Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 190 papers

A novel homozygous mutation in the solute carrier family 12 member 3 gene in a Chinese family with Gitelman syndrome.

  • Y Zhang‎ et al.
  • Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas‎
  • 2016‎

Loss of function of mutated solute carrier family 12 member 3 (SLC12A3) gene is the most frequent etiology for Gitelman syndrome (GS), which is mainly manifested by hypokalemia, hypomagnesemia and hypocalciuria. We report the genetic characteristics of one suspicious Chinese GS pedigree by gene sequencing. Complete sequencing analysis of the SLC12A3 gene revealed that both the proband and his elder sister had a novel homozygous SLC12A3 mutation: c.2099T>C and p.Leu700Pro. Moreover, the SLC12A3 genes of his mother and daughter encoded the same mutated heterozygote. It was noted that in this pedigree, only the proband complained about recurrent episodes of bilateral lower limb weakness over 8 years, while his elder sister, mother and daughter did not present symptoms. The inconsistent clinical features of this pedigree implied that besides diverse phenotypes possibly originated from the same genotype, gender difference may also dominate the variant GS phenotypes. Further genetic and proteomic research are needed to investigate the precise mechanisms of GS, including the study of specific ethnicities.


Aberrant Hypomethylation of Solute Carrier Family 6 Member 12 Promoter Induces Metastasis of Ovarian Cancer.

  • Hye Youn Sung‎ et al.
  • Yonsei medical journal‎
  • 2017‎

Ovarian cancer (OC) is the most fatal of gynecological malignancies with a high rate of recurrence. We aimed to evaluate the expression of solute carrier family 6, member 12 (SLC6A12) and methylation of its promoter CpG sites in a xenograft mouse model of metastatic OC, and to investigate the regulatory mechanisms that promote aggressive properties during OC progression.


Hepatitis C Virus Modulates Solute carrier family 3 member 2 for Viral Propagation.

  • Ngan N T Nguyen‎ et al.
  • Scientific reports‎
  • 2018‎

Hepatitis C virus (HCV) exploits an extensive network of host proteins to maintain chronic infection. Using RNA-Seq technology, we identified 30 host genes that were differentially expressed in cell culture grown HCV (HCVcc)-infected cells. Of these candidate genes, we selected solute carrier family 3 member 2 (SLC3A2) for further investigation. SLC3A2, also known as CD98hc, is a member of the solute carrier family and encodes a subunit of heterodimeric amino acid transporter. SLC3A2 and LAT1 constitute a heterodimeric transmembrane protein complex that catalyzes amino acid transport. In this study, we showed that HCV upregulated both mRNA and protein expression levels of SLC3A2 and this upregulation occurred through NS3/4A-mediated oxidative stress. HCV also elevated SLC3A2/LAT1 complex level and thus mammalian target of rapamycin complex 1 (mTORC1) signaling was activated. We further showed that L-leucine transport level was significantly increased in Jc1-infected cells as compared with mock-infected cells. Using RNA interference technology, we demonstrated that SLC3A2 was specifically required for the entry step but not for other stages of the HCV life cycle. These data suggest that SLC3A2 plays an important role in regulating HCV entry. Collectively, HCV exploits SLC3A2 for viral propagation and upregulation of SLC3A2 may contribute to HCV-mediated pathogenesis.


Solute carrier family 12 member 5 promotes tumor invasion/metastasis of bladder urothelial carcinoma by enhancing NF-κB/MMP-7 signaling pathway.

  • J Y Liu‎ et al.
  • Cell death & disease‎
  • 2017‎

Solute carrier family 12 member 5 (SLC12A5), an integral membrane KCl cotransporter, which maintains chloride homeostasis in neurons, is aberrantly expressed and involved in the tumorigenesis of certain cancers. However, the clinical significance and biological role of SLC12A5 in human bladder urothelial carcinoma (BUC) remains unclear. In this study, the expression of SLC12A5 was examined in clinical specimens of primary BUC and in BUC cell lines using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), western blot and immunohistochemistry (IHC). The prognostic value of SLC12A5 expression and its correlation with the clinicopathological features of patients with BUC were analyzed statistically. A series of in vitro and in vivo assays were performed to elucidate the effect of SLC12A5 in BUC and its underlying mechanisms. The present results showed that SLC12A5 expression was significantly increased in BUC tissues. SLC12A5 expression significantly correlated with the tumor node metastasis (TNM) stage. Kaplan-Meier survival curves showed that high SLC12A5 expression was associated with poor survival in patients with BUC. Multivariate analysis indicated that SLC12A5 expression was an independent prognostic marker for the survival of patients. Downregulation of SLC12A5 inhibited the migratory and invasive abilities of BUC cells in vitro, and knocking down SLC12A5 diminished BUC metastasis in vivo. Moreover, we identified that SLC12A5 promoted the migration and invasion of BUC by enhancing MMP-7 expression via NF-κB-dependent transcription. Taken together, our findings indicated that SLC12A5 might function as a tumor metastasis promoting factor in the development and progression of BUC by regulating the NF-κB/MMP-7 signaling pathway. Thus, SLC12A5 might be a prognostic marker as well as a therapeutic target for BUC.


Band 3/anion exchanger 1/solute carrier family 4 member 1 expression as determinant of cellular sensitivity to selenite exposure.

  • Yasunori Fukumoto‎ et al.
  • Biochemistry and biophysics reports‎
  • 2022‎

Selenium is a chalcogen element that is essential in animals, but is highly toxic when ingested above the nutritional requirement. Selenite is used as a supplement in patients receiving total parenteral nutrition. However, the therapeutic and toxic doses of selenite are separated by a narrow range. This ambivalent character of selenite implies the presence of cellular mechanisms that precisely control selenite homeostasis. Here, we investigated mechanisms that determine cellular susceptibility to selenite exposure. The resistance to selenite exposure was significantly different among cell lines. We determined the expression levels of TPMT (thiopurine S-methyltransferase) and SLC4A1 (solute carrier family 4 member 1), which encode selenium methyltransferase and selenite transporter, respectively. We also examined the effect of inhibition of Band 3 protein activity, which is encoded by SLC4A1, on the cellular sensitivity to selenite. The data suggest that the expression level of SLC4A1 is the determinant of cellular sensitivity to selenite.


The L-Arginine Transporter Solute Carrier Family 7 Member 2 Mediates the Immunopathogenesis of Attaching and Effacing Bacteria.

  • Kshipra Singh‎ et al.
  • PLoS pathogens‎
  • 2016‎

Solute carrier family 7 member 2 (SLC7A2) is an inducible transporter of the semi-essential amino acid L-arginine (L-Arg), which has been implicated in immune responses to pathogens. We assessed the role of SLC7A2 in murine infection with Citrobacter rodentium, an attaching and effacing enteric pathogen that causes colitis. Induction of SLC7A2 was upregulated in colitis tissues, and localized predominantly to colonic epithelial cells. Compared to wild-type mice, Slc7a2-/-mice infected with C. rodentium had improved survival and decreased weight loss, colon weight, and histologic injury; this was associated with decreased colonic macrophages, dendritic cells, granulocytes, and Th1 and Th17 cells. In infected Slc7a2-/-mice, there were decreased levels of the proinflammatory cytokines G-CSF, TNF-α, IL-1α, IL-1β, and the chemokines CXCL1, CCL2, CCL3, CCL4, CXCL2, and CCL5. In bone marrow chimeras, the recipient genotype drove the colitis phenotype, indicative of the importance of epithelial, rather than myeloid SLC7A2. Mice lacking Slc7a2 exhibited reduced adherence of C. rodentium to the colonic epithelium and decreased expression of Talin-1, a focal adhesion protein involved in the attachment of the bacterium. The importance of SLC7A2 and Talin-1 in the intimate attachment of C. rodentium and induction of inflammatory response was confirmed in vitro, using conditionally-immortalized young adult mouse colon (YAMC) cells with shRNA knockdown of Slc7a2 or Tln1. Inhibition of L-Arg uptake with the competitive inhibitor, L-lysine (L-Lys), also prevented attachment of C. rodentium and chemokine expression. L-Lys and siRNA knockdown confirmed the role of L-Arg and SLC7A2 in human Caco-2 cells co-cultured with enteropathogenic Escherichia coli. Overexpression of SLC7A2 in human embryonic kidney cells increased bacterial adherence and chemokine expression. Taken together, our data indicate that C. rodentium enhances its own pathogenicity by inducing the expression of SLC7A2 to favor its attachment to the epithelium and thus create its ecological niche.


Long non-coding RNA ADAMTS9-AS1 attenuates ferroptosis by Targeting microRNA-587/solute carrier family 7 member 11 axis in epithelial ovarian cancer.

  • Li Cai‎ et al.
  • Bioengineered‎
  • 2022‎

Epithelial ovarian cancer (EOC) accounts for approximately 90% of all ovarian cancer cases and is the most common cause of gynecological cancer death. Understanding the molecular mechanisms of EOC will help develop better diagnostics and more effective treatments. This study aimed to investigate whether long non-coding RNA ADAMTS9-AS1 (ADAMTS9-AS1) could regulate solute carrier family 7 member 11 (SLC7A11) expression and inhibit ferroptosis by sponging micoRNA-587 in EOC progression. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting results showed that ADAMTS9-AS1 expression was elevated in EOC cells; microRNA-587 expression was up-regulated and SLC7A11 expression was down-regulated after knocking down ADAMTS9-AS1 by transfection with siRNAs; however, microRNA-587 inhibitor reversed SLC7A11 expression in ADAMTS9-AS1 knocking down cells. Ferroptosis related marker detection and cell function assay confirmed that knocking down ADAMTS9-AS1 inhibited EOC cells proliferation and migration by promoting ferroptosis. Overexpression of micoRNA-587 also promoted ferroptosis while inhibited cells proliferation and migration in EOC cells. Additionally, micoRNA-587 inhibitor reversed the effect of ADAMTS9-AS1 silence on the ferroptosis and cell function. Moreover, dual-luciferase reporter gene assay and RNA immunoprecipitation assay confirmed that miR-587 was as a sponge for ADAMTS9-AS1 and SLC7A11. In conclusion, our study found that ADAMTS9-AS1 attenuated ferroptosis by targeting miR-587/SLC7A11 axis in EOC. Our study provides a new therapeutic target for EOC.


Oncogenic Activity of Solute Carrier Family 45 Member 2 and Alpha-Methylacyl-Coenzyme A Racemase Gene Fusion Is Mediated by Mitogen-Activated Protein Kinase.

  • Ze-Hua Zuo‎ et al.
  • Hepatology communications‎
  • 2022‎

Chromosome rearrangement is one of the hallmarks of human malignancies. Gene fusion is one of the consequences of chromosome rearrangements. In this report, we show that gene fusion between solute carrier family 45 member 2 (SLC45A2) and alpha-methylacyl-coenzyme A racemase (AMACR) occurs in eight different types of human malignancies, with frequencies ranging from 45% to 97%. The chimeric protein is translocated to the lysosomal membrane and activates the extracellular signal-regulated kinase signaling cascade. The fusion protein promotes cell growth, accelerates migration, resists serum starvation-induced cell death, and is essential for cancer growth in mouse xenograft cancer models. Introduction of SLC45A2-AMACR into the mouse liver using a sleeping beauty transposon system and somatic knockout of phosphatase and TENsin homolog (Pten) generated spontaneous liver cancers within a short period. Conclusion: The gene fusion between SLC45A2 and AMACR may be a driving event for human liver cancer development.


The determination of the effect(s) of solute carrier family 22-member 2 (SLC22A2) haplotype variants on drug binding via molecular dynamic simulation systems.

  • Zainonesa Abrahams-October‎ et al.
  • Scientific reports‎
  • 2022‎

Single nucleotide polymorphisms detected in the solute carrier member family-22 has been shown to result in a variable response in the treatment of type 2 diabetes mellitus with Metformin. This study predicted a three-dimensional protein structure for the SLC22A2 protein sequence using AlphaFold 2 and modelled five haplotypes within SLC22A2 protein structure observed in the Xhosa population of South Africa. The protein models were used to determine the effect(s) of haplotype variations on the transport function of Metformin and 10 other drugs by the SLC22A2 protein. Molecular dynamic simulation studies, molecular docking and interaction analysis of the five SLC22A2 haplotypes were performed in complex with the ligand 5RE in a POPC lipid bilayer to understand the mechanism of drug binding. Weakest binding free energy was found between 5RE and haplotype 1. Molecular docking studies indicated the top binding ligands as well as Metformin to bind inside the transport channel in all haplotypes increasing the probability of Metformin inhibition during co-administration of drugs. Metformin showed reduced binding affinity and number of interactions compared to the top four binding molecules. Molecular dynamic simulation analysis indicated that haplotypes 1, 3 and 4 were less stable than 2 and 5. The findings suggest haplotypes 4 and 5 having stronger preference for large inhibitor molecule binding in the active site and this could result in haplotypes 4 and 5 demonstrating reduced Metformin clearance via the SLC22A2 transporter during co-administration of drugs. The current study is the first to investigate the potential effect(s) of haplotype variation on the protein structure of SLC22A2 to assess its ability to transport Metformin in an indigenous South African population.


Expression of Ferroptosis-Related Proteins Glutathione Peroxidase 4, Nuclear Factor Erythroid 2-Related Factor 2, and Solute Carrier Family 7 Member 11 in Gastric Cancer Patients.

  • Yitian Sun‎ et al.
  • The Turkish journal of gastroenterology : the official journal of Turkish Society of Gastroenterology‎
  • 2023‎

The aim of this study was to investigate the expression of ferroptosis-related targets glutathione peroxidase 4, nuclear factor erythroid 2-related factor 2, and solute carrier family 7 member 11 in gastric cancer and the correlation between their expression and the clinicopathological characteristics and prognosis of gastric cancer patients.


Neuroplastinβ-mediated upregulation of solute carrier family 22 member 18 antisense (SLC22A18AS) plays a crucial role in the epithelial-mesenchymal transition, leading to lung cancer cells' enhanced motility.

  • Karolina Bajkowska‎ et al.
  • Biochemistry and biophysics reports‎
  • 2020‎

Our recent study revealed an important role of the neuroplastin (NPTN)β downstream signal in lung cancer dissemination in the lung. The molecular mechanism of the signal pathway downstream of NPTNβ is a serial activation of the key molecules we identified: tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2) adaptor, nuclear factor (NF)IA/NFIB heterodimer transcription factor, and SAM pointed-domain containing ETS transcription factor (SPDEF). The question of how dissemination is controlled by SPDEF under the activated NPTNβ has not been answered. Here, we show that the NPTNβ-SPDEF-mediated induction of solute carrier family 22 member 18 antisense (SLC22A18AS) is definitely required for the epithelial-mesenchymal transition (EMT) through the NPTNβ pathway in lung cancer cells. In vitro, the induced EMT is linked to the acquisition of active cellular motility but not growth, and this is correlated with highly disseminative tumor progression in vivo. The publicly available data also show the poor survival of SLC22A18AS-overexpressing lung cancer patients. Taken together, these data highlight a crucial role of SLC22A18AS in lung cancer dissemination, which provides novel input of this molecule to the signal cascade of NPTNβ. Our findings contribute to a better understanding of NPTNβ-mediated lung cancer metastasis.


Knockdown of circular RNA septin 9 inhibits the malignant progression of breast cancer by reducing the expression of solute carrier family 1 member 5 in a microRNA-149-5p-dependent manner.

  • Jianjun Wang‎ et al.
  • Bioengineered‎
  • 2021‎

Breast cancer (BC) is the most frequently diagnosed cancer in women. Increasing evidence suggests that circular RNA (circRNA) exerts critical functions in BC progression. However, the roles of circRNA septin 9 (circSEPT9) in BC development and the underneath mechanism remain largely unclear so far. In this work, the RNA levels of circSEPT9, microRNA-149-5p (miR-149-5p) and solute carrier family 1 member 5 (SLC1A5) were detected by quantitative real-time polymerase chain reaction. Western blot was performed to check protein expression. Glutamine uptake, cell proliferation and cell apoptosis were investigated by glutamine uptake, cell counting kit-8, cell colony formation, 5-Ethynyl-29-deoxyuridine, flow cytometry analysis or DNA content quantitation assay. The interactions of miR-149-5p with circSEPT9 and SLC1A5 were identified by a dual-luciferase reporter assay. Mouse model assay was carried out to analyze the effect of circSEPT9 on tumor formation in vivo. Results showed that circSEPT9 and SLC1A5 expression were significantly upregulated, while miR-149-5p was downregulated in BC tissues and cells as compared with paracancerous normal breast tissues and human normal breast cells. Knockdown of circSEPT9 or SLC1A5 inhibited glutamine uptake and cell proliferation, but induced cell apoptosis in BC cells. SLC1A5 overexpression relieved circSEPT9 silencing-induced repression of BC cell malignancy. In mechanism, circSEPT9 regulated SLC1A5 expression by sponging miR-149-5p. In support, circSEPT9 knockdown led to delayed tumor tumorigenesis in vivo. In summary, these results indicates that circSEPT9 may act an oncogenic role in BC malignant progression by regulating miR-149-5p/SLC1A5 pathway, providing a novel mechanism responsible for BC development.


Solute carrier family 35 member F2 is indispensable for papillary thyroid carcinoma progression through activation of transforming growth factor-β type I receptor/apoptosis signal-regulating kinase 1/mitogen-activated protein kinase signaling axis.

  • Jing He‎ et al.
  • Cancer science‎
  • 2018‎

Solute carrier family members control essential physiological functions and are tightly linked to human diseases. Solute carrier family 35 member F2 (SLC35F2) is aberrantly activated in several malignancies. However, the biological function and molecular mechanism of SLC35F2 in papillary thyroid carcinoma (PTC) are yet to be fully explored. Here, we showed that SLC35F2 was prominently upregulated in PTC tissues at both protein and mRNA expression level compared with matched adjacent normal tissues. Besides, the high expression of SLC35F2 was significantly associated with lymph node metastasis in patients with PTC. CRISPR/Cas9-mediated knockout of SLC35F2 attenuated the tumorigenic properties of PTC, including cell proliferation, migration and invasion and induced G1 phase arrest. In contrast, ectopic expression of SLC35F2 brought about aggressive malignant phenotypes of PTC cells. Moreover, SLC35F2 expedited the proliferation and migration of PTC cells by targeting transforming growth factor-β type I receptor (TGFBR1) and phosphorylation of apoptosis signal-regulating kinase 1 (p-ASK-1), thereby activating the mitogen-activated protein kinase signaling pathway. The malignant behaviors induced by overexpression of SLC35F2 could be abrogated by silencing of TGFBR1 using a specific inhibitor. We conducted the first study on SLC35F2 in thyroid cancer with the aim of elucidating the functional significance and molecular mechanism of SLC35F2. Our findings suggest that SLC35F2 exerts its oncogenic effect on PTC progression through the mitogen-activated protein kinase pathway, with dependence on activation of TGFBR-1 and apoptosis signal-regulating kinase 1.


Solute carrier 41A3 encodes for a mitochondrial Mg(2+) efflux system.

  • Lucia Mastrototaro‎ et al.
  • Scientific reports‎
  • 2016‎

The important role of magnesium (Mg(2+)) in normal cellular physiology requires flexible, yet tightly regulated, intracellular Mg(2+) homeostasis (IMH). However, only little is known about Mg(2+) transporters of subcellular compartments such as mitochondria, despite their obvious importance for the deposition and reposition of intracellular Mg(2+) pools. In particular, knowledge about mechanisms responsible for extrusion of Mg(2+) from mitochondria is lacking. Based on circumstantial evidence, two possible mechanisms of Mg(2+) release from mitochondria were predicted: (1) Mg(2+) efflux coupled to ATP translocation via the ATP-Mg/Pi carrier, and (2) Mg(2+) efflux via a H(+)/Mg(2+) exchanger. Regardless, the identity of the H(+)-coupled Mg(2+) efflux system is unknown. We demonstrate here that member A3 of solute carrier (SLC) family 41 is a mitochondrial Mg(2+) efflux system. Mitochondria of HEK293 cells overexpressing SLC41A3 exhibit a 60% increase in the extrusion of Mg(2+) compared with control cells. This efflux mechanism is Na(+)-dependent and temperature sensitive. Our data identify SLC41A3 as the first mammalian mitochondrial Mg(2+) efflux system, which greatly enhances our understanding of intracellular Mg(2+) homeostasis.


GATA factor-regulated solute carrier ensemble reveals a nucleoside transporter-dependent differentiation mechanism.

  • Nicole M Zwifelhofer‎ et al.
  • PLoS genetics‎
  • 2020‎

Developmental-regulatory networks often include large gene families encoding mechanistically-related proteins like G-protein-coupled receptors, zinc finger transcription factors and solute carrier (SLC) transporters. In principle, a common mechanism may confer expression of multiple members integral to a developmental process, or diverse mechanisms may be deployed. Using genetic complementation and enhancer-mutant systems, we analyzed the 456 member SLC family that establishes the small molecule constitution of cells. This analysis identified SLC gene cohorts regulated by GATA1 and/or GATA2 during erythroid differentiation. As >50 SLC genes shared GATA factor regulation, a common mechanism established multiple members of this family. These genes included Slc29a1 encoding an equilibrative nucleoside transporter (Slc29a1/ENT1) that utilizes adenosine as a preferred substrate. Slc29a1 promoted erythroblast survival and differentiation ex vivo. Targeted ablation of murine Slc29a1 in erythroblasts attenuated erythropoiesis and erythrocyte regeneration in response to acute anemia. Our results reveal a GATA factor-regulated SLC ensemble, with a nucleoside transporter component that promotes erythropoiesis and prevents anemia, and establish a mechanistic link between GATA factor and adenosine mechanisms. We propose that integration of the GATA factor-adenosine circuit with other components of the GATA factor-regulated SLC ensemble establishes the small molecule repertoire required for progenitor cells to efficiently generate erythrocytes.


The orphan solute carrier SLC10A7 is a novel negative regulator of intracellular calcium signaling.

  • Emre Karakus‎ et al.
  • Scientific reports‎
  • 2020‎

SLC10A7 represents an orphan member of the Solute Carrier Family SLC10. Recently, mutations in the human SLC10A7 gene were associated with skeletal dysplasia, amelogenesis imperfecta, and decreased bone mineral density. However, the exact molecular function of SLC10A7 and the mechanisms underlying these pathologies are still unknown. For this reason, the role of SLC10A7 on intracellular calcium signaling was investigated. SLC10A7 protein expression was negatively correlated with store-operated calcium entry (SOCE) via the plasma membrane. Whereas SLC10A7 knockout HAP1 cells showed significantly increased calcium influx after thapsigargin, ionomycin and ATP/carbachol treatment, SLC10A7 overexpression reduced this calcium influx. Intracellular Ca2+ levels were higher in the SLC10A7 knockout cells and lower in the SLC10A7-overexpressing cells. The SLC10A7 protein co-localized with STIM1, Orai1, and SERCA2. Most of the previously described human SLC10A7 mutations had no effect on the calcium influx and thus were confirmed to be functionally inactive. In the present study, SLC10A7 was established as a novel negative regulator of intracellular calcium signaling that most likely acts via STIM1, Orai1 and/or SERCA2 inhibition. Based on this, SLC10A7 is suggested to be named as negative regulator of intracellular calcium signaling (in short: RCAS).


Pericentric inversion of chromosom 12 [Inv (12) (p12q12)] associated with idiopathic azoospermia in one infertile Tunisian man.

  • Myriam Ghorbel‎ et al.
  • Biochemical and biophysical research communications‎
  • 2013‎

Chromosome aberrations are found in 2-7% of couples with fertility problems and pericentric inversions are structural chromosomal abnormalities, potentially associated with infertility or multiple miscarriages. In this study, we report the first case of pericentric inversion of chromosome 12 associated with non-obstructive azoospermia. A karyogram revealed pericentric inversion of chromosome 12 with breakpoints at 12p12 and 12q12. Testicular histopathology confirmed the Sertoli cell-only syndrome.


Astragaloside IV alleviates neuronal ferroptosis in ischemic stroke by regulating fat mass and obesity-associated-N6-methyladenosine-acyl-CoA synthetase long-chain family member 4 axis.

  • Zhenglong Jin‎ et al.
  • Journal of neurochemistry‎
  • 2023‎

Ischemic stroke (IS) is a detrimental neurological disease with limited treatment options. Astragaloside IV (As-IV) was a promising bioactive constituent in the treatment of IS. However, the functional mechanism remains unclear. Here, IS cell and mouse models were established by oxygen glucose deprivation/re-oxygenation (OGD/R) and middle cerebral artery occlusion (MCAO). Quantitative reverse transcription PCR (RT-qPCR), Western blotting, or Immunofluorescence staining measured related gene and protein expression of cells or mice brain tissues, and the results revealed altered expression of acyl-CoA synthetase long-chain family member 4 (Acsl4), fat mass and obesity-associated (Fto), and activation transcription factor 3 (Atf3) after treatment with As-IV. Then, increased N6 -methyladenosine (m6 A) levels caused OGD/R or MCAO were reduced by As-IV according to the data from methylated RNA immunoprecipitation (MeRIP)-qPCR and dot blot assays. Moreover, through a series of functional experiments such as observing mitochondrial changes under transmission electron microscopy (TEM), evaluating cell viability by cell counting kit-8 (CCK-8), analyzing infract area of brain tissues by 2,3,5-triphenyltetrazolium chloride (TTC) staining, measuring levels of malondialdehyde (MDA), lactate dehydrogenase (LDH), Fe2+ , solute carrier family 7 member 11 (Slc7a11) and glutathione peroxidase 4 (Gpx4) and concentration of glutathione (GSH), we found that Fto knockdown, Acsl4 overexpression or Atf3 knockdown promoted the viability of OGD/R cells, inhibited cell ferroptosis, reduced infract size, while As-IV treatment or Fto overexpression reversed these changes. In mechanism, the interplays of YTH N6 -methyladenosine RNA-binding protein 3 (Ythdf3)/Acsl4 and Atf3/Fto were analyzed by RNA-pull down, RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assay. Fto regulated the m6 A levels of Acsl4. Ythdf3 bound to Acsl4, and modulated its levels through m6 A modification. Atf3 bound to Fto and positively regulated its levels. Overall, As-IV promoted the transcription of Fto by upregulating Atf3, resulting in decreased m6 A levels of Acsl4, thus, improving neuronal injury in IS by inhibiting ferroptosis.


The mitochondrial carrier SFXN1 is critical for complex III integrity and cellular metabolism.

  • Michelle Grace Acoba‎ et al.
  • Cell reports‎
  • 2021‎

Mitochondrial carriers (MCs) mediate the passage of small molecules across the inner mitochondrial membrane (IMM), enabling regulated crosstalk between compartmentalized reactions. Despite MCs representing the largest family of solute carriers in mammals, most have not been subjected to a comprehensive investigation, limiting our understanding of their metabolic contributions. Here, we functionally characterize SFXN1, a member of the non-canonical, sideroflexin family. We find that SFXN1, an integral IMM protein with an uneven number of transmembrane domains, is a TIM22 complex substrate. SFXN1 deficiency leads to mitochondrial respiratory chain impairments, most detrimental to complex III (CIII) biogenesis, activity, and assembly, compromising coenzyme Q levels. The CIII dysfunction is independent of one-carbon metabolism, the known primary role for SFXN1 as a mitochondrial serine transporter. Instead, SFXN1 supports CIII function by participating in heme and α-ketoglutarate metabolism. Our findings highlight the multiple ways that SFXN1-based amino acid transport impacts mitochondrial and cellular metabolic efficiency.


Expression, sorting and transport studies for the orphan carrier SLC10A4 in neuronal and non-neuronal cell lines and in Xenopus laevis oocytes.

  • Stephanie Schmidt‎ et al.
  • BMC neuroscience‎
  • 2015‎

SLC10A4 belongs to the solute carrier family SLC10 whose founding members are the Na(+)/taurocholate co-transporting polypeptide (NTCP, SLC10A1) and the apical sodium-dependent bile acid transporter (ASBT, SLC10A2). These carriers maintain the enterohepatic circulation of bile acids between the liver and the gut. SLC10A4 was identified as a novel member of the SLC10 carrier family with the highest phylogenetic relationship to NTCP. The SLC10A4 protein was detected in synaptic vesicles of cholinergic and monoaminergic neurons of the peripheral and central nervous system, suggesting a transport function for any kind of neurotransmitter. Therefore, in the present study, we performed systematic transport screenings for SLC10A4 and also aimed to identify the vesicular sorting domain of the SLC10A4 protein.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: