Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 786 papers

Assessment of Malaysia's Large-Scale Solar Projects: Power System Analysis for Solar PV Grid Integration.

  • Rehan Khan‎ et al.
  • Global challenges (Hoboken, NJ)‎
  • 2020‎

Malaysia targets to become the second-largest producer of solar photovoltaic (PV) in the world by increasing the current output from 12% to 20% in 2020. The government also expects to achieve 45% reduction of greenhouse gas emission by 2030 through renewable energy mainly by solar PV. Large-scale solar (LSS) aims to produce 2.5 GW, which contributes to 10% of the nation's electricity demands. The LSS system is held back by the grid-scale integration, transmission, and distribution infrastructure. Thus, power system analysis is crucial to achieve optimization in LSS to power grid integration. This paper investigates various power system analysis models and recommends an optimized configuration based on Malaysia's LSS scenario. In stage 1, an optimal PV sizing is carried out based on real data of LSS installation in different locations. In stage 2, power analysis is carried out using to analyze the potential difference variation when connected to a nine-bus power system. The potential variation at each bus of the system is assessed and hence provides a feasibility statement on the most effective configurations for LSS-grid integration. This paper serves as the reference model for LSS-grid integration in Malaysia and is expected to be replicated in the other countries with similar conditions.


Determination of the optimal solar photovoltaic (PV) system for Sudan.

  • Sulaiman O Fadlallah‎ et al.
  • Solar energy (Phoenix, Ariz.)‎
  • 2020‎

Electricity access in Africa is a major challenge in rural areas. Despite considerable potential for the use of solar energy, investments in renewable energy projects are minimal due to poor promotion of solar energy. As a result, many people still rely on private diesel generators, which release significant levels of pollutants, and have negative effects on both humans and the environment. Situated in the sunbelt, Sudan is one of the largest countries in Africa endowed with an extremely high solar irradiation potential. However, no work has been done in the literature with a strategic context to study specifically the feasibility of renewable energy systems in Sudan despite the abundance of solar resource. The aim of this study was to utilize Hybrid Optimization Model for Electric Renewables (HOMER) to identify the optimal solar photovoltaic (PV) system for Sudan's conditions, identify the best locations, and analyze the costs and the pollution that might be avoided by employing a PV system in place of a diesel system. HOMER simulation results demonstrated that the optimal type of PV for Sudan is the Studer VarioTrack VT-65 with Generic PV. The utilization of a solar PV system will avoid the production of approximately 27 million kg/year of pollutants and will reduce the cost of energy to USD$ 0.08746/kWh. The optimal locations found in Sudan for utilizing solar energy were Wawa, followed by Kutum, Wadi Halfa, Dongola and Al-Goled due to their low costs of electricity, high clearness index and high levels of solar radiation. Given the recent rapid decrease in PV pricing and predictions for continued reductions, the costs of PV were varied to deliver an understanding on the impact of PV costs on the project economics. Reducing the PV costs by 25% has a significant impact; the cost of energy produced reduces in the range of USD$ 0.06697/kWh and USD$ 0.06808/kWh, while a reduction in PV costs of 50% further reduces the cost of energy, ranging between USD$ 0.05273/kWh and USD$ 0.05361/kWh in the top five locations in Sudan. The output of this study is projected to raising the potentiality awareness of renewable energy in Sudan and delivering a valuable reference regarding the optimal utilization of solar PV system in energy sector.


Efficient solar-driven electrocatalytic CO2 reduction in a redox-medium-assisted system.

  • Yuhang Wang‎ et al.
  • Nature communications‎
  • 2018‎

Solar-driven electrochemical carbon dioxide (CO2) reduction is capable of producing value-added chemicals and represents a potential route to alleviate carbon footprint in the global environment. However, the ever-changing sunlight illumination presents a substantial impediment of maintaining high electrocatalytic efficiency and stability for practical applications. Inspired by green plant photosynthesis with separate light reaction and (dark) carbon fixation steps, herein, we developed a redox-medium-assisted system that proceeds water oxidation with a nickel-iron hydroxide electrode under light illumination and stores the reduction energy using a zinc/zincate redox, which can be controllably released to spontaneously reduce CO2 into carbon monoxide (CO) with a gold nanocatalyst in dark condition. This redox-medium-assisted system enables a record-high solar-to-CO photoconversion efficiency of 15.6% under 1-sun intensity, and an outstanding electric energy efficiency of 63%. Furthermore, it allows a unique tuning capability of the solar-to-CO efficiency and selectivity by the current density applied during the carbon fixation.


Silica-rich volcanism in the early solar system dated at 4.565 Ga.

  • Poorna Srinivasan‎ et al.
  • Nature communications‎
  • 2018‎

The ranges in chemical composition of ancient achondrite meteorites are key to understanding the diversity and geochemical evolution of planetary building blocks. These achondrites record the first episodes of volcanism and crust formation, the majority of which are basaltic. Here we report data on recently discovered volcanic meteorite Northwest Africa (NWA) 11119, which represents the first, and oldest, silica-rich (andesitic to dacitic) porphyritic extrusive crustal rock with an Al-Mg age of 4564.8 ± 0.3 Ma. This unique rock contains mm-sized vesicles/cavities and phenocrysts that are surrounded by quench melt. Additionally, it possesses the highest modal abundance (30 vol%) of free silica (i.e., tridymite) compared to all known meteorites. NWA 11119 substantially widens the range of volcanic rock compositions produced within the first 2.5-3.5 million years of Solar System history, and provides direct evidence that chemically evolved crustal rocks were forming on planetesimals prior to the assembly of the terrestrial planets.


FluoSpec 2-An Automated Field Spectroscopy System to Monitor Canopy Solar-Induced Fluorescence.

  • Xi Yang‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2018‎

Accurate estimation of terrestrial photosynthesis has broad scientific and societal impacts. Measurements of photosynthesis can be used to assess plant health, quantify crop yield, and determine the largest CO₂ flux in the carbon cycle. Long-term and continuous monitoring of vegetation optical properties can provide valuable information about plant physiology. Recent developments of the remote sensing of solar-induced chlorophyll fluorescence (SIF) and vegetation spectroscopy have shown promising results in using this information to quantify plant photosynthetic activities and stresses at the ecosystem scale. However, there are few automated systems that allow for unattended observations over months to years. Here we present FluoSpec 2, an automated system for collecting irradiance and canopy radiance that has been deployed in various ecosystems in the past years. The instrument design, calibration, and tests are recorded in detail. We discuss the future directions of this field spectroscopy system. A network of SIF sensors, FluoNet, is established to measure the diurnal and seasonal variations of SIF in several ecosystems. Automated systems such as FluoSpec 2 can provide unique information on ecosystem functioning and provide important support to the satellite remote sensing of canopy photosynthesis.


Extraterrestrial hexamethylenetetramine in meteorites-a precursor of prebiotic chemistry in the inner solar system.

  • Yasuhiro Oba‎ et al.
  • Nature communications‎
  • 2020‎

Despite extensive studies on the formation of organic molecules in various extraterrestrial environments, it still remains under debate when, where, and how such molecules were abiotically formed. A key molecule to solve the problem, hexamethylenetetramine (HMT) has not been confirmed in extraterrestrial materials despite extensive laboratory experimental evidence that it can be produced in interstellar or cometary environments. Here we report the first detection of HMT and functionalized HMT species in the carbonaceous chondrites Murchison, Murray, and Tagish Lake. While the part-per-billion level concentration of HMT in Murchison and Tagish Lake is comparable to other related soluble organic molecules like amino acids, these compounds may have eluded detection in previous studies due to the loss of HMT during the extraction processes. HMT, which can yield important molecules for prebiotic chemistry such as formaldehyde and ammonia upon degradation, is a likely precursor of meteoritic organic compounds of astrochemical and astrophysical interest.


Episodic formation of refractory inclusions in the Solar System and their presolar heritage.

  • K K Larsen‎ et al.
  • Earth and planetary science letters‎
  • 2020‎

Refractory inclusions [Ca-Al-rich Inclusions (CAIs) and Amoeboid Olivine Aggregates (AOAs)] in primitive meteorites are the oldest Solar System solids. They formed in the hot inner protoplanetary disk and, as such, provide insights into the earliest disk dynamics and physicochemical processing of the dust and gas that accreted to form the Sun and its planetary system. Using the short-lived 26Al to 26Mg decay system, we show that bulk refractory inclusions in CV (Vigarano-type) and CR (Renazzo-type) carbonaceous chondrites captured at least two distinct 26Al-rich (26Al/27Al ratios of ~5 × 10-5) populations of refractory inclusions characterized by different initial 26Mg/24Mg isotope compositions (μ26Mg*0). Another 26Al-poor CAI records an even larger μ26Mg*0 deficit. This suggests that formation of refractory inclusions was punctuated and recurrent, possibly associated with episodic outbursts from the accreting proto-Sun lasting as short as <8000 yr. Our results support a model in which refractory inclusions formed close to the hot proto-Sun and were subsequently redistributed to the outer disk, beyond the orbit of Jupiter, plausibly via stellar outflows with progressively decreasing transport efficiency. We show that the magnesium isotope signatures in refractory inclusions mirrors the presolar grain record, demonstrating a mutual exclusivity between 26Al enrichments and large nucleosynthetic Mg isotope effects. This suggests that refractory inclusions formed by incomplete thermal processing of presolar dust, thereby inheriting a diluted signature of their isotope systematics. As such, they record snapshots in the progressive sublimation of isotopically anomalous presolar carriers through selective thermal processing of young dust components from the proto-Solar molecular cloud. We infer that 26Al-rich refractory inclusions incorporated 26Al-rich dust which formed <5 Myr prior to our Sun, whereas 26Al-poor inclusions (such as FUN- and PLAC-type CAIs) incorporated >10 Myr old dust.


The Winchcombe meteorite, a unique and pristine witness from the outer solar system.

  • Ashley J King‎ et al.
  • Science advances‎
  • 2022‎

Direct links between carbonaceous chondrites and their parent bodies in the solar system are rare. The Winchcombe meteorite is the most accurately recorded carbonaceous chondrite fall. Its pre-atmospheric orbit and cosmic-ray exposure age confirm that it arrived on Earth shortly after ejection from a primitive asteroid. Recovered only hours after falling, the composition of the Winchcombe meteorite is largely unmodified by the terrestrial environment. It contains abundant hydrated silicates formed during fluid-rock reactions, and carbon- and nitrogen-bearing organic matter including soluble protein amino acids. The near-pristine hydrogen isotopic composition of the Winchcombe meteorite is comparable to the terrestrial hydrosphere, providing further evidence that volatile-rich carbonaceous asteroids played an important role in the origin of Earth's water.


Distributions of CHN compounds in meteorites record organic syntheses in the early solar system.

  • Yoshihiro Furukawa‎ et al.
  • Scientific reports‎
  • 2023‎

Carbonaceous meteorites contain diverse soluble organic compounds. These compounds formed in the early solar system from volatiles accreted on tiny dust particles. However, the difference in the organic synthesis on respective dust particles in the early solar system remains unclear. We found micrometer-scale heterogeneous distributions of diverse CHN1-2 and CHN1-2O compounds in two primitive meteorites: the Murchison and NWA 801, using a surface-assisted laser desorption/ionization system connected to a high mass resolution mass spectrometer. These compounds contained mutual relationships of ± H2, ± CH2, ± H2O, and ± CH2O and showed highly similar distributions, indicating that they are the products of series reactions. The heterogeneity was caused by the micro-scale difference in the abundance of these compounds and the extent of the series reactions, indicating that these compounds formed on respective dust particles before asteroid accretion. The results of the present study provide evidence of heterogeneous volatile compositions and the extent of organic reactions among the dust particles that formed carbonaceous asteroids. The compositions of diverse small organic compounds associated with respective dust particles in meteorites are useful to understand different histories of volatile evolution in the early solar system.


Study of a novel front-roof-back natural ventilation system for Chinese solar greenhouses.

  • Lei Zhang‎ et al.
  • Royal Society open science‎
  • 2022‎

A Chinese solar greenhouse (CSG) is a highly efficient and energy-saving horticultural facility. Ventilation is significantly important for crop production in the greenhouse, and the vent configuration is the basis of the greenhouse design. Current CSG ventilation structures mostly include front bottom vents and top vents to create a suitable temperature environment for the normal development of crops. However, the ventilation capacity and efficiency are limited. In the present study, we proposed a comprehensive front bottom + top + back roof (FTB) ventilation configuration. The greenhouse ventilation was investigated during the summer season by means of field testing and simulation, and the performance of three ventilation structures-front bottom + top (FT), front bottom + back roof (FB) and FTB-was compared. The results showed that FTB stabilized the greenhouse temperature for 20 s less time than FT and FB. The cooling rate of FTB showed a 24.84% and 5.52% improvement over FT and FB, respectively, and the average temperature showed a 13.81% and 3.65% decrease, respectively. Moreover, the ventilation performance of the side walls was investigated in order to determine if they might serve as auxiliary structures for FTB ventilation. Nevertheless, the improvements of cooling rate, wind speed and average temperature were only 0.52%, 2.09% and 0.11%, respectively. The results demonstrated that the novel FTB ventilation proposed in the present study significantly improved ventilation efficiency and uniformity compared with conventional ventilation structures. The results presented herein provide theoretical support for the use and design of greenhouses suitable for China's special climate.


India's potential for integrating solar and on- and offshore wind power into its energy system.

  • Tianguang Lu‎ et al.
  • Nature communications‎
  • 2020‎

This paper considers options for a future Indian power economy in which renewables, wind and solar, could meet 80% of anticipated 2040 power demand supplanting the country's current reliance on coal. Using a cost optimization model, here we show that renewables could provide a source of power cheaper or at least competitive with what could be supplied using fossil-based alternatives. The ancillary advantage would be a significant reduction in India's future power sector related emissions of CO2. Using a model in which prices for wind turbines and solar PV systems are assumed to continue their current decreasing trend, we conclude that an investment in renewables at a level consistent with meeting 80% of projected 2040 power demand could result in a reduction of 85% in emissions of CO2 relative to what might be expected if the power sector were to continue its current coal dominated trajectory.


The highly developed symbiotic system between the solar-powered nudibranch Pteraeolidia semperi and Symbiodiniacean algae.

  • Hideaki Mizobata‎ et al.
  • iScience‎
  • 2023‎

The intricate coexistence of Symbiodiniacean algae with a diverse range of marine invertebrates underpins the flourishing biodiversity observed within coral reef ecosystems. However, the breakdown of Symbiodiniaceae-host symbiosis endangers these ecosystems, necessitating urgent study of the symbiotic mechanisms. The symbiosis between nudibranchs and Symbiodiniaceae has been identified as an efficacious model for examining these mechanisms, yet a comprehensive understanding of their histological structures and cellular processes remains elusive. A meticulous histological exploration of the nudibranch Pteraeolidia semperi, employing optical, fluorescence, and electron microscopy, has revealed fine tubules extending to the body surface, with associated epithelial cells having been shown to adeptly encapsulate Symbiodiniaceae intracellularly. By tracing the stages of the "bleaching" in nudibranchs, it was inferred that algal cells, translocated via the digestive gland, are directly phagocytosed and expelled by these epithelial cells. Collectively, these insights contribute substantially to the scholarly discourse on critical marine symbiotic associations.


A host-guest semibiological photosynthesis system coupling artificial and natural enzymes for solar alcohol splitting.

  • Junkai Cai‎ et al.
  • Nature communications‎
  • 2021‎

Development of a versatile, sustainable and efficient photosynthesis system that integrates intricate catalytic networks and energy modules at the same location is of considerable future value to energy transformation. In the present study, we develop a coenzyme-mediated supramolecular host-guest semibiological system that combines artificial and enzymatic catalysis for photocatalytic hydrogen evolution from alcohol dehydrogenation. This approach involves modification of the microenvironment of a dithiolene-embedded metal-organic cage to trap an organic dye and NADH molecule simultaneously, serving as a hydrogenase analogue to induce effective proton reduction inside the artificial host. This abiotic photocatalytic system is further embedded into the pocket of the alcohol dehydrogenase to couple enzymatic alcohol dehydrogenation. This host-guest approach allows in situ regeneration of NAD+/NADH couple to transfer protons and electrons between the two catalytic cycles, thereby paving a unique avenue for a synergic combination of abiotic and biotic synthetic sequences for photocatalytic fuel and chemical transformation.


Improving the effective photovoltaic performance in dye-sensitized solar cells using an azobenzenecarboxylic acid-based system.

  • Mohammad Mazloum-Ardakani‎ et al.
  • Heliyon‎
  • 2019‎

In this research, an azobenzenecarboxylic acid was used as a sufficient co-adsorbent in combination with N719 dye. As it is found from the results, an optimized concentration of the co-absorbent leads to the highest efficiency. The dye-sensitized solar cells (DSSCs) parameters such as short-circuit current (Jsc), open-circuit voltage (Voc) and conversion efficiency (η) were obtained -14.87 mA/cm2, 0.765 V and 5.20% respectively. Based on the results, the N719/Azobenzenecarboxylic-based system shows a significant increase in Voc and Jsc, resulting in an ∼21% improvement in the efficiency. A higher conversion efficiency for the co-adsorbent-based systems was assigned to their enhanced η, which is attributed to reduced dye aggregation, higher electron injection and increased Voc. This corresponded to the improved electron density in the TiO2 conduction band of the photoanode and reduced charge recombination revealed through electrochemical impedance spectroscopy measurements. Also, evidence was provided for a long charge life time and a high resistance of charge recombination for the co-absorbed solar cells.


Evaluation of Legionella spp. Colonization in Residential Buildings Having Solar Thermal System for Hot Water Production.

  • Michele Totaro‎ et al.
  • International journal of environmental research and public health‎
  • 2020‎

Despite an increase of literature data on Legionella spp. presence in private water systems, epidemiological reports assert a continuing high incidence of Legionnaires' disease infection in Italy. In this study, we report a survey on Legionella spp. colonization in 58 buildings with solar thermal systems for hot water production (TB). In all buildings, Legionella spp. presence was enumerated in hot and cold water samples. Microbiological potability standards of cold water were also evaluated. Legionella spp. was detected in 40% of the buildings. Moreover, we detected correlations between the count of Legionella spp. and the presence of the optimal temperature for the microorganism growth (less than 40 °C). Our results showed that cold water was free from microbiological hazards, but Legionella spp., was detected when the mean cold water temperature was 19.1 ± 2.2 °C. This may considered close to the suboptimal value for the Legionella growth (more then 20 °C). In conclusion, we observed the presence of a Legionnaires' disease risk and the need of some strategies aimed to reduce it, such as the application of training programs for all the workers involved in water systems maintenance.


Biological Contamination Prevention for Outer Solar System Moons of Astrobiological Interest: What Do We Need to Know?

  • Petra Rettberg‎ et al.
  • Astrobiology‎
  • 2019‎

To ensure that scientific investments in space exploration are not compromised by terrestrial contamination of celestial bodies, special care needs to be taken to preserve planetary conditions for future astrobiological exploration. Significant effort has been made and is being taken to address planetary protection in the context of inner Solar System exploration. In particular for missions to Mars, detailed internationally accepted guidelines have been established. For missions to the icy moons in the outer Solar System, Europa and Enceladus, the planetary protection requirements are so far based on a probabilistic approach and a conservative estimate of poorly known parameters. One objective of the European Commission-funded project, Planetary Protection of Outer Solar System, was to assess the existing planetary protection approach, to identify inherent knowledge gaps, and to recommend scientific investigations necessary to update the requirements for missions to the icy moons.


Solar-powered multi-organism symbiont mimic system for beyond natural synthesis of polypeptides from CO2 and N2.

  • Wen Yu‎ et al.
  • Science advances‎
  • 2023‎

Developing artificial symbionts beyond natural synthesis limitations would bring revolutionary contributions to agriculture, medicine, environment, etc. Here, we initiated a solar-driven multi-organism symbiont, which was assembled by the CO2 fixation module of Synechocystis sp., N2 fixation module of Rhodopseudomonas palustris, biofunctional polypeptides synthesis module of Bacillus licheniformis, and the electron transfer module of conductive cationic poly(fluorene-co-phenylene) derivative. The modular design broke the pathway to synthesize γ-polyglutamic acid (γ-PGA) using CO2 and N2, attributing to the artificially constructed direct interspecific substance and electron transfer. So, the intracellular ATP and NADPH were enhanced by 69 and 30%, respectively, and the produced γ-PGA was enhanced by 104%. The strategy was further extended to produce a commercial antibiotic of bacitracin A. These achievements improve the selectivity and yield of functional polypeptides with one click by CO2 and N2, and also provide an innovative strategy for creating photosynthetic systems on demand.


An efficient and stable photoelectrochemical system with 9% solar-to-hydrogen conversion efficiency via InGaP/GaAs double junction.

  • Purushothaman Varadhan‎ et al.
  • Nature communications‎
  • 2019‎

Despite III-V semiconductors demonstrating extraordinary solar-to-hydrogen (STH) conversion efficiencies, high cost and poor stability greatly impede their practical implementation in photoelectrochemical (PEC) water splitting applications. Here, we present a simple and efficient strategy for III-V-based photoelectrodes that functionally and spatially decouples the light harvesting component of the device from the electrolysis part that eliminates parasitic light absorption, reduces the cost, and enhances the stability without any compromise in efficiency. The monolithically integrated PEC cell was fabricated by an epitaxial lift-off and transfer of inversely grown InGaP/GaAs to a robust Ni-substrate and the resultant photoanode exhibits an STH efficiency of ~9% with stability ~150 h. Moreover, with the ability to access both sides of the device, we constructed a fully-integrated, unassisted-wireless "artificial leaf" system with an STH efficiency of ~6%. The excellent efficiency and stability achieved herein are attributed to the light harvesting/catalysis decoupling scheme, which concurrently improves the optical, electrical, and electrocatalytic characteristics.


Trilayer Composite System Based on SiO2, Thiol-Ene, and PEDOT:PSS. Focus on Stability after Thermal Treatment and Solar Irradiance.

  • Algirdas Lazauskas‎ et al.
  • Polymers‎
  • 2021‎

The trilayer composite was fabricated by combining functional layers of fumed SiO2, thiol-ene, and poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT-PSS). Optical, scratch-healing, non-wetting, and electrical stability was investigated at different instances of time after thermal and solar irradiance treatment. The trilayer composite was found to be optically stable and highly transparent for visible light after thermal and irradiance treatment for 25 h. Both treatment processes had a minor effect on the shape-memory assisted scratch-healing performance of the trilayer composite. Thermal treatment and solar irradiance did not affect the superhydrophobic properties (contact angle 170 ± 1°) of the trilayer composite. The sheet resistance increased from 90 ± 3 Ω/square (initial) to 109 ± 3 Ω/square (thermal) and 149 ± 3 Ω/square (irradiance) after 25 h of treatment, which was considered as not significant change.


Data on the daily electricity load profile and solar photovoltaic (PV) system components for residential buildings in Lagos, Nigeria.

  • Kevin Enongene Enongene‎ et al.
  • Data in brief‎
  • 2020‎

This article contains the average daily electric load profile (for 24 h of the day) for the five categories of residential buildings (duplex, single family bungalow, traditional court yard, flat/apartment dwelling and 'face-me-I-face-you') in three Local Government Areas (LGAs) of the state of Lagos, Nigeria. In each of the LGAs, 10 buildings per residential building type were surveyed for the collection of data with the aid of a questionnaire. In each surveyed household, a household member completed the energy audit section of the questionnaire with the assistance of the questionnaire administrator while the section of the questionnaire designed as a time-of-use diary was left with the household for completion. For each building surveyed, the data retrieved from the completed time-of-use diary was used in Microsoft Excel for computing the hourly electricity load profile for the seven days of the week. In order to obtain the hourly energy load (in watts) for each building, the power rating of the appliances used during each of the 24 h of the day was summed and the result in watts was converted to kWh by dividing by 1000. Each dwelling's daily load profile was obtained as an average of the load profile for the seven days of the week. The article as well provides data on the solar photovoltaic systems' components designed to supply electricity to the building and the levelized cost of electricity (LCOE) of the systems for the base case scenario and different sensitivity cases obtained from simulations using HOMER Pro. The load profile data provided in this article can be reused by other researchers in the design of solar photovoltaic systems for residential buildings.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: