Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 115 papers

A global S. cerevisiae small ubiquitin-related modifier (SUMO) system interactome.

  • Tharan Srikumar‎ et al.
  • Molecular systems biology‎
  • 2013‎

The small ubiquitin-related modifier (SUMO) system has been implicated in a number of biological functions, yet the individual components of the SUMO machinery involved in each of these activities were largely unknown. Here we report the first global SUMO system interactome. Using affinity purification coupled with mass spectrometry, we identify >450 protein-protein interactions surrounding the SUMO E2, Siz type E3s and SUMO-specific proteases in budding yeast. Exploiting this information-rich resource, we validate several Siz1- and Siz2-specific substrates, identify a nucleoporin required for proper Ulp1 localization, and uncover important new roles for Ubc9 and Ulp2 in the maintenance of ribosomal DNA.


Small ubiquitin-related modifier 1 is involved in hepatocellular carcinoma progression via mediating p65 nuclear translocation.

  • Jun Liu‎ et al.
  • Oncotarget‎
  • 2016‎

Small ubiquitin-related modifier (SUMO) proteins participate in a post-translational modification called SUMOylation and regulate a variety of intracellular processes, such as targeting proteins for nuclear import. The nuclear transport of p65 results in the activation of NF-κB, and p65 contains several SUMO interacting motifs (SIMs). However, the relationship between p65 and SUMO1 in hepatocellular carcinoma (HCC) remains unclear. In this study, we demonstrated the potential roles of SUMO1 in HCC via the regulation of p65 subcellular localization. We found that either SUMO1- or p65-positive immunoreactivity was remarkably increased in the nuclei of tumor tissues in HCC patients compared with non-tumor tissues, and further analysis suggested a correlation between SUMO1- and nuclear p65-positive immunoreactivities (R = 0.851, P = 0.002). We also verified the interaction between p65 and SUMO1 in HCC by co-immunoprecipitation. TNF-α and hypoxia increased SUMO1 protein levels and enhanced SUMO1-modified p65 SUMOylation. Moreover, the knockdown of SUMO1 decreased p65 nuclear translocation and inhibited NF-κB transcriptional activity. Further the results of this study revealed that the knockdown of SUMO1 suppressed the proliferation and migration of hepatoma cells. These results suggest that SUMO1 contributes to HCC progression by promoting p65 nuclear translocation and regulating NF-κB activity.


Novel signal transducer and activator of transcription 1 mutation disrupts small ubiquitin-related modifier conjugation causing gain of function.

  • Elizabeth P Sampaio‎ et al.
  • The Journal of allergy and clinical immunology‎
  • 2018‎

Sumoylation is a posttranslational reversible modification of cellular proteins through the conjugation of small ubiquitin-related modifier (SUMO) and comprises an important regulator of protein function.


Global Identification of Small Ubiquitin-related Modifier (SUMO) Substrates Reveals Crosstalk between SUMOylation and Phosphorylation Promotes Cell Migration.

  • Ijeoma Uzoma‎ et al.
  • Molecular & cellular proteomics : MCP‎
  • 2018‎

Proteomics studies have revealed that SUMOylation is a widely used post-translational modification (PTM) in eukaryotes. However, how SUMO E1/2/3 complexes use different SUMO isoforms and recognize substrates remains largely unknown. Using a human proteome microarray-based activity screen, we identified over 2500 proteins that undergo SUMO E3-dependent SUMOylation. We next constructed a SUMO isoform- and E3 ligase-dependent enzyme-substrate relationship network. Protein kinases were significantly enriched among SUMOylation substrates, suggesting crosstalk between phosphorylation and SUMOylation. Cell-based analyses of tyrosine kinase, PYK2, revealed that SUMOylation at four lysine residues promoted PYK2 autophosphorylation at tyrosine 402, which in turn enhanced its interaction with SRC and full activation of the SRC-PYK2 complex. SUMOylation on WT but not the 4KR mutant of PYK2 further elevated phosphorylation of the downstream components in the focal adhesion pathway, such as paxillin and Erk1/2, leading to significantly enhanced cell migration during wound healing. These studies illustrate how our SUMO E3 ligase-substrate network can be used to explore crosstalk between SUMOylation and other PTMs in many biological processes.


Polymorphisms of small ubiquitin-related modifier genes are associated with risk of Alzheimer's disease in Korean: A case-control study.

  • Myung-Jin Mun‎ et al.
  • Journal of the neurological sciences‎
  • 2016‎

Sumoylation regulates transcription factor transactivation, protein-protein interactions, and appropriate subcellular localization of certain proteins. Previous studies have shown that sumoylation of amyloid precursor protein (APP) is associated with decreased levels of amyloid beta (Aβ) proteins, suggesting that sumoylation may play a role in the pathogenesis of Alzheimer's disease (AD). We investigated the association between polymorphisms of the SUMO genes and the risk of AD. Our study subjects consisted of 144 AD patients and 335 healthy controls without dementia. We focused on tagged single nucleotide polymorphisms (tagSNPs) of the SUMO1 and SUMO2 genes. The tagSNPs were amplified by PCR and sequenced. We used binary logistic regression to calculate odds ratios (ORs) with 95% confidence intervals (CIs) for the associations between SUMO gene polymorphisms and the risk of AD. We found that rs12472035 polymorphism of SUMO1 was significantly associated with an increased risk of AD in male group (the CT genotype of rs12472035: adjusted OR=8.737, 95% CI=2.041-37.41, p-value=0.003). In addition, two polymorphisms of SUMO2 were significantly associated with an increased risk of AD in female group (the GA genotype of rs35271045: adjusted OR=2.879, 95% CI=1.399-5.924, p-value=0.004; and the TC genotype of rs9913676: adjusted OR=2.460, 95% CI=1.197-5.057, p-value=0.014). Furthermore, three combinations were associated with an increased risk of AD. Our data suggest that three individual polymorphisms and three combinations may be potential risk factors for AD in Korean population.


Interaction between Brucella melitensis 16M and small ubiquitin-related modifier 1 and E2 conjugating enzyme 9 in mouse RAW264.7 macrophages.

  • Jihai Yi‎ et al.
  • Journal of veterinary science‎
  • 2019‎

Brucella is an intracellular pathogen that invades a host and settles in its immune cells; however, the mechanism of its intracellular survival is unclear. Modification of small ubiquitin-related modifier (SUMO) occurs in many cellular activities. E2 conjugating enzyme 9 (Ubc9) is the only reported ubiquitin-conjugating enzyme that links the SUMO molecule with a target protein. Brucella's intracellular survival mechanism has not been studied with respect to SUMO-related proteins and Ubc9. Therefore, to investigate the relationship between Brucella melitensis 16M and SUMO, we constructed plasmids and cells lines suitable for overexpression and knockdown of SUMO1 and Ubc9 genes. Brucella 16M activated SUMO1/Ubc9 expression in a time-dependent manner, and Brucella 16M intracellular survival was inhibited by SUMO1/Ubc9 overexpression and promoted by SUMO1/Ubc9 depletion. In macrophages, Brucella 16M-dependent apoptosis and immune factors were induced by SUMO1/Ubc9 overexpression and restricted by SUMO1/Ubc9 depletion. We noted no effect on the expressions of SUMO1 and Ubc9 in B. melitensis 16M lipopolysaccharide-prestimulated mouse RAW264.7 macrophages. Additionally, intracellular survival of the 16M△VirB2 mutant was lower than that of Brucella 16M (p < 0.05). VirB2 can affect expression levels of Ubc9, thereby increasing intracellular survival of Brucella in macrophages at the late stage of infection. Collectively, our results demonstrate that B. melitensis 16M may use the VirB IV secretion system of Brucella to interact with SUMO-related proteins during infection of host cells, which interferes with SUMO function and promotes pathogen survival in host cells.


Intense Resistance Exercise Promotes the Acute and Transient Nuclear Translocation of Small Ubiquitin-Related Modifier (SUMO)-1 in Human Myofibres.

  • Sebastian Gehlert‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

Protein sumoylation is a posttranslational modification triggered by cellular stress. Because general information concerning the role of small ubiquitin-related modifier (SUMO) proteins in adult skeletal muscle is sparse, we investigated whether SUMO-1 proteins will be subjected to time-dependent changes in their subcellular localization in sarcoplasmic and nuclear compartments of human type I and II skeletal muscle fibers in response to acute stimulation by resistance exercise (RE). Skeletal muscle biopsies were taken at baseline (PRE), 15, 30, 60, 240 min and 24 h post RE from 6 male subjects subjected to a single bout of one-legged knee extensions. SUMO-1 localization was determined via immunohistochemistry and confocal laser microscopy. At baseline SUMO-1 was localized in perinuclear regions of myonuclei. Within 15 and up to 60 min post exercise, nuclear SUMO-1 localization was significantly increased (p < 0.01), declining towards baseline levels within 240 min post exercise. Sarcoplasmic SUMO-1 localization was increased at 15 min post exercise in type I and up to 30 min post RE in type II myofibres. The changing localization of SUMO-1 proteins acutely after intense muscle contractions points to a role for SUMO proteins in the acute regulation of the skeletal muscle proteome after exercise.


Small ubiquitin-related modifier 2 affects the intracellular survival of Brucella abortus 2308 by regulating activation of the NF-κB pathway.

  • Yueli Wang‎ et al.
  • Innate immunity‎
  • 2021‎

Brucella is a genus of Gram-negative intracellular pathogens that cause animal and human diseases. Brucella survival and replication inside immune cells is critical for the establishment of chronic infections. Protein modifications by small ubiquitin-related modifier proteins and the NF-κB pathway are involved in many cellular activities, playing major roles in regulating protein function that is essential for pathogenic bacteria during infection. However, the relationship between them in the intracellular survival of Brucella is still largely unknown. We demonstrated that Brucella abortus 2308 infection can activate the expression of small ubiquitin-related modifier-2 proteins in a time-dependent manner. We found the production of Th1 cytokines (IFN-γ and TNF-α) and the transcription of NF-κB/p65 were promoted by overexpression and inhibited by interference of small ubiquitin-related modifier-2. In addition, we showed that small ubiquitin-related modifier-2 can inhibit intracellular survival of Brucella abortus 2308 by regulating activation of the NF-κB pathway. Taken together, this work shows that small ubiquitin-related modifier-2 modification of NF-κB2/p65 is essential for the survival of Brucella abortus 2308 inside macrophages. This work may help to unravel the pathogenic mechanisms of Brucella infections.


Silent information regulator 2 promotes clear cell renal cell carcinoma progression through deacetylation and small ubiquitin-related modifier 1 modification of glucose 6-phosphate dehydrogenase.

  • Yueli Ni‎ et al.
  • Cancer science‎
  • 2021‎

The regulatory relationship between silent information regulator 2 (SIRT2) and glucose 6-phosphate dehydrogenase (G6PD) in clear cell renal cell carcinoma (ccRCC) is still unclear. The present study aimed to explore the function of SIRT2 and its regulatory effect on G6PD in ccRCC. The Cancer Genome Atlas data mining of SIRT2 was first analyzed. Quantitative real-time PCR and western blot analyses were used to assess the mRNA and protein expression levels, respectively. Cell viability, colony formation, cell cycle, cell apoptosis, and TUNEL assays and EdU staining were used to investigate the roles of SIRT2 in ccRCC proliferation and apoptosis. The coimmunoprecipitation (Co-IP) assay was used to analyze the association between SIRT2 and G6PD in ccRCC cells. Quantitative Co-IP assay was used to detect the levels of G6PD ubiquitination and small ubiquitin-related modifier 1 (SUMO1). An in vivo experiment was also carried out to confirm in vitro findings. The results indicated that SIRT2 promoted ccRCC proliferation and inhibited apoptosis by regulating cell cycle and apoptosis related proteins. Silent information regulator 2 interacted with G6PD, facilitated its activity through deacetylation, and increased its stability by reducing its ubiquitination and enhancing its SUMO1 modification. Silent information regulator 2 also promoted ccRCC tumor development in vivo. Taken together, the present study indicated that SIRT2 promoted ccRCC progression by increasing G6PD activity and stability, and it could be a potential new diagnostic and therapeutic target for ccRCC.


Testicular expression of small ubiquitin-related modifier-1 (SUMO-1) supports multiple roles in spermatogenesis: silencing of sex chromosomes in spermatocytes, spermatid microtubule nucleation, and nuclear reshaping.

  • Margarita Vigodner‎ et al.
  • Developmental biology‎
  • 2005‎

SUMO-1 is a member of a ubiquitin-related family of proteins that mediates important post-translational effects affecting diverse physiological functions. Whereas SUMO-1 is detected in the testis, little is known about its reproductive role in males. Herein, cell-specific SUMO-1 was localized in freshly isolated, purified male germ cells and somatic cells of mouse and rat testes using Western analysis, high-resolution single-cell bioimaging, and in situ confocal microscopy of seminiferous tubules. During germ cell development, SUMO-1 was observed at low but detectable levels in the cytoplasm of spermatogonia and early spermatocytes. SUMO-1 appeared on gonosomal chromatin during zygotene when chromosome homologues pair and sex chromatin condensation is initiated. Striking SUMO-1 increases in the sex body of early-to-mid-pachytene spermatocytes correlated with timing of additional sex chromosome condensation. Before the completion of the first meiotic division, SUMO-1 disappeared from the sex body when X and Y chromosomal activity resumed. Together, these data indicate that sumoylation may be involved in non-homologous chromosomal synapsis, meiotic sex chromosome inactivation, and XY body formation. During spermiogenesis, SUMO-1 localized in chromocenters of certain round spermatids and perinuclear ring and centrosomes of elongating spermatids, data implicating SUMO-1 in the process of microtubule nucleation and nuclear reshaping. STAT-4, one potential target of sumoylation, was located along the spermatid nuclei, adjacent but not co-localized with SUMO-1. Androgen receptor-positive Leydig, Sertoli, and some peritubular myoepithelial cells express SUMO-1, findings suggesting a role in modulating steroid action. Testicular SUMO-1 expression supports its specific functions in inactivation of sex chromosomes during meiosis, spermatid microtubule nucleation, nuclear reshaping, and gene expression.


Knockdown of ubiquitin-like modifier-activating enzyme 2 promotes apoptosis of clear cell renal cell carcinoma cells.

  • Guoxi Zhang‎ et al.
  • Cell death & disease‎
  • 2021‎

Small ubiquitin-related modifier (SUMO) proteins are involved in the development of tumors. Ubiquitin-like modifier-activating enzyme 2 (UBA2) is an important member of the SUMO modification system; however, its role in clear cell renal cell carcinoma (ccRCC) is unclear. Therefore, we investigated the expression and function of UBA2 in ccRCC. Both mRNA and protein expression levels of UBA2 were found to be higher in ccRCC than in normal renal tissues and significantly related to the tumor size, Fuhrman grade, and tumor stage. UBA2 knockdown inhibited ccRCC cell growth, promoted apoptosis in vitro and in vivo, and decreased the abundance of a p53 mutant, c-Myc, and key enzymes of the SUMO modification system. Meanwhile, overexpression of UBA2 had the opposite effects. Overexpression of the p53 mutant or c-Myc alleviated the effects of UBA2 knockdown on ccRCC cell proliferation and apoptosis. In conclusion, targeting UBA2 may have a therapeutic potential against ccRCC.


Ubiquitin-related modifiers of Arabidopsis thaliana influence root development.

  • Florian John‎ et al.
  • PloS one‎
  • 2014‎

Ubiquitins are small peptides that allow for posttranslational modification of proteins. Ubiquitin-related modifier (URM) proteins belong to the class of ubiquitin-like proteins. A primary function of URM proteins has been shown to be the sulfur transfer reaction leading to thiolation of tRNAs, a process that is important for accurate and effective protein translation. Recent analyses revealed that the Arabidopsis genome codes for two URM proteins, URM11 and URM12, which both are active in the tRNA thiolation process. Here, we show that URM11 and URM12 have overlapping expression patterns and are required for tRNA thiolation. The characterization of urm11 and urm12 mutants reveals that the lack of tRNA thiolation induces changes in general root architecture by influencing the rate of lateral root formation. In addition, they synergistically influence root hair cell growth. During the sulfur transfer reaction, URM proteins of different organisms interact with a thiouridylase, a protein-protein interaction that also takes place in Arabidopsis, since URM11 and URM12 interact with the Arabidopsis thiouridylase ROL5. Hence, the sulfur transfer reaction is conserved between distantly related species such as yeast, humans, and plants, and in Arabidopsis has an impact on root development.


The emerging roles of ubiquitin-like protein Urm1 in eukaryotes.

  • Xinrong Zhang‎ et al.
  • Cellular signalling‎
  • 2021‎

The ubiquitin related modifier Urm1 protein was firstly identified in the yeast Saccharomyces cerevisiae, and was later found to play important roles in different eukaryotes. By the assistance of an E1-like activation enzyme Uba4, Urm1 can function as a modifier to target proteins, called urmylation. The thioredoxin peroxidase Ahp1 was the only identified Urm1 target in the early time. Recently, many other Urm1 targets were identified, which is important for us to fully understand functions of urmylation. Urm1 can also function as a sulfur carrier to play a key role in tRNAs thiolation. Mechanisms of the Urm1 in protein and RNA modifications were finely revealed in the past few years. Biological and physiological functions of Urm1 were also found in different organisms. In this review, we will summarize these emerging progresses.


Ube2W conjugates ubiquitin to α-amino groups of protein N-termini.

  • Michael H Tatham‎ et al.
  • The Biochemical journal‎
  • 2013‎

The covalent attachment of the protein ubiquitin to intracellular proteins by a process known as ubiquitylation regulates almost all major cellular systems, predominantly by regulating protein turnover. Ubiquitylation requires the co-ordinated action of three enzymes termed E1, E2 and E3, and typically results in the formation of an isopeptide bond between the C-terminal carboxy group of ubiquitin and the ϵ-amino group of a target lysine residue. However, ubiquitin is also known to conjugate to the thiol of cysteine residue side chains and the α-amino group of protein N-termini, although the enzymes responsible for discrimination between different chemical groups have not been defined. In the present study, we show that Ube2W (Ubc16) is an E2 ubiquitin-conjugating enzyme with specific protein N-terminal mono-ubiquitylation activity. Ube2W conjugates ubiquitin not only to its own N-terminus, but also to that of the small ubiquitin-like modifier SUMO (small ubiquitin-related modifier) in a manner dependent on the SUMO-targeted ubiquitin ligase RNF4 (RING finger protein 4). Furthermore, N-terminal mono-ubiquitylation of SUMO-2 primes it for poly-ubiquitylation by the Ubc13-UEV1 (ubiquitin-conjugating enzyme E2 variant 1) heterodimer, showing that N-terminal ubiquitylation regulates protein fate. The description in the present study is the first of an E2-conjugating enzyme with N-terminal ubiquitylation activity, and highlights the importance of E2 enzymes in the ultimate outcome of E3-mediated ubiquitylation.


USP7 and VCPFAF1 define the SUMO/Ubiquitin landscape at the DNA replication fork.

  • André Franz‎ et al.
  • Cell reports‎
  • 2021‎

The AAA+ ATPase VCP regulates the extraction of SUMO and ubiquitin-modified DNA replication factors from chromatin. We have previously described that active DNA synthesis is associated with a SUMO-high/ubiquitin-low environment governed by the deubiquitylase USP7. Here, we unveil a functional cooperation between USP7 and VCP in DNA replication, which is conserved from Caenorhabditis elegans to mammals. The role of VCP in chromatin is defined by its cofactor FAF1, which facilitates the extraction of SUMOylated and ubiquitylated proteins that accumulate after the block of DNA replication in the absence of USP7. The inactivation of USP7 and FAF1 is synthetically lethal both in C. elegans and mammalian cells. In addition, USP7 and VCP inhibitors display synergistic toxicity supporting a functional link between deubiquitylation and extraction of chromatin-bound proteins. Our results suggest that USP7 and VCPFAF1 facilitate DNA replication by controlling the balance of SUMO/Ubiquitin-modified DNA replication factors on chromatin.


Phototropin Interactions with SUMO Proteins.

  • Justyna Łabuz‎ et al.
  • Plant & cell physiology‎
  • 2021‎

The disruption of the sumoylation pathway affects processes controlled by the two phototropins (phots) of Arabidopsis thaliana, phot1 and phot2. Phots, plant UVA/blue light photoreceptors, regulate growth responses and fast movements aimed at optimizing photosynthesis, such as phototropism, chloroplast relocations and stomatal opening. Sumoylation is a posttranslational modification, consisting of the addition of a SUMO (SMALL UBIQUITIN-RELATED MODIFIER) protein to a lysine residue in the target protein. In addition to affecting the stability of proteins, it regulates their activity, interactions and subcellular localization. We examined physiological responses controlled by phots, phototropism and chloroplast movements, in sumoylation pathway mutants. Chloroplast accumulation in response to both continuous and pulse light was enhanced in the E3 ligase siz1 mutant, in a manner dependent on phot2. A significant decrease in phot2 protein abundance was observed in this mutant after blue light treatment both in seedlings and mature leaves. Using plant transient expression and yeast two-hybrid assays, we found that phots interacted with SUMO proteins mainly through their N-terminal parts, which contain the photosensory LOV domains. The covalent modification in phots by SUMO was verified using an Arabidopsis sumoylation system reconstituted in bacteria followed by the mass spectrometry analysis. Lys 297 was identified as the main target of SUMO3 in the phot2 molecule. Finally, sumoylation of phot2 was detected in Arabidopsis mature leaves upon light or heat stress treatment.


Neuronal Localization of SENP Proteins with Super Resolution Microscopy.

  • Luca Colnaghi‎ et al.
  • Brain sciences‎
  • 2020‎

SUMOylation of proteins plays a key role in modulating neuronal function. For this reason, the balance between protein SUMOylation and deSUMOylation requires fine regulation to guarantee the homeostasis of neural tissue. While extensive research has been carried out on the localization and function of small ubiquitin-related modifier (SUMO) variants in neurons, less attention has been paid to the SUMO-specific isopeptidases that constitute the human SUMO-specific isopeptidase (SENP)/Ubiquitin-Specific Protease (ULP) cysteine protease family (SENP1-3 and SENP5-7). Here, for the first time, we studied the localization of SENP1, SENP6, and SENP7 in cultured hippocampal primary neurons at a super resolution detail level, with structured illumination microscopy (SIM). We found that the deSUMOylases partially colocalize with pre- and post-synaptic markers such as synaptophysin and drebrin. Thus, further confirming the presence with synaptic markers of the negative regulators of the SUMOylation machinery.


Expression and purification of SARS coronavirus proteins using SUMO-fusions.

  • Xun Zuo‎ et al.
  • Protein expression and purification‎
  • 2005‎

Severe acute respiratory syndrome coronavirus (SARS-CoV) proteins belong to a large group of proteins that is difficult to express in traditional expression systems. The ability to express and purify SARS-CoV proteins in large quantities is critical for basic research and for development of pharmaceutical agents. The work reported here demonstrates: (1) fusion of SUMO (small ubiquitin-related modifier), a 100 amino acid polypeptide, to the N-termini of SARS-CoV proteins dramatically enhances expression in Escherichia coli cells and (2) 6x His-tagged SUMO-fusions facilitate rapid purification of the viral proteins on a large scale. We have exploited the natural chaperoning properties of SUMO to develop an expression system suitable for proteins that cannot be expressed by traditional methodologies. A unique feature of the system is the SUMO tag, which enhances expression, facilitates purification, and can be efficiently cleaved by a SUMO-specific protease to generate native protein with a desired N-terminus. We have purified various SARS-CoV proteins under either native or denaturing conditions. These purified proteins have been used to generate highly specific polyclonal antibodies. Our study suggests that the SUMO-fusion technology will be useful for enhancing expression and purification of the viral proteins for structural and functional studies as well as for therapeutic uses.


Transient deSUMOylation of IRF2BP proteins controls early transcription in EGFR signaling.

  • Sina V Barysch‎ et al.
  • EMBO reports‎
  • 2021‎

Molecular switches are essential modules in signaling networks and transcriptional reprogramming. Here, we describe a role for small ubiquitin-related modifier SUMO as a molecular switch in epidermal growth factor receptor (EGFR) signaling. Using quantitative mass spectrometry, we compare the endogenous SUMO proteomes of HeLa cells before and after EGF stimulation. Thereby, we identify a small group of transcriptional coregulators including IRF2BP1, IRF2BP2, and IRF2BPL as novel players in EGFR signaling. Comparison of cells expressing wild type or SUMOylation-deficient IRF2BP1 indicates that transient deSUMOylation of IRF2BP proteins is important for appropriate expression of immediate early genes including dual specificity phosphatase 1 (DUSP1, MKP-1) and the transcription factor ATF3. We find that IRF2BP1 is a repressor, whose transient deSUMOylation on the DUSP1 promoter allows-and whose timely reSUMOylation restricts-DUSP1 transcription. Our work thus provides a paradigm how comparative SUMO proteome analyses serve to reveal novel regulators in signal transduction and transcription.


A genetic screen to discover SUMOylated proteins in living mammalian cells.

  • Maki Komiya‎ et al.
  • Scientific reports‎
  • 2017‎

Post-translational modification by the Small Ubiquitin-related Modifier (SUMO) is indispensable for diverse biological mechanisms. Although various attempts have been made to discover novel SUMO substrate proteins to unveil the roles of SUMOylation, the reversibility of SUMOylation, and the differences in the SUMOylation level still makes it difficult to explore infrequently-SUMOylated proteins in mammalian cells. Here, we developed a method to screen for mammalian SUMOylated proteins using the reconstitution of split fluorescent protein fragments in living mammalian cells. Briefly, the cells harboring cDNAs of SUMOylated proteins were identified by the reconstituted fluorescence emission and separated by cell sorting. The method successfully identified 36 unreported SUMO2-substrate candidates with distinct intracellular localizations and functions. Of the candidates, we found Atac2, a histone acetyltransferase, was SUMOylated at a lysine 408, and further modified by multiple SUMOs without isoform specificity. Because the present method is applicable to other SUMO isoforms and mammalian cell-types, it could contribute to a deeper understanding of the role of SUMOylation in various biological contexts.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: