Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 408 papers

Volitional control of vocalizations in corvid songbirds.

  • Katharina F Brecht‎ et al.
  • PLoS biology‎
  • 2019‎

Songbirds are renowned for their acoustically elaborate songs. However, it is unclear whether songbirds can cognitively control their vocal output. Here, we show that crows, songbirds of the corvid family, can be trained to exert control over their vocalizations. In a detection task, three male carrion crows rapidly learned to emit vocalizations in response to a visual cue with no inherent meaning (go trials) and to withhold vocalizations in response to another cue (catch trials). Two of these crows were then trained on a go/nogo task, with the cue colors reversed, in addition to being rewarded for withholding vocalizations to yet another cue (nogo trials). Vocalizations in response to the detection of the go cue were temporally precise and highly reliable in all three crows. Crows also quickly learned to withhold vocal output in nogo trials, showing that vocalizations were not produced by an anticipation of a food reward in correct trials. The results demonstrate that corvids can volitionally control the release and onset of their vocalizations, suggesting that songbird vocalizations are under cognitive control and can be decoupled from affective states.


Evolution of female promiscuity in Passerides songbirds.

  • Jan T Lifjeld‎ et al.
  • BMC evolutionary biology‎
  • 2019‎

Female promiscuity is highly variable among birds, and particularly among songbirds. Comparative work has identified several patterns of covariation with social, sexual, ecological and life history traits. However, it is unclear whether these patterns reflect causes or consequences of female promiscuity, or if they are byproducts of some unknown evolutionary drivers. Moreover, factors that explain promiscuity at the deep nodes in the phylogenetic tree may be different from those important at the tips, i.e. among closely related species. Here we examine the relationships between female promiscuity and a broad set of predictor variables in a comprehensive data set (N = 202 species) of Passerides songbirds, which is a highly diversified infraorder of the Passeriformes exhibiting significant variation in female promiscuity.


Evolutionary origins of vocal mimicry in songbirds.

  • Maria Goller‎ et al.
  • Evolution letters‎
  • 2018‎

Vocal learning is an important behavior in oscines (songbirds). Some songbird species learn heterospecific sounds as well as conspecific vocalizations. The emergence of vocal mimicry is necessarily tied to the evolution of vocal learning, as mimicry requires the ability to acquire sounds through learning. As such, tracking the evolutionary origins of vocal mimicry may provide insights into the causes of variation in song learning programs among songbirds. We compiled a database of known vocal mimics that comprised 339 species from 43 families. We then traced the evolutionary history of vocal mimicry across the avian phylogeny using ancestral trait reconstruction on a dataset of oscine passerines for which vocalizations have been described. We found that the common ancestor to oscines was unlikely to mimic sounds, suggesting that song learning evolved with mechanisms to constrain learning to conspecific models. Mimicry then evolved repeatedly within the songbird clade, either through relaxation of constraints on conspecific learning or through selection for active vocal mimicry. Vocal mimicry is likely ancestral in only a handful of clades, and we detect many instances of independent origins of mimicry. Our analysis underscores the liability of vocal mimicry in songbirds, and highlights the evolutionary flexibility of song learning mechanisms.


Programmed DNA elimination of germline development genes in songbirds.

  • Cormac M Kinsella‎ et al.
  • Nature communications‎
  • 2019‎

In some eukaryotes, germline and somatic genomes differ dramatically in their composition. Here we characterise a major germline-soma dissimilarity caused by a germline-restricted chromosome (GRC) in songbirds. We show that the zebra finch GRC contains >115 genes paralogous to single-copy genes on 18 autosomes and the Z chromosome, and is enriched in genes involved in female gonad development. Many genes are likely functional, evidenced by expression in testes and ovaries at the RNA and protein level. Using comparative genomics, we show that genes have been added to the GRC over millions of years of evolution, with embryonic development genes bicc1 and trim71 dating to the ancestor of songbirds and dozens of other genes added very recently. The somatic elimination of this evolutionarily dynamic chromosome in songbirds implies a unique mechanism to minimise genetic conflict between germline and soma, relevant to antagonistic pleiotropy, an evolutionary process underlying ageing and sexual traits.


Island songbirds as windows into evolution in small populations.

  • Thibault Leroy‎ et al.
  • Current biology : CB‎
  • 2021‎

Due to their limited ranges and inherent isolation, island species have long been recognized as crucial systems for tackling a range of evolutionary questions, including in the early study of speciation.1,2 Such species have been less studied in the understanding of the evolutionary forces driving DNA sequence evolution. Island species usually have lower census population sizes (N) than continental species and, supposedly, lower effective population sizes (Ne). Given that both the rates of change caused by genetic drift and by selection are dependent upon Ne, island species are theoretically expected to exhibit (1) lower genetic diversity, (2) less effective natural selection against slightly deleterious mutations,3,4 and (3) a lower rate of adaptive evolution.5-8 Here, we have used a large set of newly sequenced and published whole-genome sequences of Passerida species (14 insular and 11 continental) to test these predictions. We confirm that island species exhibit lower census size and Ne, supporting the hypothesis that the smaller area available on islands constrains the upper bound of Ne. In the insular species, we find lower nucleotide diversity in coding regions, higher ratios of non-synonymous to synonymous polymorphisms, and lower adaptive substitution rates. Our results provide robust evidence that the lower Ne experienced by island species has affected both the ability of natural selection to efficiently remove weakly deleterious mutations and also the adaptive potential of island species, therefore providing considerable empirical support for the nearly neutral theory. We discuss the implications for both evolutionary and conservation biology.


Nest architecture is linked with ecological success in songbirds.

  • Iliana Medina‎ et al.
  • Ecology letters‎
  • 2022‎

Nests are essential constructions that determine fitness, yet their structure can vary substantially across bird species. While there is evidence supporting a link between nest architecture and the habitat a species occupies, we still ignore what ecological and evolutionary processes are linked to different nest types. Using information on 3175 species of songbirds, we show that-after controlling for latitude and body size-species that build domed nests (i.e. nests with a roof) have smaller ranges, are less likely to colonise urban environments and have potentially higher extinction rates compared to species with open and cavity nests. Domed nests could be a costly specialisation, and we show that these nests take more time to be built, which could restrict breeding opportunities. These diverse strands of evidence suggest that the transition from domed to open nests in passerines could represent an important evolutionary innovation behind the success of the largest bird radiation.


Categorical Rhythms Are Shared between Songbirds and Humans.

  • Tina C Roeske‎ et al.
  • Current biology : CB‎
  • 2020‎

Rhythm is a prominent feature of music. Of the infinite possible ways of organizing events in time, musical rhythms are almost always distributed categorically. Such categories can facilitate the transmission of culture-a feature that songbirds and humans share. We compared rhythms of live performances of music to rhythms of wild thrush nightingale and domestic zebra finch songs. In nightingales, but not in zebra finches, we found universal rhythm categories, with patterns that were surprisingly similar to those of music. Isochronous 1:1 rhythms were similarly common. Interestingly, a bias toward small ratios (around 1:2 to 1:3), which is highly abundant in music, was observed also in thrush nightingale songs. Within that range, however, there was no statistically significant bias toward exact integer ratios (1:2 or 1:3) in the birds. High-ratio rhythms were abundant in the nightingale song and are structurally similar to fusion rhythms (ornaments) in music. In both species, preferred rhythms remained invariant over extended ranges of tempos, indicating natural categories. The number of rhythm categories decreased at higher tempos, with a threshold above which rhythm became highly stereotyped. In thrush nightingales, this threshold occurred at a tempo twice faster than in humans, indicating weaker structural constraints and a remarkable motor proficiency. Together, the results suggest that categorical rhythms reflect similar constraints on learning motor skills across species. The saliency of categorical rhythms across humans and thrush nightingales suggests that they promote, or emerge from, the cultural transmission of learned vocalizations. VIDEO ABSTRACT.


Migratory songbirds exhibit seasonal modulation of the oxygen cascade.

  • Catherine M Ivy‎ et al.
  • The Journal of experimental biology‎
  • 2023‎

Migratory flight requires birds to maintain intensive aerobic exercise for many hours or days. Maintaining O2 supply to flight muscles is therefore important during migration, especially since migratory songbirds have been documented flying at altitudes greater than 5000 m above sea level, where O2 is limited. Whether songbirds exhibit seasonal plasticity of the O2 cascade to maintain O2 uptake and transport during migratory flight is not well understood. We investigated changes in the hypoxic ventilatory response, haematology and pectoralis (flight) muscle phenotype of 6 songbird species from 3 families during migratory and non-migratory conditions. Songbirds were captured during southbound migration in southern Ontario, Canada. Half of the birds were assessed during migration, and the rest were transitioned onto a winter photoperiod to induce a non-migratory phenotype and measured. All species exhibited seasonal plasticity at various stages along the O2 cascade, but not all species exhibited the same responses. Songbirds tended to be more hypoxia tolerant during migration, withstanding 5 kPa O2 and breathed more effectively through slower, deeper breaths. Warblers had a stronger haemoglobin-O2 affinity during autumn migration (decrease of ∼4.7 Torr), while the opposite was observed in thrushes (increase of ∼2.6 Torr). In the flight muscle there was an ∼1.2-fold increase in the abundance of muscle fibres with smaller fibre transverse areas during autumn migration, but no changes in capillary:fibre ratio. These adjustments would enhance O2 uptake and transport to the flight muscle. Our findings demonstrate that in the O2 cascade there is no ideal migratory phenotype for all songbirds.


Peak performance singing requires daily vocal exercise in songbirds.

  • Iris Adam‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Vocal signals mediate much of human and non-human communication. Key performance traits - such as repertoire size, speed and accuracy of delivery - affect communication efficacy in fitness-decisive contexts such as mate choice and resource competition 1 . Specialized fast vocal muscles 2,3 are central to accurate sound production 4 , but it is unknown whether vocal, like limb muscles 5,6 , need exercise to gain and maintain peak performance 7,8 . Here, we show that for song development in juvenile songbirds, the closest analogue to human speech acquisition 9 , regular vocal muscle exercise is crucial to achieve adult peak muscle performance. Furthermore, adult vocal muscle performance reduces within two days of abolishing exercise, leading to downregulation of critical proteins transforming fast to slower muscle fibre types. Daily vocal exercise is thus required to both gain and maintain peak vocal muscle performance, and if absent changes vocal output. We show that conspecifics can detect these acoustic changes and females prefer the song of exercised males. Song thus contains information on recent exercise status of the sender. Daily investment in vocal exercise to maintain peak performance is an unrecognized cost of singing and could explain why many birds sing daily even under adverse conditions 10 . Because neural regulation of syringeal and laryngeal muscle plasticity is equivalent, vocal output may reflect recent exercise status in all vocalizing vertebrates.


Development syndromes in New World temperate and tropical songbirds.

  • Suzanne H Austin‎ et al.
  • PloS one‎
  • 2020‎

We studied avian development in 49 to 153 species of temperate and tropical New World passerine birds to determine how growth rates, and incubation and nestling periods, varied in relation to other life-history traits. We collected growth data and generated unbiased mass and tarsus growth rate estimates (mass n = 92 species, tarsus n = 49 species), and measured incubation period (n = 151) and nestling period (n = 153), which we analyzed with respect to region, egg mass, adult mass, clutch size, parental care type, nest type, daily nest predation rate (DMR), and nest height. We investigated covariation of life-history and natural-history attributes with the four development traits after controlling for phylogeny. Species in our lowland tropical sample grew 20% (incubation period), 25% (mass growth rate), and 26% (tarsus growth rate) more slowly than in our temperate sample. Nestling period did not vary with respect to latitude, which suggests that tropical songbirds fledge in a less well-developed state than temperate species. Suboscine species typically exhibited slower embryonic and post-embryonic growth than oscine passerines regardless of their breeding region. This pattern of slow development in tropical species could reflect phylogenetic effects based on unknown physiological attributes. Time-dependent nest mortality was unrelated to nestling mass growth rate, tarsus growth rate, and incubation period, but was significantly associated with nestling period. This suggests that nest predation, the predominant cause of nest loss in songbirds, does not exert strong selection on physiologically constrained traits, such as embryonic and post-embryonic growth, among our samples of temperate and lowland tropical songbird species. Nestling period, which is evolutionarily more labile than growth rate, was significantly shorter in birds exposed to higher rates of nest loss and nesting at lower heights, among other traits. Differences in life-history variation across latitudes provide insight into how unique ecological characteristics of each region influence physiological processes of passerines, and thus, how they can shape the evolution of life histories. While development traits clearly vary with respect to latitude, trait distributions overlap broadly. Life-history and natural history associations differ for each development trait, which suggests that unique selective pressures or constraints influence the evolution of each trait.


Songbirds can learn flexible contextual control over syllable sequencing.

  • Lena Veit‎ et al.
  • eLife‎
  • 2021‎

The flexible control of sequential behavior is a fundamental aspect of speech, enabling endless reordering of a limited set of learned vocal elements (syllables or words). Songbirds are phylogenetically distant from humans but share both the capacity for vocal learning and neural circuitry for vocal control that includes direct pallial-brainstem projections. Based on these similarities, we hypothesized that songbirds might likewise be able to learn flexible, moment-by-moment control over vocalizations. Here, we demonstrate that Bengalese finches (Lonchura striata domestica), which sing variable syllable sequences, can learn to rapidly modify the probability of specific sequences (e.g. 'ab-c' versus 'ab-d') in response to arbitrary visual cues. Moreover, once learned, this modulation of sequencing occurs immediately following changes in contextual cues and persists without external reinforcement. Our findings reveal a capacity in songbirds for learned contextual control over syllable sequencing that parallels human cognitive control over syllable sequencing in speech.


Responses to Song Playback Differ in Sleeping versus Anesthetized Songbirds.

  • Sarah W Bottjer‎ et al.
  • eNeuro‎
  • 2022‎

Vocal learning in songbirds is mediated by a highly localized system of interconnected forebrain regions, including recurrent loops that traverse the cortex, basal ganglia, and thalamus. This brain-behavior system provides a powerful model for elucidating mechanisms of vocal learning, with implications for learning speech in human infants, as well as for advancing our understanding of skill learning in general. A long history of experiments in this area has tested neural responses to playback of different song stimuli in anesthetized birds at different stages of vocal development. These studies have demonstrated selectivity for different song types that provide neural signatures of learning. In contrast to the ease of obtaining responses to song playback in anesthetized birds, song-evoked responses in awake birds are greatly reduced or absent, indicating that behavioral state is an important determinant of neural responsivity. Song-evoked responses can be elicited during sleep as well as anesthesia, and the selectivity of responses to song playback in adult birds is highly similar between anesthetized and sleeping states, encouraging the idea that anesthesia and sleep are similar. In contrast to that idea, we report evidence that cortical responses to song playback in juvenile zebra finches (Taeniopygia guttata) differ greatly between sleep and urethane anesthesia. This finding indicates that behavioral states differ in sleep versus anesthesia and raises questions about relationships between developmental changes in sleep activity, selectivity for different song types, and the neural substrate for vocal learning.


Cortical inter-hemispheric circuits for multimodal vocal learning in songbirds.

  • Amy K Paterson‎ et al.
  • The Journal of comparative neurology‎
  • 2017‎

Vocal learning in songbirds and humans is strongly influenced by social interactions based on sensory inputs from several modalities. Songbird vocal learning is mediated by cortico-basal ganglia circuits that include the SHELL region of lateral magnocellular nucleus of the anterior nidopallium (LMAN), but little is known concerning neural pathways that could integrate multimodal sensory information with SHELL circuitry. In addition, cortical pathways that mediate the precise coordination between hemispheres required for song production have been little studied. In order to identify candidate mechanisms for multimodal sensory integration and bilateral coordination for vocal learning in zebra finches, we investigated the anatomical organization of two regions that receive input from SHELL: the dorsal caudolateral nidopallium (dNCLSHELL ) and a region within the ventral arcopallium (Av). Anterograde and retrograde tracing experiments revealed a topographically organized inter-hemispheric circuit: SHELL and dNCLSHELL , as well as adjacent nidopallial areas, send axonal projections to ipsilateral Av; Av in turn projects to contralateral SHELL, dNCLSHELL , and regions of nidopallium adjacent to each. Av on each side also projects directly to contralateral Av. dNCLSHELL and Av each integrate inputs from ipsilateral SHELL with inputs from sensory regions in surrounding nidopallium, suggesting that they function to integrate multimodal sensory information with song-related responses within LMAN-SHELL during vocal learning. Av projections share this integrated information from the ipsilateral hemisphere with contralateral sensory and song-learning regions. Our results suggest that the inter-hemispheric pathway through Av may function to integrate multimodal sensory feedback with vocal-learning circuitry and coordinate bilateral vocal behavior.


Catecholaminergic cell groups and vocal communication in male songbirds.

  • Kathleen S Lynch‎ et al.
  • Physiology & behavior‎
  • 2008‎

Birdsong is a species-typical vocal signal that facilitates reproduction and deters competitors. Song production is regulated by a clearly defined and specialized neural circuitry in which high concentrations of catecholamines are present. The nuclei within the song control circuit receive projections from catecholaminergic cell populations involved in attention, arousal and motivation, including periaqueductal gray (PAG), ventral tegmental area (VTA), locus coeruleus (LoC) and sub coeruleus (SC). Here, we examine whether catecholamine-containing neurons in these regions exhibit the immediate early gene, ZENK, during spontaneous, undirected song production in male zebra finches (Taeniopygia guttata). Males were assigned to "singing" or "silent" groups based on the total duration of spontaneous, undirected song produced within a 30 min period. We quantified the number of cells expressing both ZENK-ir and tyrosine hydroxylase (TH)-ir within the VTA, PAG, LoC and SC. The number of cells expressing co-localized ZENK and TH-ir was significantly elevated within the PAG in males that were singing compared to silent males. The number of cells expressing ZENK-ir alone was also elevated in the VTA and SC in singing males compared to silent males. Although ZENK expression is elevated in singing birds it does not positively correlate with the amount of singing produced. It is therefore likely that catecholaminergic PAG neurons are involved in motivational or attentional components of vocal expression rather than vocal motor output. Overall, our study is consistent with the hypothesis that PAG catecholamine-containing neurons as well as VTA and SC neurons play a role in vocal communication of male songbirds.


Molecular specializations of deep cortical layer analogs in songbirds.

  • Alexander A Nevue‎ et al.
  • Scientific reports‎
  • 2020‎

How the evolution of complex behavioral traits is associated with the emergence of novel brain pathways is largely unknown. Songbirds, like humans, learn vocalizations via tutor imitation and possess a specialized brain circuitry to support this behavior. In a comprehensive in situ hybridization effort, we show that the zebra finch vocal robust nucleus of the arcopallium (RA) shares numerous markers (e.g. SNCA, PVALB) with the adjacent dorsal intermediate arcopallium (AId), an avian analog of mammalian deep cortical layers with involvement in motor function. We also identify markers truly unique to RA and thus likely linked to modulation of vocal motor function (e.g. KCNC1, GABRE), including a subset of the known shared markers between RA and human laryngeal motor cortex (e.g. SLIT1, RTN4R, LINGO1, PLXNC1). The data provide novel insights into molecular features unique to vocal learning circuits, and lend support for the motor theory for vocal learning origin.


The vocal organ of hummingbirds shows convergence with songbirds.

  • Tobias Riede‎ et al.
  • Scientific reports‎
  • 2020‎

How sound is generated in the hummingbird syrinx is largely unknown despite their complex vocal behavior. To fill this gap, syrinx anatomy of four North American hummingbird species were investigated by histological dissection and contrast-enhanced microCT imaging, as well as measurement of vocalizations in a heliox atmosphere. The placement of the hummingbird syrinx is uniquely located in the neck rather than inside the thorax as in other birds, while the internal structure is bipartite with songbird-like anatomical features, including multiple pairs of intrinsic muscles, a robust tympanum and several accessory cartilages. Lateral labia and medial tympaniform membranes consist of an extracellular matrix containing hyaluronic acid, collagen fibers, but few elastic fibers. Their upper vocal tract, including the trachea, is shorter than predicted for their body size. There are between-species differences in syrinx measurements, despite similar overall morphology. In heliox, fundamental frequency is unchanged while upper-harmonic spectral content decrease in amplitude, indicating that syringeal sounds are produced by airflow-induced labia and membrane vibration. Our findings predict that hummingbirds have fine control of labia and membrane position in the syrinx; adaptations that set them apart from closely related swifts, yet shows convergence in their vocal organs with those of oscines.


Transcriptional regulatory divergence underpinning species-specific learned vocalization in songbirds.

  • Hongdi Wang‎ et al.
  • PLoS biology‎
  • 2019‎

Learning of most motor skills is constrained in a species-specific manner. However, the proximate mechanisms underlying species-specific learned behaviors remain poorly understood. Songbirds acquire species-specific songs through learning, which is hypothesized to depend on species-specific patterns of gene expression in functionally specialized brain regions for vocal learning and production, called song nuclei. Here, we leveraged two closely related songbird species, zebra finch, owl finch, and their interspecific first-generation (F1) hybrids, to relate transcriptional regulatory divergence between species with the production of species-specific songs. We quantified genome-wide gene expression in both species and compared this with allele-specific expression in F1 hybrids to identify genes whose expression in song nuclei is regulated by species divergence in either cis- or trans-regulation. We found that divergence in transcriptional regulation altered the expression of approximately 10% of total transcribed genes and was linked to differential gene expression between the two species. Furthermore, trans-regulatory changes were more prevalent than cis-regulatory and were associated with synaptic formation and transmission in song nucleus RA, the avian analog of the mammalian laryngeal motor cortex. We identified brain-derived neurotrophic factor (BDNF) as an upstream mediator of trans-regulated genes in RA, with a significant correlation between individual variation in BDNF expression level and species-specific song phenotypes in F1 hybrids. This was supported by the fact that the pharmacological overactivation of BDNF receptors altered the expression of its trans-regulated genes in the RA, thus disrupting the learned song structures of adult zebra finch songs at the acoustic and sequence levels. These results demonstrate functional neurogenetic associations between divergence in region-specific transcriptional regulation and species-specific learned behaviors.


Gene regulation and speciation in a migratory divide between songbirds.

  • Matthew I M Louder‎ et al.
  • Nature communications‎
  • 2024‎

Behavioral variation abounds in nature. This variation is important for adaptation and speciation, but its molecular basis remains elusive. Here, we use a hybrid zone between two subspecies of songbirds that differ in migration - an ecologically important and taxonomically widespread behavior---to gain insight into this topic. We measure gene expression in five brain regions. Differential expression between migratory states was dominated by circadian genes in all brain regions. The remaining patterns were largely brain-region specific. For example, expression differences between the subspecies that interact with migratory state likely help maintain reproductive isolation in this system and were documented in only three brain regions. Contrary to existing work on regulatory mechanisms underlying species-specific traits, two lines of evidence suggest that trans- (vs. cis) regulatory changes underlie these patterns - no evidence for allele-specific expression in hybrids and minimal associations between genomic differentiation and expression differences. Additional work with hybrids shows expression levels were often distinct (transgressive) from parental forms. Behavioral contrasts and functional enrichment analyses allowed us to connect these patterns to mitonuclear incompatibilities and compensatory responses to stress that could exacerbate selection on hybrids and contribute to speciation.


Cell type specializations of the vocal-motor cortex in songbirds.

  • Alexander A Nevue‎ et al.
  • Cell reports‎
  • 2023‎

Identifying molecular specializations in cortical circuitry supporting complex behaviors, like learned vocalizations, requires understanding of the neuroanatomical context from which these circuits arise. In songbirds, the robust arcopallial nucleus (RA) provides descending cortical projections for fine vocal-motor control. Using single-nuclei transcriptomics and spatial gene expression mapping in zebra finches, we have defined cell types and molecular specializations that distinguish RA from adjacent regions involved in non-vocal motor and sensory processing. We describe an RA-specific projection neuron, differential inhibitory subtypes, and glia specializations and have probed predicted GABAergic interneuron subtypes electrophysiologically within RA. Several cell-specific markers arise developmentally in a sex-dependent manner. Our interactive apps integrate cellular data with developmental and spatial distribution data from the gene expression brain atlas ZEBrA. Users can explore molecular specializations of vocal-motor neurons and support cells that likely reflect adaptations key to the physiology and evolution of vocal control circuits and refined motor skills.


Discrete Evaluative and Premotor Circuits Enable Vocal Learning in Songbirds.

  • Matthew Gene Kearney‎ et al.
  • Neuron‎
  • 2019‎

Virtuosic motor performance requires the ability to evaluate and modify individual gestures within a complex motor sequence. Where and how the evaluative and premotor circuits operate within the brain to enable such temporally precise learning is poorly understood. Songbirds can learn to modify individual syllables within their complex vocal sequences, providing a system for elucidating the underlying evaluative and premotor circuits. We combined behavioral and optogenetic methods to identify 2 afferents to the ventral tegmental area (VTA) that serve evaluative roles in syllable-specific learning and to establish that downstream cortico-basal ganglia circuits serve a learning role that is only premotor. Furthermore, song performance-contingent optogenetic stimulation of either VTA afferent was sufficient to drive syllable-specific learning, and these learning effects were of opposite valence. Finally, functional, anatomical, and molecular studies support the idea that these evaluative afferents bidirectionally modulate VTA dopamine neurons to enable temporally precise vocal learning.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: