • TheScientificWorldJournal‎
  • 2019‎

Pluripotent stem cells are used in regenerative medicine and exist in various internal organs. However, there are a small number of reports of neural cells or neural stem cells existing in the spleen. In this study, we sought to identify possible neural stem cells in the mouse spleen. The spleens of ICR mice were removed and small specimens were incubated in Dulbecco's modified Eagle's medium with Nutrient Mixture F-12 containing either 10% fetal bovine serum (FBS), 20% FBS, 10% neonate bovine serum, or 10% fetal calf serum. Neural cell medium was also used. The cultured cells were investigated for expression of the neural cell markers neuron-specific enolase (NSE) and neurofilament 150 kDa (NF-150) by immunocytochemistry. Mouse spleens were also examined by immunohistochemistry for NSE, NF-150, NF-200, peripherin, and glial fibrillary acidic protein. Cells morphologically resembling neural cells were obtained and were positive for neural cell markers. Some of the cells generated sphere-like formations, which may have been neurospheres. Cell proliferation was best in medium containing 10% FBS. Cells positive for neural markers were observed in the subcapsular and perivascular regions of the spleen. The cells were round and present in much lower numbers than in cell culture. These cells are suspected neural stem cells and would be expected to differentiate into neural cells in cell culture. This report suggests the existence of neural stem cells in the mouse spleen.


Vacuum Stabilization of the Spleen in Laparoscopic Splenectomy.

  • Philip S L Gan‎
  • JSLS : Journal of the Society of Laparoendoscopic Surgeons‎
  • 2016‎

Recovery from laparoscopic splenectomy is greatly enhanced when compared with recovery from the laparotomy approach, yet a minority of spleens are removed laparoscopically. The spleen is smooth, rounded, and vascular, making it difficult to directly grasp, stabilize, or retract laparoscopically. The LiVac Retractor is a laparoscopic liver retractor comprising a soft silicone open ring that apposes 2 substantially planar surfaces when a vacuum is applied. It was evaluated for its efficacy in stabilization of the spleen during 2 laparoscopic splenectomies.


Dasatinib-induced spleen contraction leads to transient lymphocytosis.

  • Ana Marcos-Jiménez‎ et al.
  • Blood advances‎
  • 2023‎

The tyrosine kinase inhibitor dasatinib is approved for Philadelphia chromosome-positive leukemia, including chronic myeloid leukemia (CML). Although effective and well tolerated, patients typically exhibit a transient lymphocytosis after dasatinib uptake. To date, the underlying physiological process linking dasatinib to lymphocytosis remains unknown. Here, we used a small rodent model to examine the mechanism of dasatinib-induced lymphocytosis, focusing on lymphocyte trafficking into and out of secondary lymphoid organs. Our data indicate that lymphocyte homing to lymph nodes and spleen remained unaffected by dasatinib treatment. In contrast, dasatinib promoted lymphocyte egress from spleen with kinetics consistent with the observed lymphocytosis. Unexpectedly, dasatinib-induced lymphocyte egress occurred independently of canonical sphingosine-1-phosphate-mediated egress signals; instead, dasatinib treatment led to a decrease in spleen size, concomitant with increased splenic stromal cell contractility, as measured by myosin light chain phosphorylation. Accordingly, dasatinib-induced lymphocytosis was partially reversed by pharmacological inhibition of the contraction-promoting factor Rho-rho associated kinase. Finally, we uncovered a decrease in spleen size in patients with CML who showed lymphocytosis immediately after dasatinib treatment, and this reduction was proportional to the magnitude of lymphocytosis and dasatinib plasma levels. In summary, our work provides evidence that dasatinib-induced lymphocytosis is a consequence of drug-induced contractility of splenic stromal cells.


Distinct Neutrophil Populations in the Spleen During PICS.

  • Satarupa Sengupta‎ et al.
  • Frontiers in immunology‎
  • 2020‎

While mortality after acute sepsis has decreased, the long-term recovery for survivors is still poor, particularly those developing persistent inflammation, immunosuppression, and catabolism syndrome (PICS). While previously thought that activated neutrophils responding to the acute phase of sepsis migrate to the spleen to undergo cell death and contribute to immunosuppression, our data show a significant accumulation of distinct, yet functional, neutrophil populations in the spleen in a murine model of PICS. The exact role and function of neutrophils in this response is still unclear. The objective of our study was to better define the immune function of splenic neutrophils to determine if this could give insight into the pathogenesis of PICS. Using a murine model of cecal ligation and puncture (CLP), which demonstrates all characteristics of PICS by 8 days, spleens were harvested, and neutrophils were identified by Ly6G and CD11b expression via flow cytometry. Nearly all splenic neutrophils expressed CD54, but there were distinct CD54hi and CD54lo cells, with the majority being CD54lo cells during PICS. The CD54hi population showed traditional, proinflammatory properties, but a relatively decreased chemotactic response, while CD54lo cells had significantly higher chemotaxis, yet significantly decreased proinflammatory functions. Using 5-ethynyl-2'-deoxyuridine (EdU) incorporation, we found that the CD54hi population on day 2 after CLP may be participating in emergency myelopoiesis. However, the vast majority of the CD54lo population were paused in the G1 phase at this time point and not proliferating. By day 8 after CLP, most of the CD54hi cells in the spleen were no longer proliferating, while the CD54lo cells were, indicating that CD54lo dominate in extramedullary myelopoiesis at later time points. Almost none of the neutrophils produced arginase or inducible nitric oxide synthase (iNOS), indicating that these are not suppressor cells. Overall, our data demonstrate that neutrophil accumulation in the spleen during PICS is related to extramedullary myelopoiesis, leading to the production of immature neutrophils. While not suppressor cells, the majority have greater chemotactic function but less inflammatory responsiveness, which may contribute to the immunosuppression seen in PICS. Attention to these distinct neutrophil populations after septic or other systemic inflammatory responses is therefore critical to understanding the mechanisms of PICS.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: