Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 22 papers

Galpha16 activates Ras by forming a complex with tetratricopeptide repeat 1 (TPR1) and Son of Sevenless (SOS).

  • Andrew M F Liu‎ et al.
  • Cellular signalling‎
  • 2010‎

Many G protein-coupled receptors (GPCRs) are known to modulate cell growth and differentiation by stimulating the extracellular signal-regulated protein kinases (ERKs). In growth factor signaling, ERKs are typically stimulated through an elaborate network of modules consisting of adaptors, protein kinases, and the small GTPase Ras. The mechanism by which G protein signals tap into the ERK signaling pathway has thus far remain elusive. Members of the Gq family of G proteins, in particular Galpha16, have been shown to associate with tetratricopeptide repeat 1 (TPR1), an adaptor protein which preferentially binds to Ras. Here, we examined if TPR1 is indeed the missing link between Galpha16 signaling and Ras activation. Expression of Galpha16QL, a constitutively active mutant of Galpha16, in HEK 293 cells led to the formation of GTP-bound Ras and the subsequent phosphorylation of ERK. Likewise, stimulation of endogenou G16-coupled CCR1 chemokine receptors produced the same responses in human erythroleukemia cells. siRNA-mediated knockdown of TPR1 or expression of a dominant negative mutant of TPR1 effectively abolished the ability of Galpha16QL to induce Ras activation in HEK 293 cells. In contrast, these manipulations had no inhibitory effect on Galpha16QL induced activation of phospholipase Cbeta. Galpha16QL-induced phosphorylations of downstream targets including ERK, signal transducer and activator of transcription 3, and IkappaB kinase were significantly suppressed upon expression of the dominant negative mutant of TPR1. Furthermore, SOS2, a Ras guanine nucleotide exchange factor, was found to form a complex with TPR1 and Galpha16QL. Expression of SOS2 enhanced Galpha16QL-induced Ras activation and its subsequent signaling. Collectively, our results suggest that Galpha16 regulates multiple signaling pathways by activating Ras through its association with TPR1, but TPR1 is not required for Galpha16 to stimulate phospholipase Cbeta.


Ubiquitin-specific peptide 22 acts as an oncogene in gastric cancer in a son of sevenless 1-dependent manner.

  • ChitChoon Lim‎ et al.
  • Cancer cell international‎
  • 2020‎

Aberrant expression of ubiquitin-specific peptide 22 (USP22) has been detected in various cancers. This study aimed to investigate the role of USP22 and the underlying mechanism in human gastric cancer.


miR-148b-3p, as a tumor suppressor, targets son of sevenless homolog 1 to regulate the malignant progression in human osteosarcoma.

  • Guodong Liu‎ et al.
  • Bioengineered‎
  • 2022‎

Osteosarcoma (OS) is a malignant tumor that occurs in children and adolescents. Previous studies reported a low expression of miR-148b-3p in OS, but its biological function in OS remains obscure. This study aimed to explore the role of miR-148b-3p in OS progression. Herein, the expression of miR-148b-3p and son of sevenless homolog 1 (SOS1) both in OS tissues and cells were examined using quantitative real-time polymerase chain reaction and Western blotting assay. miR-148b-3p mimic or inhibitor, pcDH-SOS1 plasmid or si-SOS1 and agomir-miR-148b-3p were constructed for cell transfection. In vitro, the biological effect of miR-148b-3p was determined employing MTT, EdU, colony formation, flow cytometry, transwell and wound healing assay, separately. The target relationship between SOS1 3'-untranslated region (3'-UTR) and miR-148b-3p was analyzed using dual-luciferase reporter gene. In vivo, the inhibition of agomir-miR-148b-3p in mice was evaluated via a xenograft mouse model. miR-148b-3p was noticeably low-expressed in OS tissues and cells, and miR-148b-3p over-expression in OS cells suppressed the growth, migration and invasion, induced apoptosis. The effect of miR-148b-3p-inhibitor on cell biological behavior is opposite to that of miR-148b-3p over-expression. Conversely, The expression of SOS1 was significant higher in OS tissues and cells, miR-148b-3p targeted and was negatively associated with the expression level of SOS1. In addition, the anti-tumor effect of miR-148b-3p was reversed by SOS1. Importantly, we demonstrated that the tumor growth of stably over-expressed miR-148b-3p human MG-63 cells was obviously reduced in tumor-bearing mice. These data highlighted that miR-148b-3p might be as a promising therapeutic target for OS.


Impaired plasma membrane targeting of Grb2-murine son of sevenless (mSOS) complex and differential activation of the Fyn-T cell receptor (TCR)-zeta-Cbl pathway mediate T cell hyporesponsiveness in autoimmune nonobese diabetic mice.

  • K Salojin‎ et al.
  • The Journal of experimental medicine‎
  • 1997‎

Nonobese diabetic (NOD) mouse thymocytes are hyporesponsive to T cell antigen receptor (TCR)-mediated stimulation of proliferation, and this T cell hyporesponsiveness may be causal to the onset of autoimmune diabetes in NOD mice. We previously showed that TCR-induced NOD T cell hyporesponsiveness is associated with a block in Ras activation and defective signaling along the PKC/Ras/MAPK pathway. Here, we report that several sequential changes in TCR-proximal signaling events may mediate this block in Ras activation. We demonstrate that NOD T cell hyporesponsiveness is associated with the (a) enhanced TCR-beta-associated Fyn kinase activity and the differential activation of the Fyn-TCR-zeta-Cbl pathway, which may account for the impaired recruitment of ZAP70 to membrane-bound TCR-zeta; (b) relative inability of the murine son of sevenless (mSOS) Ras GDP releasing factor activity to translocate from the cytoplasm to the plasma membrane; and (c) exclusion of mSOS and PLC-gamma1 from the TCR-zeta-associated Grb2/pp36-38/ZAP70 signaling complex. Our data suggest that altered tyrosine phosphorylation and targeting of the Grb2/pp36-38/ZAP70 complex to the plasma membrane and cytoskeleton and the deficient association of mSOS with this Grb2-containing complex may block the downstream activation of Ras and Ras-mediated amplification of TCR/CD3-mediated signals in hyporesponsive NOD T cells. These findings implicate mSOS as an important mediator of downregulation of Ras signaling in hyporesponsive NOD T cells.


Novel Tools towards Magnetic Guidance of Neurite Growth: (I) Guidance of Magnetic Nanoparticles into Neurite Extensions of Induced Human Neurons and In Vitro Functionalization with RAS Regulating Proteins.

  • Hendrik Schöneborn‎ et al.
  • Journal of functional biomaterials‎
  • 2019‎

Parkinson's disease (PD) is a neurodegenerative disease associated with loss or dysfunction of dopaminergic neurons located in the substantia nigra (SN), and there is no cure available. An emerging new approach for treatment is to transplant human induced dopaminergic neurons directly into the denervated striatal brain target region. Unfortunately, neurons grafted into the substantia nigra are unable to grow axons into the striatum and thus do not allow recovery of the original connectivity. Towards overcoming this general limitation in guided neuronal regeneration, we develop here magnetic nanoparticles functionalized with proteins involved in the regulation of axonal growth. We show covalent binding of constitutive active human rat sarcoma (RAS) proteins or RAS guanine nucleotide exchange factor catalytic domain of son of sevenless (SOS) by fluorescence correlation spectroscopy and multiangle light scattering as well as the characterization of exchange factor activity. Human dopaminergic neurons were differentiated from neural precursor cells and characterized by electrophysiological and immune histochemical methods. Furthermore, we demonstrate magnetic translocation of cytoplasmic γ-Fe2O3@SiO2 core-shell nanoparticles into the neurite extensions of induced human neurons. Altogether, we developed tools towards remote control of directed neurite growth in human dopaminergic neurons. These results may have relevance for future therapeutic approaches of cell replacement therapy in Parkinson's disease.


Activation of Ras requires the ERM-dependent link of actin to the plasma membrane.

  • Tobias Sperka‎ et al.
  • PloS one‎
  • 2011‎

Receptor tyrosine kinases (RTKs) participate in a multitude of signaling pathways, some of them via the small G-protein Ras. An important component in the activation of Ras is Son of sevenless (SOS), which catalyzes the nucleotide exchange on Ras.


SUMOylation of Grb2 enhances the ERK activity by increasing its binding with Sos1.

  • Yingying Qu‎ et al.
  • Molecular cancer‎
  • 2014‎

Grb2 (Growth factor receptor-bound protein 2) is a key adaptor protein in maintaining the ERK activity via linking Sos1 (Son of sevenless homolog 1) or other proteins to activated RTKs, such as EGFR. Currently, little knowledge is available concerning the post-translational modification (PTM) of Grb2 except for its phosphorylation. Since emerging evidences have highlighted the importance of SUMOylation (Small ubiquitin-related modifier), a reversible PTM, in modulating protein functions, we wondered if Grb2 could be SUMOylated and thereby influences its functions especially involved in the Ras/MEK/ERK pathway.


Bioinformatic Prediction of Signaling Pathways for Apurinic/Apyrimidinic Endodeoxyribonuclease 1 (APEX1) and Its Role in Cholangiocarcinoma Cells.

  • Doungdean Tummanatsakun‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1) is involved in the DNA damage repair pathways and associates with the metastasis of several human cancers. However, the signaling pathway of APEX1 in cholangiocarcinoma (CCA) has never been reported. In this study, to predict the signaling pathways of APEX1 and related proteins and their functions, the effects of APEX1 gene silencing on APEX1 and related protein expression in CCA cell lines were investigated using mass spectrometry and bioinformatics tools. Bioinformatic analyses predicted that APEX1 might interact with cell division cycle 42 (CDC42) and son of sevenless homolog 1 (SOS1), which are involved in tumor metastasis. RNA and protein expression levels of APEX1 and its related proteins, retrieved from the Gene Expression Profiling Interactive Analysis (GEPIA) and the Human Protein Atlas databases, revealed that their expressions were higher in CCA than in the normal group. Moreover, higher levels of APEX1 expression and its related proteins were correlated with shorter survival time. In conclusion, the signaling pathway of APEX1 in metastasis might be mediated via CDC42 and SOS1. Furthermore, expression of APEX1 and related proteins is able to predict poor survival of CCA patients.


Activating Mutations Affecting the Dbl Homology Domain of SOS2 Cause Noonan Syndrome.

  • Viviana Cordeddu‎ et al.
  • Human mutation‎
  • 2015‎

The RASopathies constitute a family of autosomal-dominant disorders whose major features include facial dysmorphism, cardiac defects, reduced postnatal growth, variable cognitive deficits, ectodermal and skeletal anomalies, and susceptibility to certain malignancies. Noonan syndrome (NS), the commonest RASopathy, is genetically heterogeneous and caused by functional dysregulation of signal transducers and regulatory proteins with roles in the RAS/extracellular signal-regulated kinase (ERK) signal transduction pathway. Mutations in known disease genes account for approximately 80% of affected individuals. Here, we report that missense mutations altering Son of Sevenless, Drosophila, homolog 2 (SOS2), which encodes a RAS guanine nucleotide exchange factor, occur in a small percentage of subjects with NS. Four missense mutations were identified in five unrelated sporadic cases and families transmitting NS. Disease-causing mutations affected three conserved residues located in the Dbl homology (DH) domain, of which two are directly involved in the intramolecular binding network maintaining SOS2 in its autoinhibited conformation. All mutations were found to promote enhanced signaling from RAS to ERK. Similar to NS-causing SOS1 mutations, the phenotype associated with SOS2 defects is characterized by normal development and growth, as well as marked ectodermal involvement. Unlike SOS1 mutations, however, those in SOS2 are restricted to the DH domain.


SOS2 regulates the threshold of mutant EGFR-dependent oncogenesis.

  • Patricia L Theard‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Son of Sevenless 1 and 2 (SOS1 and SOS2) are RAS guanine nucleotide exchange factors (RasGEFs) that mediate physiologic and pathologic RTK-dependent RAS activation. Here, we show that SOS2 modulates the threshold of epidermal growth factor receptor (EGFR) signaling to regulate the efficacy of and resistance to the EGFR-TKI osimertinib in lung adenocarcinoma (LUAD). SOS2 deletion sensitized EGFR-mutated cells to perturbations in EGFR signaling caused by reduced serum and/or osimertinib treatment to inhibit PI3K/AKT pathway activation, oncogenic transformation, and survival. Bypass RTK reactivation of PI3K/AKT signaling represents a common resistance mechanism to EGFR-TKIs; SOS2 KO reduced PI3K/AKT reactivation to limit osimertinib resistance. In a forced HGF/MET-driven bypass model, SOS2 KO inhibited HGF-stimulated PI3K signaling to block HGF-driven osimertinib resistance. Using a long term in situ resistance assay, a majority of osimertinib resistant cultures exhibited a hybrid epithelial/mesenchymal phenotype associated with reactivated RTK/AKT signaling. In contrast, RTK/AKT-dependent osimertinib resistance was markedly reduced by SOS2 deletion; the few SOS2 KO cultures that became osimertinib resistant primarily underwent non-RTK dependent EMT. Since bypass RTK reactivation and/or tertiary EGFR mutations represent the majority of osimertinib-resistant cancers, these data suggest that targeting SOS2 has the potential to eliminate the majority of osimertinib resistance.


Impact of trifluoromethyl and sulfonyl groups on the biological activity of novel aryl-urea derivatives: synthesis, in-vitro, in-silico and SAR studies.

  • Farid M Sroor‎ et al.
  • Scientific reports‎
  • 2023‎

We designed and prepared a novel series of urea derivatives with/without sulfonyl group in their structures to investigate the impact of the sulfonyl group on the biological activity of the evaluated compounds. Antibacterial investigations indicated that derivatives 7, 8, 9, and 11 had the most antibacterial property of all the compounds examined, their minimum inhibitory concentrations (MICs) determined against B. mycoides, E. coli, and C. albicans, with compound 8 being the most active at a MIC value of 4.88 µg/mL. Anti-cancer activity has been tested against eight human cancer cell lines; A549, HCT116, PC3, A431, HePG2, HOS, PACA2 and BJ1. Compounds 7, 8 and 9 emerged IC50 values better than Doxorubicin as a reference drug. Compounds 7 and 8 showed IC50 = 44.4 and 22.4 μM respectively against PACA2 compared to Doxorubicin (IC50 = 52.1 μM). Compound 9 showed IC50 = 17.8, 12.4, and 17.6 μM against HCT116, HePG2, and HOS, respectively. qRT-PCR revealed the down-regulation of PALB2 in compounds 7 and 15 treated PACA2 cells. Also, the down-regulation of BRCA1 and BRCA2 was shown in compound 7 treated PC3 cells. As regard A549 cells, compound 8 decreased the expression level of EGFR and KRAS genes. While compounds 7 and 9 down-regulated TP53 and FASN in HCT116 cells. Molecular docking was done against Escherichia coli enoyl reductase and human Son of sevenless homolog 1 (SOS1) and the results showed the promising inhibition of the studied proteins.


Role of oncogenic KRAS in the prognosis, diagnosis and treatment of colorectal cancer.

  • Gongmin Zhu‎ et al.
  • Molecular cancer‎
  • 2021‎

Colorectal cancer (CRC) is a heterogeneous disease at the cellular and molecular levels. Kirsten rat sarcoma (KRAS) is a commonly mutated oncogene in CRC, with mutations in approximately 40% of all CRC cases; its mutations result in constitutive activation of the KRAS protein, which acts as a molecular switch to persistently stimulate downstream signaling pathways, including cell proliferation and survival, thereby leading to tumorigenesis. Patients whose CRC harbors KRAS mutations have a dismal prognosis. Currently, KRAS mutation testing is a routine clinical practice before treating metastatic cases, and the approaches developed to detect KRAS mutations have exhibited favorable sensitivity and accuracy. Due to the presence of KRAS mutations, this group of CRC patients requires more precise therapies. However, KRAS was historically thought to be an undruggable target until the development of KRASG12C allele-specific inhibitors. These promising inhibitors may provide novel strategies to treat KRAS-mutant CRC. Here, we provide an overview of the role of KRAS in the prognosis, diagnosis and treatment of CRC.


Novel protein kinase C phosphorylated kinase inhibitor-matrine suppresses replication of hepatitis B virus via modulating the mitogen-activated protein kinase signal.

  • Shen Zhou‎ et al.
  • Bioengineered‎
  • 2022‎

HBV (hepatitis B virus) infection still threatens human health. Therefore, it is essential to find new effective anti-HBV compounds. Here, we identified matrine as a novel inhibitor of PKC (protein kinase C) phosphorylated kinase by screening a natural compound library. After HepG2.215 cells were treated with matrine, we carried out a phosphorylated proteomics sequence study and analyzed the prediction of related kinase expression level. In the case of HBV infection, it was found that PKC kinase mediates the activation of mitogen-activated protein kinase (MAPK) signaling pathway known as son of sevenless (SOS) activation. It was also found that PKC kinase inhibits the expression of C-X-C Motif Chemokine Ligand 8 (CXCL8) by inhibiting the activity of activating transcription factor 2/ cAMP response element binding protein (ATF2/CREB), and this effect is independent of its activated MAPK signaling pathway. Finally, Western blot was used to detect the expression of MAPK, ATF2, CREB3 phosphorylation and nonphosphorylation in matrine-treated cells and PKC-treated cells. PKC phosphorylated kinase inhibitor-matrine suppresses the replication of HBV via modulating the MAPK/ATF2 signal. Matrine is a good clinical drug to enhance the autoimmunity in the adjuvant treatment of chronic HBV infection.


Identification of key miRNAs and genes for mouse retinal development using a linear model.

  • Yishen Wang‎ et al.
  • Molecular medicine reports‎
  • 2020‎

MicroRNAs (miRNAs) are upstream regulators of gene expression and are involved in several biological processes. The purpose of the present study was to obtain a detailed spatiotemporal miRNA expression profile in mouse retina, to identify one or more miRNAs that are key to mouse retinal development and to investigate the roles and mechanisms of these miRNAs. The miRNA expression pattern of the developing mouse retina was acquired from Locked Nucleic Acid microarrays. Data were processed to identify differentially expressed miRNAs (DE‑miRNAs) using the linear model in Python 3.6. Following bioinformatics analysis and reverse transcription‑quantitative polymerase chain reaction validation, 8 miRNAs (miR‑9‑5p, miR‑130a‑3p, miR‑92a‑3p, miR‑20a‑5p, miR‑93‑5p, miR‑9‑3p, miR‑709 and miR‑124) were identified as key DE‑miRNAs with low variability during mouse retinal development. Gene Ontology analysis revealed that the target genes of the DE‑miRNAs were enriched in cellular metabolic processes. Kyoto Encyclopedia of Genes and Genomes analysis demonstrated that the target genes of the DE‑miRNAs were significantly enriched in PI3K/AKT/mTOR, class O of forkhead box transcription factors, mitogen‑activated protein kinase (MAPK), neurotrophin and transforming growth factor (TGF)‑β signaling, as well as focal adhesion and the axon guidance pathway. PI3K, AKT, PTEN, MAPK1, Son of Sevenless, sphingosine‑1‑phosphate receptor 1, BCL‑2L11, TGF‑β receptor type 1/2 and integrin α (ITGA)/ITGAB, which are key components of the aforementioned pathways and were revealed to be target genes of several of the DE‑miRNAs. The present study used a linear model to identify several DE‑miRNAs, as well as their target genes and associated pathways, which may serve crucial roles in mouse retinal development. Therefore, the results obtained in the present study may provide the groundwork for further experiments.


Identification and functional analysis of the risk microRNAs associated with cerebral low-grade glioma prognosis.

  • Xinrui Liu‎ et al.
  • Molecular medicine reports‎
  • 2017‎

Low-grade gliomas (LGGs) are associated with neurological disability. The present study used microRNA (miRNA) expression profiles to identify risk miRNAs for potential prognosis of cerebral LGGs. miRNA expression profiles and clinical data from 408 patients with cerebral LGGs were obtained from the Cancer Genome Atlas database. Risk miRNAs were identified by plotting Kaplan‑Meier curves and Cox proportional hazard regression analysis with the survival and KMsurv packages in R. A regulatory network of miRNA‑targets was constructed, followed by gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis using the Database for Annotation, Visualization and Integrated Discovery. A protein‑protein interaction (PPI) network of miRNA targets was built using Search Tool for the Retrieval of Interacting Genes software, and sub‑pathway identification was performed using the iSubpathwayMiner package in R. In total, 39 miRNAs had significant effect on survival curves. Following the Cox analysis and construction of miRNA‑targets regulatory network, hsa‑miRNA (miR)‑326 was identified to regulate 397 target genes. Additionally, targets of miR‑326 were primarily enriched in the GO terms of cell proliferation, epithelial growth factor receptor and nerve growth factor signaling pathways. Additionally, son of sevenless homolog 1 (SOS1), neuroblastoma RAS viral oncogene homolog (NRAS), vitamin D receptor (VDR) and mothers against decapentaplegic family member 3 (SMAD3) were most enriched in the PPI network. Targets of miR‑326 were primarily enriched in sub‑pathways including sphingolipid metabolism and arachidonic acid metabolism, in which sphingomyelin synthase 1 (SGMS1) and hematopoietic prostaglandin D synthase (HPGDS) were screened out. Hsa‑miR‑326 was identified as a risk miRNA for prognosis and may improve the outcome prediction of patients with cerebral LGG. This miRNA may regulate cancer cell proliferation by targeting SOS1, NRAS, VDR, SMAD3, SGMS1 and HPGDS.


Belinostat exerts antitumor cytotoxicity through the ubiquitin-proteasome pathway in lung squamous cell carcinoma.

  • Li R Kong‎ et al.
  • Molecular oncology‎
  • 2017‎

There have been advances in personalized therapy directed by molecular profiles in lung adenocarcinoma, but not in lung squamous cell carcinoma (SCC). The lack of actionable driver oncogenes in SCC has restricted the use of small-molecule inhibitors. Here, we show that SCC cell lines displayed differential sensitivities to belinostat, a pan-histone deacetylase inhibitor. Phosphoproteomic analysis of belinostat-treated SCC cells revealed significant downregulation of the MAPK pathway, along with the induction of apoptosis. In cisplatin-resistant cells that demonstrated aberrant MAPK activation, combined treatment with belinostat significantly inhibited cisplatin-induced ERK phosphorylation and exhibited strong synergistic cytotoxicity. Furthermore, belinostat transcriptionally upregulated the F-box proteins FBXO3 and FBXW10, which directly targeted son of sevenless (SOS), an upstream regulator of the MAPK pathway, for proteasome-mediated degradation. Supporting this, suppression of SOS/ERK pathway by belinostat could be abrogated by inhibiting proteasomal activity either with bortezomib or with siRNA knockdown of FBXO3/FBXW10. Taken together, these preclinical data offer a novel understanding of the epigenetic mechanism by which belinostat exerts its cytotoxicity and supports the combination with cisplatin in clinical settings for chemorefractory SCC tumors.


RUNX1 positively regulates the ErbB2/HER2 signaling pathway through modulating SOS1 expression in gastric cancer cells.

  • Yoshihide Mitsuda‎ et al.
  • Scientific reports‎
  • 2018‎

The dual function of runt-related transcriptional factor 1 (RUNX1) as an oncogene or oncosuppressor has been extensively studied in various malignancies, yet its role in gastric cancer remains elusive. Up-regulation of the ErbB2/HER2 signaling pathway is frequently-encountered in gastric cancer and contributes to the maintenance of these cancer cells. This signaling cascade is partly mediated by son of sevenless homolog (SOS) family, which function as adaptor proteins in the RTK cascades. Herein we report that RUNX1 regulates the ErbB2/HER2 signaling pathway in gastric cancer cells through transactivating SOS1 expression, rendering itself an ideal target in anti-tumor strategy toward this cancer. Mechanistically, RUNX1 interacts with the RUNX1 binding DNA sequence located in SOS1 promoter and positively regulates it. Knockdown of RUNX1 led to the decreased expression of SOS1 as well as dephosphorylation of ErbB2/HER2, subsequently suppressed the proliferation of gastric cancer cells. We also found that our novel RUNX inhibitor (Chb-M') consistently led to the deactivation of the ErbB2/HER2 signaling pathway and was effective against several gastric cancer cell lines. Taken together, our work identified a novel interaction of RUNX1 and the ErbB2/HER2 signaling pathway in gastric cancer, which can potentially be exploited in the management of this malignancy.


Noonan syndrome patient-specific induced cardiomyocyte model carrying SOS1 gene variant c.1654A>G.

  • Narasimman Gurusamy‎ et al.
  • Experimental cell research‎
  • 2021‎

Noonan syndrome (NS) is a dominant autosomal genetic disorder, associated with mutations in several genes that exhibit multisystem abnormal development including cardiac defects. NS associated with the Son of Sevenless homolog 1 (SOS1) gene mutation attributes to the development of cardiomyopathy and congenital heart defects. Since the treatment option for NS is very limited, an in vitro disease model with SOS1 gene mutation would be beneficial for exploring therapeutic possibilities for NS. We reprogrammed cardiac fibroblasts obtained from a NS patient and normal control skin fibroblasts (C-SF) into induced pluripotent stem cells (iPSCs). We identified NS-iPSCs carry a heterozygous single nucleotide variation in the SOS1 gene at the c.1654A > G. Furthermore, the control and NS-iPSCs were differentiated into induced cardiomyocytes (iCMCs), and the electron microscopic analysis showed that the sarcomeres of the NS-iCMCs were highly disorganized. FACS analysis showed that 47.5% of the NS-iCMCs co-expressed GATA4 and cardiac troponin T proteins, and the mRNA expression levels of many cardiac related genes, studied by qRT-PCR array, were significantly reduced when compared to the control C-iCMCs. We report for the first time that NS-iPSCs carry a single nucleotide variation in the SOS1 gene at the c.1654A>G were showing significantly reduced cardiac genes and proteins expression as well as structurally and functionally compromised when compared to C-iCMCs. These iPSCs and iCMCs can be used as a modeling platform to unravel the pathologic mechanisms and also the development of novel drug for the cardiomyopathy in patients with NS.


Structural insights into the association between BCAR3 and Cas family members, an atypical complex implicated in anti-oestrogen resistance.

  • Marie-Line Garron‎ et al.
  • Journal of molecular biology‎
  • 2009‎

The association between novel Src homology 2-containing protein (NSP) and Crk-associated substrate (Cas) family members contributes to integrin and receptor tyrosine kinase signalling and is involved in conferring anti-oestrogen resistance to human breast carcinomas. The precise role of this association in tumorigenesis remains controversial, and the molecular basis for the complex NSP and Cas protein form is unknown. Here we present a pluridisciplinary approach, including small-angle X-ray scattering, that provides first insights into the structure of the complex formed between breast cancer anti-oestrogen resistance 3 (BCAR3, an NSP family member) and human enhancer of filamentation 1 (HEF1, also named NEDD9 or Cas-L, a Cas family protein). Our analysis corroborates a four-helix bundle structure for the NSP-binding domain of HEF1 and a Cdc25-like guanine nucleotide exchange factor (GEF) fold for the Cas-binding domain of BCAR3. Using residues located on helix 2 of the four-helix bundle, HEF1 binds very tightly to a site on BCAR3 that is remote from the putative guanosine triphosphatase binding site of the GEF domain, but similar to a site implicated in allosteric regulation of the homologous SOS (Son of Sevenless) GEF domain. Thus, the association between NSP and Cas proteins might not only create a very stable link between these molecules, co-localising their cellular functions, but also modulate the function of the NSP GEF domains. Such modulation may explain, at least in part, the controversial results published for NSP GEF function.


Sos1 Modulates Extracellular Matrix Synthesis, Proliferation, and Migration in Fibroblasts.

  • Isabel Fuentes-Calvo‎ et al.
  • Frontiers in physiology‎
  • 2021‎

Non-reversible fibrosis is common in various diseases such as chronic renal failure, liver cirrhosis, chronic pancreatitis, pulmonary fibrosis, rheumatoid arthritis and atherosclerosis. Transforming growth factor beta 1 (TGF-β1) is involved in virtually all types of fibrosis. We previously described the involvement of Ras GTPase isoforms in the regulation of TGF-β1-induced fibrosis. The guanine nucleotide exchange factor Son of Sevenless (Sos) is the main Ras activator, but the role of the ubiquitously expressed Sos1 in the development of fibrosis has not been studied. For this purpose, we isolated and cultured Sos1 knock-out (KO) mouse embryonic fibroblasts, the main extracellular matrix proteins (ECM)-producing cells, and we analyzed ECM synthesis, cell proliferation and migration in the absence of Sos1, as well as the role of the main Sos1-Ras effectors, Erk1/2 and Akt, in these processes. The absence of Sos1 increases collagen I expression (through the PI3K-Akt signaling pathway), total collagen proteins, and slightly increases fibronectin expression; Sos1 regulates fibroblast proliferation through both PI3K-Akt and Raf-Erk pathways, and Sos1-PI3K-Akt signaling regulates fibroblast migration. These study shows that Sos1 regulates ECM synthesis and migration (through Ras-PI3K-Akt) and proliferation (through Ras-PI3K-Akt and Ras-Raf-Erk) in fibroblasts, and describe for the first time the role of the Sos1-Ras signaling axis in the regulation of cellular processes involved in the development of fibrosis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: