Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,708 papers

Indexing cerebrovascular health using near-infrared spectroscopy.

  • Rashid Afkhami‎ et al.
  • Scientific reports‎
  • 2021‎

Near-infrared spectroscopy (NiRS) is a relatively new technology of brain imaging with its potential in the assessment of cerebrovascular health only recently discovered. Encouraging early results suggest that NiRS can be used as an inexpensive and portable cerebrovascular health tracking device using a recently proposed pulse relaxation function (PReFx). In this paper, we propose a new NiRS timing index, [Formula: see text], of cerebrovascular health. [Formula: see text] is a novel use of the NiRS technology. [Formula: see text] is motivated by the previously proved relationship of the timing of the reflected wave with vascular resistance and compliance in the context of pressure waveforms. We correlated both [Formula: see text] and PReFx against age, a non-exercise cardiorespiratory fitness (CRF) index, and two existing indices of cerebrovascular health, namely transcranial Doppler (TCD) augmentation index, [Formula: see text], and magnetic resonance imaging (MRI) blood flow pulsatility index, [Formula: see text]. The [Formula: see text] correlations with Age, CRF, [Formula: see text] and [Formula: see text] all are significant, i.e., [Formula: see text] ([Formula: see text]), [Formula: see text] ([Formula: see text]), [Formula: see text] ([Formula: see text]) and [Formula: see text] ([Formula: see text]), respectively. PReFx, however, did not have significant correlations with any of the vascular health factors. The proposed timing index is a reliable indicator of cerebrovascular aging factors in the NiRS waveform.


Monitoring osteoarthritis progression using near infrared (NIR) spectroscopy.

  • Isaac O Afara‎ et al.
  • Scientific reports‎
  • 2017‎

We demonstrate in this study the potential of near infrared (NIR) spectroscopy as a tool for monitoring progression of cartilage degeneration in an animal model. Osteoarthritic degeneration was artificially induced in one joint in laboratory rats, and the animals were sacrificed at four time points: 1, 2, 4, and 6 weeks (3 animals/week). NIR spectra were acquired from both (injured and intact) knees. Subsequently, the joint samples were subjected to histological evaluation and glycosaminoglycan (GAG) content analysis, to assess disease severity based on the Mankin scoring system and to determine proteoglycan loss, respectively. Multivariate spectral techniques were then employed for classification (principal component analysis and support vector machines) and prediction (partial least squares regression) of the samples' Mankin scores and GAG content from their NIR spectra. Our results demonstrate that NIR spectroscopy is sensitive to degenerative changes in articular cartilage, and is capable of distinguishing between mild (weeks 1&2; Mankin <=2) and advanced (weeks 4&6; Mankin =>3) cartilage degeneration. In addition, the spectral data contains information that enables estimation of the tissue's Mankin score (error = 12.6%, R2 = 86.2%) and GAG content (error = 7.6%, R2 = 95%). We conclude that NIR spectroscopy is a viable tool for assessing cartilage degeneration post-injury, such as, post-traumatic osteoarthritis.


Assessment of Cognitive Reserve using Near Infrared Spectroscopy.

  • Andrei V Medvedev‎
  • Journal of analytical techniques and research‎
  • 2022‎

Cognitive reserve (CR) is the ability to preserve cognitive functions in the presence of brain pathology. In the context of Alzheimer's disease (AD), patients with higher CR show better cognitive performance relative to brain damage therefore higher CR reduces the risk of dementia. There is a strong need to develop a neurophysiological biomarker of CR given the growing interest in understanding protective brain mechanisms in AD. FMRI studies indicate that frontoparietal network plays an important role in cognitive reserve. We calculated intraregional functional connectivity of lateral prefrontal cortex (FC LPFC) using functional near infrared spectroscopy (fNIRS) in the resting state of 13 healthy individuals who were also assessed for IQ and motoric skills (the Purdue Pegboard test, PPT). FC LPFC was found to positively correlate with IQ (a proxy measure of cognitive reserve) while showing a lack of or negative correlation with the PPT scores. The results demonstrate that the cost-effective, noninvasive and widely applicable fNIRS technology can be used to evaluate cognitive reserve in individuals at risk for and patients with AD with possible numerous applications in the context of healthy aging and other age-related cognitive disorders.


Assessing functional impulsivity using functional near-infrared spectroscopy.

  • Kenta Nakazawa‎ et al.
  • Frontiers in neuroergonomics‎
  • 2023‎

In neuromarketing, a recently developing, inter-disciplinary field combining neuroscience and marketing, neurophysiological responses have been applied to understand consumers' behaviors. While many studies have focused on explicit attitudes, few have targeted implicit aspects. To explore the possibility of measuring implicit desire for a product, we focused on functional impulsivity related to obtaining a product as a reward and devised a product-rewarded traffic light task (PRTLT). The PRTLT requires participants to take risks under time pressure in order for them to maximize rewards in the form of commercial products, with the brand of products being an independent variable. Thus, we explored the feasibility of applying a PRTLT in a neuromarketing context to implicitly differentiate between the perceived value of products and supported our data with neurophysiological evidence obtained using fNIRS to concurrently monitor cortical activation.


Near-infrared spectroscopy for metabolite quantification and species identification.

  • Wen C Aw‎ et al.
  • Ecology and evolution‎
  • 2019‎

Near-infrared (NIR) spectroscopy is a high-throughput method to analyze the near-infrared region of the electromagnetic spectrum. It detects the absorption of light by molecular bonds and can be used with live insects. In this study, we investigate the accuracy of NIR spectroscopy in determining triglyceride level and species of wild-caught Drosophila. We employ the chemometric approach to produce a multivariate calibration model. The multivariate calibration model is the mathematical relationship between the changes in NIR spectra and the property of interest as determined by the reference analytical method. Once the calibration model was developed, we used an independent set to validate the accuracy of the calibration model. The optimized calibration model for triglyceride quantification yielded coefficients of determination of 0.73 for the calibration test set and 0.70 for the independent test set. Simultaneously, we used NIR spectroscopy to discriminate two species of Drosophila. Flies from independent sets were correctly classified into Drosophila melanogaster and Drosophila simulans with accuracy higher than 80%. These results suggest that NIRS has the potential to be used as a high-throughput screening method to assess a live individual insect's triglyceride level and taxonomic status.


Functional Near-Infrared Spectroscopy Neurofeedback Enhances Human Spatial Memory.

  • Xin Hou‎ et al.
  • Frontiers in human neuroscience‎
  • 2021‎

Spatial memory is an important cognitive function for human daily life and may present dysfunction or decline due to aging or clinical diseases. Functional near-infrared spectroscopy neurofeedback (fNIRS-NFB) is a promising neuromodulation technique with several special advantages that can be used to improve human cognitive functions by manipulating the neural activity of targeted brain regions or networks. In this pilot study, we intended to test the feasibility of fNIRS-NFB to enhance human spatial memory ability. The lateral parietal cortex, an accessible cortical region in the posterior medial hippocampal-cortical network that plays a crucial role in human spatial memory processing, was selected as the potential feedback target. A placebo-controlled fNIRS-NFB experiment was conducted to instruct individuals to regulate the neural activity in this region or an irrelevant control region. Experimental results showed that individuals learned to up-regulate the neural activity in the region of interest successfully. A significant increase in spatial memory performance was found after 8-session neurofeedback training in the experimental group but not in the control group. Furthermore, neurofeedback-induced neural activation increase correlated with spatial memory improvement. In summary, this study preliminarily demonstrated the feasibility of fNIRS-NFB to improve human spatial memory and has important implications for further applications.


Near-Infrared Spectroscopy (NIRS) in Traumatic Brain Injury (TBI).

  • María Roldán‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2021‎

Traumatic brain injury (TBI) occurs when a sudden trauma causes damage to the brain. TBI can result when the head suddenly and violently impacts an object or when an object pierces the skull and enters brain tissue. Secondary injuries after traumatic brain injury (TBI) can lead to impairments on cerebral oxygenation and autoregulation. Considering that secondary brain injuries often take place within the first hours after the trauma, noninvasive monitoring might be helpful in providing early information on the brain's condition. Near-infrared spectroscopy (NIRS) is an emerging noninvasive monitoring modality based on chromophore absorption of infrared light with the capability of monitoring perfusion of the brain. This review investigates the main applications of NIRS in TBI monitoring and presents a thorough revision of those applications on oxygenation and autoregulation monitoring. Databases such as PubMed, EMBASE, Web of Science, Scopus, and Cochrane library were utilized in identifying 72 publications spanning between 1977 and 2020 which were directly relevant to this review. The majority of the evidence found used NIRS for diagnosis applications, especially in oxygenation and autoregulation monitoring (59%). It was not surprising that nearly all the patients were male adults with severe trauma who were monitored mostly with continue wave NIRS or spatially resolved spectroscopy NIRS and an invasive monitoring device. In general, a high proportion of the assessed papers have concluded that NIRS could be a potential noninvasive technique for assessing TBI, despite the various methodological and technological limitations of NIRS.


Functional localization of audiovisual speech using near infrared spectroscopy.

  • Iliza M Butera‎ et al.
  • Brain topography‎
  • 2022‎

Visual cues are especially vital for hearing impaired individuals such as cochlear implant (CI) users to understand speech in noise. Functional Near Infrared Spectroscopy (fNIRS) is a light-based imaging technology that is ideally suited for measuring the brain activity of CI users due to its compatibility with both the ferromagnetic and electrical components of these implants. In a preliminary step toward better elucidating the behavioral and neural correlates of audiovisual (AV) speech integration in CI users, we designed a speech-in-noise task and measured the extent to which 24 normal hearing individuals could integrate the audio of spoken monosyllabic words with the corresponding visual signals of a female speaker. In our behavioral task, we found that audiovisual pairings provided average improvements of 103% and 197% over auditory-alone listening conditions in -6 and -9 dB signal-to-noise ratios consisting of multi-talker background noise. In an fNIRS task using similar stimuli, we measured activity during auditory-only listening, visual-only lipreading, and AV listening conditions. We identified cortical activity in all three conditions over regions of middle and superior temporal cortex typically associated with speech processing and audiovisual integration. In addition, three channels active during the lipreading condition showed uncorrected correlations associated with behavioral measures of audiovisual gain as well as with the McGurk effect. Further work focusing primarily on the regions of interest identified in this study could test how AV speech integration may differ for CI users who rely on this mechanism for daily communication.


NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy.

  • Jong Chul Ye‎ et al.
  • NeuroImage‎
  • 2009‎

Near infrared spectroscopy (NIRS) is a non-invasive method to measure brain activity via changes in the degree of hemoglobin oxygenation through the intact skull. As optically measured hemoglobin signals strongly correlate with BOLD signals, simultaneous measurement using NIRS and fMRI promises a significant mutual enhancement of temporal and spatial resolutions. Although there exists a powerful statistical parametric mapping tool in fMRI, current public domain statistical tools for NIRS have several limitations related to the quantitative analysis of simultaneous recording studies with fMRI. In this paper, a new public domain statistical toolbox known as NIRS-SPM is described. It enables the quantitative analysis of NIRS signal. More specifically, NIRS data are statistically analyzed based on the general linear model (GLM) and Sun's tube formula. The p-values are calculated as the excursion probability of an inhomogeneous random field on a representation manifold that is dependent on the structure of the error covariance matrix and the interpolating kernels. NIRS-SPM not only enables the calculation of activation maps of oxy-, deoxy-hemoglobin and total hemoglobin, but also allows for the super-resolution localization, which is not possible using conventional analysis tools. Extensive experimental results using finger tapping and memory tasks confirm the viability of the proposed method.


Hearing brain evaluated using near-infrared spectroscopy in congenital toxoplasmosis.

  • Ana Lívia Libardi Bertachini‎ et al.
  • Scientific reports‎
  • 2021‎

Congenital toxoplasmosis (CT) is a known cause of hearing loss directly caused by Toxoplasma gondii. Hearing loss might result from sensory, neural, or sensorineural lesions. Early treated infants rarely develop hearing loss, but retinochoroidal lesions, intracranial calcifications and hydrocephalus are common. In this study, we aimed to evaluate the brain evoked hemodynamic responses of CT and healthy infants during four auditory stimuli: mother infant directed speech, researcher infant directed speech, mother reading and researcher recorded. Children underwent Transitionally Evoked Otoacoustic Emission Auditory Testing and Automated Brainstem Auditory Response tests with normal auditory results, but with a tendency for greater latencies in the CT group compared to the control group. We assessed brain hemodynamics with functional near-infrared spectroscopy (fNIRS) measurements from 61 infants, and we present fNIRS results as frequency maps of activation and deactivation for each stimulus. By evaluating infants in the three first months of life, we observed an individual heterogeneous brain activation pattern in response to all auditory stimuli for both groups. Each channel was activated or deactivated in less than 30% of children for all stimuli. There is a need of prospective studies to evaluate if the neurologic or auditory changes course with compromise of children outcomes.


Correcting physiological noise in whole-head functional near-infrared spectroscopy.

  • Fan Zhang‎ et al.
  • Journal of neuroscience methods‎
  • 2021‎

Functional near-infrared spectroscopy (fNIRS) has been increasingly employed to monitor cerebral hemodynamics in normal and diseased conditions. However, fNIRS suffers from its susceptibility to superficial activity and systemic physiological noise. The objective of the study was to establish a noise reduction method for fNIRS in a whole-head montage.


Characterizing human subchondral bone properties using near-infrared (NIR) spectroscopy.

  • Isaac O Afara‎ et al.
  • Scientific reports‎
  • 2018‎

Degenerative joint conditions are often characterized by changes in articular cartilage and subchondral bone properties. These changes are often associated with subchondral plate thickness and trabecular bone morphology. Thus, evaluating subchondral bone integrity could provide essential insights for diagnosis of joint pathologies. This study investigates the potential of optical spectroscopy for characterizing human subchondral bone properties. Osteochondral samples (n = 50) were extracted from human cadaver knees (n = 13) at four anatomical locations and subjected to NIR spectroscopy. The samples were then imaged using micro-computed tomography to determine subchondral bone morphometric properties, including: plate thickness (Sb.Th), trabecular thickness (Tb.Th), volume fraction (BV/TV), and structure model index (SMI). The relationship between the subchondral bone properties and spectral data in the 1st (650-950 nm), 2nd (1100-1350 nm) and 3rd (1600-1870 nm) optical windows were investigated using partial least squares (PLS) regression multivariate technique. Significant correlations (p < 0.0001) and relatively low prediction errors were obtained between spectral data in the 1st optical window and Sb.Th (R2 = 92.3%, error = 7.1%), Tb.Th (R2 = 88.4%, error = 6.7%), BV/TV (R2 = 83%, error = 9.8%) and SMI (R2 = 79.7%, error = 10.8%). Thus, NIR spectroscopy in the 1st tissue optical window is capable of characterizing and estimating subchondral bone properties, and can potentially be adapted during arthroscopy.


Controlling jaw-related motion artifacts in functional near-infrared spectroscopy.

  • Fan Zhang‎ et al.
  • Journal of neuroscience methods‎
  • 2023‎

Functional near-infrared spectroscopy (fNIRS) as a non-invasive optical neuroimaging technique has demonstrated great potential in monitoring cerebral activity. Due to its portability and compatibility with medical implants, fNIRS has seen increasing applications in studying the hearing, language and cognitive functions. However, fNIRS is susceptible to artifacts related to jaw movements, such as teeth clenching, swallowing and speaking, which affect recordings over the temporal, parietal and frontal/prefrontal cortices.


Test-retest reliability of functional near infrared spectroscopy in infants.

  • Anna Blasi‎ et al.
  • Neurophotonics‎
  • 2014‎

There has been a rapid rise in the number of publications using functional near infrared spectroscopy (fNIRS) for human developmental research over the past decade. However test-retest reliability of this measure of brain activation in infants remains unknown. To assess this, we utilized data from a longitudinal cohort who participated in an fNIRS study on social perception at two age points. Thirteen infants had valid data from two sessions held 8.5 months apart (4 to 8 months and 12 to 16 months). Inter- and intrasession fNIRS test-retest reliability was assessed at the individual and group levels using the oxyhemoglobin ([Formula: see text]) signal. Infant compliance with the study was similar in both sessions (assessed by the proportion of time infants looked to the stimuli), and there was minimal discrepancy in sensor placement over the targeted area between sessions. At the group level, good spatial overlap of significant responses and signal reliability was seen (spatial overlap was 0.941 and average signal change within an region of interest was [Formula: see text]). At participant level, spatial overlap was acceptable ([Formula: see text] on average across infants) although signal reliability varied between participants. This first study of test-retest reliability of fNIRS in infants shows encouraging results, particularly for group-based analysis.


Interpretation of Near-Infrared Spectroscopy (NIRS) Signals in Skeletal Muscle.

  • Adeola A Sanni‎ et al.
  • Journal of functional morphology and kinesiology‎
  • 2019‎

Near-infrared spectroscopy (NIRS) uses the relative absorption of light at 850 and 760 nm to determine skeletal muscle oxygen saturation. Previous studies have used the ratio of both signals to report muscle oxygen saturation.


Near-Infrared Spectroscopy Intravascular Ultrasound Imaging: State of the Art.

  • Kayode O Kuku‎ et al.
  • Frontiers in cardiovascular medicine‎
  • 2020‎

Acute coronary syndromes (ACS) secondary to coronary vessel plaques represent a major cause of cardiovascular morbidity and mortality worldwide. Advancements in imaging technology over the last 3 decades have continuously enabled the study of coronary plaques via invasive imaging methods like intravascular ultrasound (IVUS) and optical coherence tomography (OCT). The introduction of near-infrared spectroscopy (NIRS) as a modality that could detect the lipid (cholesterol) content of atherosclerotic plaques in the early nineties, opened the potential of studying "vulnerable" or rupture-prone, lipid-rich coronary plaques in ACS patients. Most recently, the ability of NIRS-IVUS to identify patients at risk of future adverse events was shown in a prospective multicenter trial, the Lipid-Rich-plaque Study. Intracoronary NIRS-IVUS imaging offers a unique method of coronary lipid-plaque characterization and could become a valuable clinical diagnostic and treatment monitoring tool.


Functional near-infrared spectroscopy for the assessment of speech related tasks.

  • A C Dieler‎ et al.
  • Brain and language‎
  • 2012‎

Over the past years functional near-infrared spectroscopy (fNIRS) has substantially contributed to the understanding of language and its neural correlates. In contrast to other imaging techniques, fNIRS is well suited to study language function in healthy and psychiatric populations due to its cheap and easy application in a quiet and natural measurement setting. Its relative insensitivity for motion artifacts allows the use of overt speech tasks and the investigation of verbal conversation. The present review focuses on the numerous contributions of fNIRS to the field of language, its development, and related psychiatric disorders but also on its limitations and chances for the future.


Hemodynamic Pattern Recognition During Deception Process Using Functional Near-infrared Spectroscopy.

  • Roberto Vega‎ et al.
  • Journal of medical and biological engineering‎
  • 2016‎

Deception is considered a psychological process by which one individual deliberately attempts to convince another person to accept as true what the liar knows to be false. This paper presents the use of functional near-infrared spectroscopy for deception detection. This technique measures hemodynamic variations in the cortical regions induced by neural activations. The experimental setup involved a mock theft paradigm with ten subjects, where the subjects responded to a set of questions, with each of their answers belonging to one of three categories: Induced Lies, Induced Truths, and Non-Induced responses. The relative changes of the hemodynamic activity in the subject's prefrontal cortex were recorded during the experiment. From this data, the changes in blood volume were derived and represented as false color topograms. Finally, a human evaluator used these topograms as a guide to classify each answer into one of the three categories. His performance was compared with that of a support vector machine (SVM) classifier in terms of accuracy, specificity, and sensitivity. The human evaluator achieved an accuracy of 84.33 % in a tri-class problem and 92 % in a bi-class problem (induced vs. non-induced responses). In comparison, the SVM classifier correctly classified 95.63 % of the answers in a tri-class problem using cross-validation for the selection of the best features. These results suggest a tradeoff between accuracy and computational burden. In other words, it is possible for an interviewer to classify each response by only looking at the topogram of the hemodynamic activity, but at the cost of reduced prediction accuracy.


Near-infrared spectroscopy: a report from the McDonnell infant methodology consortium.

  • Judit Gervain‎ et al.
  • Developmental cognitive neuroscience‎
  • 2011‎

Near-infrared spectroscopy (NIRS) is a new and increasingly widespread brain imaging technique, particularly suitable for young infants. The laboratories of the McDonnell Consortium have contributed to the technological development and research applications of this technique for nearly a decade. The present paper provides a general introduction to the technique as well as a detailed report of the methodological innovations developed by the Consortium. The basic principles of NIRS and some of the existing developmental studies are reviewed. Issues concerning technological improvements, parameter optimization, possible experimental designs and data analysis techniques are discussed and illustrated by novel empirical data.


Intracoronary near-infrared spectroscopy and the risk of future cardiovascular events.

  • Sofia Karlsson‎ et al.
  • Open heart‎
  • 2019‎

The objectives of this study were to investigate if findings by intracoronary near-infrared spectroscopy (NIRS) and intravascular ultrasound (IVUS) are associated with future cardiovascular events and if NIRS can differentiate culprit from non-culprit segments in patients with coronary artery disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: