Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Spirochetes isolated from arthropods constitute a novel genus Entomospira genus novum within the order Spirochaetales.

  • Lucía Graña-Miraglia‎ et al.
  • Scientific reports‎
  • 2020‎

Spirochetal bacteria were successfully isolated from mosquitoes (Culex pipiens, Aedes cinereus) in the Czech Republic between 1999 and 2002. Preliminary 16S rRNA phylogenetic sequence analysis showed that these strains differed significantly from other spirochetal genera within the family Spirochaetaceae and suggested a novel bacterial genus in this family. To obtain more comprehensive genomic information of these isolates, we used Illumina MiSeq and Oxford Nanopore technologies to sequence four genomes of these spirochetes (BR151, BR149, BR193, BR208). The overall size of the genomes varied between 1.68 and 1.78 Mb; the GC content ranged from 38.5 to 45.8%. Draft genomes were compared to 36 publicly available genomes encompassing eight genera from the class Spirochaetes. A phylogeny generated from orthologous genes across all taxa and the percentage of conserved proteins (POCP) confirmed the genus status of these novel spirochetes. The genus Entomospira gen. nov. is proposed with BR151 selected as type species of the genus. For this isolate and the closest related isolate, BR149, we propose the species name Entomospira culicis sp. nov. The two other isolates BR208 and BR193 are named Entomospira nematocera sp. nov. (BR208) and Entomospira entomophilus sp. nov. (BR193). Finally, we discuss their interesting phylogenetic positioning.


Molecular Detection and Characterization of Borrelia garinii (Spirochaetales: Borreliaceae) in Ixodes nipponensis (Ixodida: Ixodidae) Parasitizing a Dog in Korea.

  • Seung-Hun Lee‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2019‎

The present study aimed to detect and characterize Borrelia spp. in ticks attached to dogs in Korea. Overall, 562 ticks (276 pools) attached to dogs were collected and tested for Borrelia infection by PCR targeting the 5S-23S rRNA intergenic spacer region (rrf-rrl). One tick larva (pool level, 0.4%; individual level, 0.2%) was confirmed by sequencing Borrelia garinii, a zoonotic pathogen. For molecular characterization, the outer surface protein A (ospA) and flagellin genes were analyzed. Phylogenetic ospA analysis distinguished B. garinii from B. bavariensis, which has been recently identified as a novel Borrelia species. On the other hand, phylogenetic analysis showed that single gene analysis involving rrf-rrl or flagellin was not sufficient to differentiate B. garinii from B. bavariensis. In addition, the B. garinii-infected tick was identified as Ixodes nipponensis by sequencing according to mitochondrial 16S rRNA and the second transcribed spacer region. To our knowledge, this is the first study to report the molecular detection of B. garinii in I. nipponensis parasitizing a dog in Korea. Continuous monitoring of tick-borne pathogens in ticks attached to animals is required to avoid disease distribution and possible transmission to humans.


Autogenous reproduction by Ornithodoros turicata (Ixodida: Argasidae) females and vertical transmission of the tick-borne pathogen Borrelia turicatae (Spirochaetales: Borreliaceae).

  • Serhii Filatov‎ et al.
  • Applied and environmental microbiology‎
  • 2023‎

Previous research has implicated Ornithodoros ticks, including Ornithodoros turicata, as long-term reservoirs of relapsing fever (RF) spirochetes. Considering the tick's long lifespan and their efficiency in maintaining and transferring spirochetes within the population, the infection could persist in a given enzootic focus for decades. However, little is known about the relative importance of horizontal and vertical transmission routes in the persistence and evolution of RF Borrelia. Our observations on the reproductive biology of O. turicata in the absence of vertebrate hosts indicate an additional mechanism by which Borrelia turicatae can be maintained in the environment. This work establishes the foundation for studying O. turicata reproduction and spirochete-vector interactions, which will aid in devising control measures for Ornithodoros ticks and RF spirochetes.


Spirochaetes dominate the microbial community associated with the red coral Corallium rubrum on a broad geographic scale.

  • Jeroen A J M van de Water‎ et al.
  • Scientific reports‎
  • 2016‎

Mass mortality events in populations of the iconic red coral Corallium rubrum have been related to seawater temperature anomalies that may have triggered microbial disease development. However, very little is known about the bacterial community associated with the red coral. We therefore aimed to provide insight into this species' bacterial assemblages using Illumina MiSeq sequencing of 16S rRNA gene amplicons generated from samples collected at five locations distributed across the western Mediterranean Sea. Twelve bacterial species were found to be consistently associated with the red coral, forming a core microbiome that accounted for 94.6% of the overall bacterial community. This core microbiome was particularly dominated by bacteria of the orders Spirochaetales and Oceanospirillales, in particular the ME2 family. Bacteria belonging to these orders have been implicated in nutrient cycling, including nitrogen, carbon and sulfur. While Oceanospirillales are common symbionts of marine invertebrates, our results identify members of the Spirochaetales as other important dominant symbiotic bacterial associates within Anthozoans.


Characterization of the BspA and Pmp protein family of trichomonads.

  • Maria R Handrich‎ et al.
  • Parasites & vectors‎
  • 2019‎

Trichomonas vaginalis is a human-infecting trichomonad and as such the best studied and the only for which the full genome sequence is available considering its parasitic lifestyle, T. vaginalis encodes an unusually high number of proteins. Many gene families are massively expanded and some genes are speculated to have been acquired from prokaryotic sources. Among the latter are two gene families that harbour domains which share similarity with proteins of Bacteroidales/Spirochaetales and Chlamydiales: the BspA and the Pmp proteins, respectively.


Tick-Borne Pathogens in Questing Blacklegged Ticks (Acari: Ixodidae) From Pike County, Pennsylvania.

  • Sarah Schwartz‎ et al.
  • Journal of medical entomology‎
  • 2022‎

Active surveillance was conducted by collecting questing ticks from vegetation through a 2-yr survey in Pike County, Pennsylvania. Over a thousand blacklegged ticks (Ixodes scapularis Say) and American dog ticks (Dermacentor variabilis Say) were collected. A single specimen of the following species was collected: lone star tick (Amblyomma americanum L.), rabbit tick (Haemaphysalis leporispalustris Packard), and an Asian longhorned tick (Haemaphysalis longicornis Neumann). This study represents the largest county-wide study in Pennsylvania, surveying 988 questing I. scapularis adult and nymphs. Molecular detection of five distinct tick-borne pathogens was screened through real-time PCR at a single tick resolution. Respectively, the overall 2-yr adult and nymph prevalence were highest with Borrelia burgdorferi (Spirochaetales: Spirochaetacceae) (45.99%, 18.94%), Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae) (12.29%, 7.95%) where the variant-ha (8.29%, 3.03%) was overall more prevalent than the variant-v1 (2.49%, 4.17%), Babesia microti (Piroplasmida: Babesiidae) (4.97%, 5.30%), Borrelia miyamotoi (Spirochaetales: Spirochaetaceae) (1.38%, 1.89%), and Powassan virus lineage II [POWV]/deer tick virus (DTV) (2.07%, 0.76%). Adult and nymph coinfection prevalence of B. burgdorferi and B. microti (3.03%, 4.97%) and adult coinfection of B. burgdorferi and A. phagocytophilum or A. phagocytophilum and B. microti were significantly higher than the independent infection rate expected naturally. This study highlights the urgency to conduct diverse surveillance studies with large sample sizes to better understand the human risk for tick-borne diseases within small geographical areas.


A phylogenomic and molecular signature based approach for characterization of the phylum Spirochaetes and its major clades: proposal for a taxonomic revision of the phylum.

  • Radhey S Gupta‎ et al.
  • Frontiers in microbiology‎
  • 2013‎

The Spirochaetes species cause many important diseases including syphilis and Lyme disease. Except for their containing a distinctive endoflagella, no other molecular or biochemical characteristics are presently known that are specific for either all Spirochaetes or its different families. We report detailed comparative and phylogenomic analyses of protein sequences from Spirochaetes genomes to understand their evolutionary relationships and to identify molecular signatures for this group. These studies have identified 38 conserved signature indels (CSIs) that are specific for either all members of the phylum Spirochaetes or its different main clades. Of these CSIs, a 3 aa insert in the FlgC protein is uniquely shared by all sequenced Spirochaetes providing a molecular marker for this phylum. Seven, six, and five CSIs in different proteins are specific for members of the families Spirochaetaceae, Brachyspiraceae, and Leptospiraceae, respectively. Of the 19 other identified CSIs, 3 are uniquely shared by members of the genera Sphaerochaeta, Spirochaeta, and Treponema, whereas 16 others are specific for the genus Borrelia. A monophyletic grouping of the genera Sphaerochaeta, Spirochaeta, and Treponema distinct from the genus Borrelia is also strongly supported by phylogenetic trees based upon concatenated sequences of 22 conserved proteins. The molecular markers described here provide novel and more definitive means for identification and demarcation of different main groups of Spirochaetes. To accommodate the extensive genetic diversity of the Spirochaetes as revealed by different CSIs and phylogenetic analyses, it is proposed that the four families of this phylum should be elevated to the order level taxonomic ranks (viz. Spirochaetales, Brevinematales ord. nov., Brachyspiriales ord. nov., and Leptospiriales ord. nov.). It is further proposed that the genera Borrelia and Cristispira be transferred to a new family Borreliaceae fam. nov. within the order Spirochaetales.


Effect of a Profound Feedstock Change on the Structure and Performance of Biogas Microbiomes.

  • Johanna Klang‎ et al.
  • Microorganisms‎
  • 2020‎

In this study the response of biogas-producing microbiomes to a profound feedstock change was investigated. The microbiomes were adapted to the digestion of either 100% sugar beet, maize silage, or of the silages with elevated amounts of total ammonium nitrogen (TAN) by adding ammonium carbonate or animal manure. The feedstock exchange resulted in a short-range decrease or increase in the biogas yields according to the level of chemical feedstock complexity. Fifteen taxa were found in all reactors and can be considered as generalists. Thirteen taxa were detected in the reactors operated with low TAN and six in the reactors with high TAN concentration. Taxa assigned to the phylum Bacteroidetes and to the order Spirochaetales increased with the exchange to sugar beet silage, indicating an affinity to easily degradable compounds. The recorded TAN-sensitive taxa (phylum Cloacimonetes) showed no specific affinity to maize or sugar beet silage. The archaeal community remained unchanged. The reported findings showed a smooth adaptation of the microbial communities, without a profound negative impact on the overall biogas production indicating that the two feedstocks, sugar beet and maize silage, potentially do not contain chemical compounds that are difficult to handle during anaerobic digestion.


Schizasterid Heart Urchins Host Microorganisms in a Digestive Symbiosis of Mesozoic Origin.

  • Alexander Ziegler‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

Because of their lifestyles, abundance, and feeding habits, infaunal marine deposit feeders have a significant impact on the ocean floor. As these animals also ingest microorganisms associated with their sediment and seawater diet, their digestive tract usually contains a diverse array of bacteria. However, while most of these microorganisms are transients, some may become part of a resident gut microbiome, in particular when sheltered from the main flow of digesta in specialized gut compartments. Here, we provide an in-depth analysis of the structure and contents of the intestinal caecum (IC), a hindgut diverticulum found exclusively in schizasterid heart urchins (Echinoidea: Spatangoida: Schizasteridae). Based on specimens of Brisaster townsendi, in addition to various other schizasterid taxa, our structural characterization of the IC shows that the organ is a highly specialized gut compartment with unique structural properties. Next generation sequencing shows that the IC contains a microbial population composed predominantly of Bacteroidales, Desulfobacterales, and Spirochaetales. The microbiome of this gut compartment is significantly different in composition and lower in diversity than the microbial population in the sediment-filled main digestive tract. Inferences on the function and evolution of the IC and its microbiome suggest that this symbiosis plays a distinct role in host nutrition and that it evolved at least 66 million years ago during the final phase of the Mesozoic.


Phagocytosis of the Lyme disease spirochete, Borrelia burgdorferi, by cells from the ticks, Ixodes scapularis and Dermacentor andersoni, infected with an endosymbiont, Rickettsia peacockii.

  • Joshua T Mattila‎ et al.
  • Journal of insect science (Online)‎
  • 2007‎

Tick cell lines were used to model the effects of endosymbiont infection on phagocytic immune responses. The lines tested for their ability to phagocytose the Lyme disease spirochete, Borrelia burgdorferi (Spirochaetales: Spirochaetaceae), were ISE6 and IDE12 from the black-legged tick, Ixodes scapularis Say (Acari: Ixodidae) and DAE15 from the Rocky Mountain wood tick, Dermacentor andersoni Stiles. Rickettsia peacockii (Rickettsiales: Rickettsiaceae), an endosymbiont of D. andersoni, was used as a representative tick endosymbiont. 70-80% of uninfected or R. peacocciz-infected IDE12 and DAE15 cells phagocytosed heat-killed borreliae and 80-90% of IDE12 and DAE15 cells phagocytosed viable spirochetes. ISE6 cells were permissive of spirochetes; less than 1% of these cells phagocytosed borreliae, and spirochetes remained adherent to the cells seven days after inoculation. Cytochalasin B blocked phagocytosis of killed and viable borreliae by IDE12 cells, and prevented phagocytosis of killed spirochetes by DAE15 cells, whereas viable spirochetes successfully invaded cytochalasin-treated DAE15. IDE12 and DAE15 cells degraded borreliae within phagolysosome-like compartments. Time-lapse microscopy showed that DAE15 cells phagocytosed borreliae more rapidly than IDE12 cells. IDE12 and DAE15 cells eliminated most adherent spirochetes within 7 days of inoculation. Thus, endosymbiont infection does not significantly interfere with the phagocytic activity of immunocompetent tick cells.


Passive collection of ticks in New Hampshire reveals species-specific patterns of distribution and activity.

  • Natalia Fernández-Ruiz‎ et al.
  • Journal of medical entomology‎
  • 2023‎

Ticks and tick-borne diseases are increasing in the United States, including New Hampshire (NH). We report on the findings of an ongoing free crowdsourcing program spanning four years within NH. The date of tick's submission was recorded along with species, sex, stage, location they were collected (translated into latitude and longitude), the activity the individual was doing when the tick was found, and host species. A total of 14,252 ticks belonging to subclass Acari, family Ixodidae and genera Ixodes, Dermacentor, Amblyomma, and Haemaphysalis was recorded from the period 2018-2021 throughout NH. A total of 2,787 Ixodes scapularis and 1,041 Dermacentor variabilis, were tested for the presence of Borrelia sp. (Spirochaetales: Spirochaetaceae), B. burgdorferi sensu lato, B. miyamotoi, B. mayonii, Babesia microti (Piroplasmida: Babesiidae), Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae), Francisella tularensis (Thiotrichales: Francisellaceae), and Rickettsia rickettsii (Rickettsiales: Rickettsiaceae) by PCR. For the I. scapularis ticks tested, the pathogen prevalence was 37% B. burgdorferi s.l. 1% B. miyamotoi, 6% A. phagocytophilum, and 5% Ba. microti. Only one D. variabilis resulted positive to F. tularensis. We created state-wide maps informing the differences of ticks as detailed by administrative divisions. Dermacentor variabilis peaked in June and I. scapularis peaked in May and October. The most reported activity by people with tick encounters was while walking/hiking, and the least was biking. Using the reported distribution of both species of ticks, we modeled their climate suitability in the target territory. In NH, I. scapularis and D. variabilis have distinct patterns of emergence, abundance, and distribution. Tick prevention is important especially during April-August when both tick species are abundant and active.


Oxygen deprivation influences the survival of Listeria monocytogenes in gerbils.

  • Jillian Harris‎ et al.
  • Translational animal science‎
  • 2019‎

Listeria monocytogenes is a facultative anaerobic foodborne pathogen capable of surviving harsh environments. Recent work has indicated that anaerobic conditions increase the resistance capability of certain strains to environmental stressors. The goal of the study was to conduct a preliminary study to determine whether exposure to anaerobic conditions prior to infection increases the ability to survive in vivo. Gerbils were inoculated with one of five doses of the L. monocytogenes strain F2365 by oral gavage: phosphate-buffered saline (control), 5 × 106 colony forming units aerobic culture (low aerobic), 5 × 108 aerobic culture (high aerobic), 5 × 106 anaerobic culture (low anaerobic), or 5 × 108 anaerobic culture (high anaerobic) dose of F2365. Gerbils inoculated with a high aerobic or anaerobic dose exhibited significant weight loss. Gerbils administered either the low or high anaerobic dose had at least 3 log10 of L. monocytogenes present in fecal samples, which contrasted with gerbils that received the low aerobic dose. Animals that received the high anaerobic dose had a significant increase in bacterial loads within the liver. Histologic examination of the L. monocytogenes positive livers exhibited locally extensive areas of hepatocellular necrosis, though the extent of this damage differed between treatment groups. Microbial community analysis of the cecum from gerbils infected with L. monocytogenes indicated that the abundance of Bacteroidales and Clostridiales increased and there was a decrease in the abundance of Spirochaetales. This study suggests that anaerobic conditions alter the localization pattern of L. monocytogenes within the gastrointestinal tract. These findings could relate to how different populations are more susceptible to listeriosis, as oxygen availability may differ within the gastrointestinal tract.


Noma affected children from Niger have distinct oral microbial communities based on high-throughput sequencing of 16S rRNA gene fragments.

  • Katrine L Whiteson‎ et al.
  • PLoS neglected tropical diseases‎
  • 2014‎

We aim to understand the microbial ecology of noma (cancrum oris), a devastating ancient illness which causes severe facial disfigurement in>140,000 malnourished children every year. The cause of noma is still elusive. A chaotic mix of microbial infection, oral hygiene and weakened immune system likely contribute to the development of oral lesions. These lesions are a plausible entry point for unidentified microorganisms that trigger gangrenous facial infections. To catalog bacteria present in noma lesions and identify candidate noma-triggering organisms, we performed a cross-sectional sequencing study of 16S rRNA gene amplicons from sixty samples of gingival fluid from twelve healthy children, twelve children suffering from noma (lesion and healthy sites), and twelve children suffering from Acute Necrotizing Gingivitis (ANG) (lesion and healthy sites). Relative to healthy individuals, samples taken from lesions in diseased mouths were enriched with Spirochaetes and depleted for Proteobacteria. Samples taken from healthy sites of diseased mouths had proportions of Spirochaetes and Proteobacteria that were similar to healthy control individuals. Samples from noma mouths did not have a higher abundance of Fusobacterium, casting doubt on its role as a causative agent of noma. Microbial communities sampled from noma and ANG lesions were dominated by the same Prevotella intermedia OTU, which was much less abundant in healthy sites sampled from the same mouths. Multivariate analysis confirmed that bacterial communities in healthy and lesion sites were significantly different. Several OTUs in the Orders Erysipelotrichales, Clostridiales, Bacteroidales, and Spirochaetales were identified as indicators of noma, suggesting that one or more microbes within these Orders is associated with the development of noma lesions. Future studies should include longitudinal sampling of viral and microbial components of this community, before and early in noma lesion development.


Identification of Microbial Genetic Capacities and Potential Mechanisms Within the Rumen Microbiome Explaining Differences in Beef Cattle Feed Efficiency.

  • Marc D Auffret‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

In this study, Bos Taurus cattle offered one high concentrate diet (92% concentrate-8% straw) during two independent trials allowed us to classify 72 animals comprising of two cattle breeds as "Low" or "High" feed efficiency groups. Digesta samples were taken from individual beef cattle at the abattoir. After metagenomic sequencing, the rumen microbiome composition and genes were determined. Applying a targeted approach based on current biological evidence, 27 genes associated with host-microbiome interaction activities were selected. Partial least square analysis enabled the identification of the most significant genes and genera of feed efficiency (VIP > 0.8) across years of the trial and breeds when comparing all potential genes or genera together. As a result, limited number of genes explained about 40% of the variability in both feed efficiency indicators. Combining information from rumen metagenome-assembled genomes and partial least square analysis results, microbial genera carrying these genes were determined and indicated that a limited number of important genera impacting on feed efficiency. In addition, potential mechanisms explaining significant difference between Low and High feed efficiency animals were analyzed considering, based on the literature, their gastrointestinal location of action. High feed efficiency animals were associated with microbial species including several Eubacterium having the genetic capacity to form biofilm or releasing metabolites like butyrate or propionate known to provide a greater contribution to cattle energy requirements compared to acetate. Populations associated with fucose sensing or hemolysin production, both mechanisms specifically described in the lower gut by activating the immune system to compete with pathogenic colonizers, were also identified to affect feed efficiency using rumen microbiome information. Microbial mechanisms associated with low feed efficiency animals involved potential pathogens within Proteobacteria and Spirochaetales, releasing less energetic substrates (e.g., acetate) or producing sialic acid to avoid the host immune system. Therefore, this study focusing on genes known to be involved in host-microbiome interaction improved the identification of rumen microbial genetic capacities and potential mechanisms significantly impacting on feed efficiency in beef cattle fed high concentrate diet.


Faecal Microbiota Characterisation of Potamochoerus porcus Living in a Controlled Environment.

  • Donatella Scarafile‎ et al.
  • Microorganisms‎
  • 2023‎

Intestinal bacteria establish a specific relationship with the host animal, which causes the acquisition of gut microbiota with a unique composition classified as the enterotype. As the name suggests, the Red River Hog is a wild member of the pig family living in Africa, in particular through the West and Central African rainforest. To date, very few studies have analysed the gut microbiota of Red River Hogs (RRHs) both housed under controlled conditions and in wild habitats. This study analysed the intestinal microbiota and the distribution of Bifidobacterium species in five Red River Hog (RRH) individuals (four adults and one juvenile), hosted in two different modern zoological gardens (Parco Natura Viva, Verona, and Bioparco, Rome) with the aim of disentangling the possible effects of captive different lifestyle and host genetics. Faecal samples were collected and studied both for bifidobacterial counts and isolation by means of culture-dependent method and for total microbiota analysis through the high-quality sequences of the V3-V4 region of bacterial 16S rRNA. Results showed a host-specific bifidobacterial species distribution. Indeed, B. boum and B. thermoacidophilum were found only in Verona RRHs, whereas B. porcinum species were isolated only in Rome RRHs. These bifidobacterial species are also typical of pigs. Bifidobacterial counts were about 106 CFU/g in faecal samples of all the individuals, with the only exception for the juvenile subject, showing 107 CFU/g. As in human beings, in RRHs a higher count of bifidobacteria was also found in the young subject compared with adults. Furthermore, the microbiota of RRHs showed qualitative differences. Indeed, Firmicutes was found to be the dominant phylum in Verona RRHs whereas Bacteroidetes was the most represented in Roma RRHs. At order level, Oscillospirales and Spirochaetales were the most represented in Verona RRHs compared with Rome RRHs, where Bacteroidales dominated over the other taxa. Finally, at the family level, RRHs from the two sites showed the presence of the same families, but with different levels of abundance. Our results highlight that the intestinal microbiota seems to reflect the lifestyle (i.e., the diet), whereas age and host genetics are the driving factors for the bifidobacterial population.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: