Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Anti-inflammatory β-sitosterols from the Asiatic loop-root mangrove Rhizophora mucronata attenuate 5-lipoxygenase and cyclooxygenase-2 enzymes.

  • Kajal Chakraborty‎ et al.
  • Steroids‎
  • 2021‎

Four biogenic β-sitosterol analogues were identified from methanolic extract of the leaves of loop-root mangrove Rhizophora mucronata. These were characterized as 4, 14, 23-trimethyl-3β-sitosterol (1), 7-ethyl-3β-sitosterol (2), sitosteryl-3β-(33E)-pent-33-enoate (3) and 12α-hydroxy-3β-sitosterol (4) based on comprehensive spectroscopic techniques. Anti-inflammatory activities of β-sitosterol 4 against pro-inflammatory enzymes 5-lipoxygenase and cyclooxygenase-2 were found to be significantly higher (IC50 1.85 and 1.92 mM, respectively) compared to those demonstrated by compounds of 1-3 (p < 0.05). These β-sitosterol analogues disclosed superior selectivity indices (1.43-2.07) with regard to inducible cyclooxygenase-2 than its constitutive isoform cyclooxygenase-1, when compared to the standard, ibuprofen (0.44). Antioxidant properties of 12α-hydroxy-β-sitosterol (4) were found to be significantly greater (IC50 1.43-1.67 mM) than those of other sitosterol analogues. Structure-activity correlation analyses put forward that the bioactive potencies of the titled β-sitosterols were positively correlated to their electronic parameters. Molecular docking simulations were carried out in the active sites of 5-lipoxygenase/cyclooxygenase-2, and the docking scores and binding energies of the studied β-sitosterol analogues were positively correlated with their attenuation properties against 5-lipoxygenase and cyclooxygenase-2.


Spice fixed oils as a new source of γ-oryzanol: nutraceutical characterization of fixed oils from selected spices.

  • Vallamkondu Manasa‎ et al.
  • RSC advances‎
  • 2020‎

γ-Oryzanol is an important group of nutraceuticals that play a key role in addressing metabolic disorders. This study, for the first time, examined volatile-free spice fixed oils (FOs) as an alternate plant source for γ-oryzanol and other nutraceuticals (phenolics, flavonoids, phytosterols, and tocopherols) using HPLC, HR-MS and NMR. The in vitro antioxidant activities of FOs were also analysed. The selected spices were Alpinia galanga, Cinnamomum zeylanicum, Trigonella foenum-graecum, Foeniculum vulgare and Myristica fragrans. The major polyphenols and flavonoids quantified were gallic, protocatechuic, vanillic, syringic, para-coumaric, ferulic, rutin, trans-cinnamic, and quercetin. T. foenum-graecum FOs recorded high levels of ergosterol (48.56 mg/100 g) and stigmasterol (247.36 mg/100 g). The fucosterol levels were high in A. galanga (268.31 mg/100 g) FOs, whereas C. zeylanicum FOs showed high content of β-sitosterols (7037.77 mg/100 g). C. zeylanicum and T. foenum-graecum FOs recorded high α-tocopherol content (47.55 and 15.96 mg/100 g respectively). C. zeylanicum FOs showed high levels of three ferulates, namely, cycloartenyl ferulate, 24-methylene cycloartenyl ferulate and β-sitosteryl ferulate, whose contents were 89.42, 170.23 and 50.23 mg/100 g respectively which was confirmed by HRMS with a molecular mass (m/z) of 601.45, 615.47, and 589.45 respectively. Further, γ-oryzanol ferulates in C. zeylanicum FOs were confirmed by 1H-NMR analysis. The acidified methanolic extractives of FOs showed high free radical scavenging activity and antioxidant potential. These spice FOs have excellent antioxidant activities, and are novel potential functional ingredients against lifestyle disorders.


Cardioprotective Activity of Cassia fistula L. Bark Extract in Isoproterenol-Induced Myocardial Infarction Rat Model.

  • Ajay Singh Kushwah‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2022‎

Cassia fistula Linn, generally recognized as Indian laburnum, is one of the ancient trees in the Indian subcontinent used for its ornamental and diverse medicinal properties. It is known for its ethnic medicinal uses in inflammatory and infectious pathologies such as antihelmintic, purgative, carminative, antipyretic, expectorant, analgesic, laxative, antiseptic, and antidote against snake poison. The Cassia bark is rich in anthraquinones, flavanols glycosides, and sitosterols, which renders it cardioprotective properties. The existing experiments were designed to assess the potential of Cassia fistula bark against isoproterenol (ISP)-induced cardiotoxicity in rats, which has not been validated yet. The bark was successively extracted with five different solvents, and each extract was subjected to in vitro antioxidant studies. Further acute oral toxicity assays were carried out preceding in vivo myocardial studies. Cardiotoxicity-inducing agent, ISP, was administrated to the rats for two consecutive days (8th and 9th). Based on in vitro studies, the Cassia fistula methanolic extract (CFME) was administered in two doses: CFME-LD (lower dose 250 mg/kg) and CFME-HD (high dose 500 mg/kg) separately. It was found that CFME produced a substantial decrease in lipid peroxidation and an increase in antioxidants in myocardial tissues. CFME abrogated the levels of triglyceride and total cholesterol with a decrease in alanine transaminase (ALT) and aspartate transaminase (AST) activity in serum at both doses. 2,3,5-Triphenyltetrazolium chloride (TTC) staining and histopathology also revealed the protective effects of CFME against ISP-induced myocardial infarction. The study showed the significant role of the CFME as a strong antioxidant and cardioprotective action in ISP-induced toxicity.


Spectrum-Effect Relationships between Fingerprints of Caulophyllum robustum Maxim and Inhabited Pro-Inflammation Cytokine Effects.

  • Shaowa Lü‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2017‎

Caulophyllum robustum Maxim (CRM) is a Chinese folk medicine with significant effect on treatment of rheumatoid arthritis (RA). This study was designed to explore the spectrum-effect relationships between high-performance liquid chromatography (HPLC) fingerprints and the anti-inflammatory effects of CRM. Seventeen common peaks were detected by fingerprint similarity evaluation software. Among them, 15 peaks were identified by Liquid Chromatography-Mass Spectrometry (LC-MS). Pharmacodynamics experiments were conducted in collagen-induced arthritis (CIA) mice to obtain the anti-inflammatory effects of different batches of CRM with four pro-inflammation cytokines (TNF-α, IL-β, IL-6, and IL-17) as indicators. These cytokines were suppressed at different levels according to the different batches of CRM treatment. The spectrum-effect relationships between chemical fingerprints and the pro-inflammation effects of CRM were established by multiple linear regression (MLR) and gray relational analysis (GRA). The spectrum-effect relationships revealed that the alkaloids (N-methylcytisine, magnoflorine), saponins (leiyemudanoside C, leiyemudanoside D, leiyemudanoside G, leiyemudanoside B, cauloside H, leonticin D, cauloside G, cauloside D, cauloside B, cauloside C, and cauloside A), sapogenins (oleanolic acid), β-sitosterols, and unknown compounds (X3, X17) together showed anti-inflammatory efficacy. The results also showed that the correlation between saponins and inflammatory factors was significantly closer than that of alkaloids, and saponins linked with less sugar may have higher inhibition effect on pro-inflammatory cytokines in CIA mice. This work provided a general model of the combination of HPLC and anti-inflammatory effects to study the spectrum-effect relationships of CRM, which can be used to discover the active substance and to control the quality of this treatment.


Efficacy of Bottle Gourd Seeds' Extracts in Chemical Hazard Reduction Secreted as Toxigenic Fungi Metabolites.

  • Adel G Abdel-Razek‎ et al.
  • Toxins‎
  • 2021‎

Bottle gourd seeds are surrounded by innumerable bioactive components of phytochemicals. This work aimed to evaluate the effectiveness of bottle gourd extracts as antimicrobial and an-ti-mycotoxigenic against toxigenic fungi and mycotoxins. Polar and nonpolar extracts were made from the seeds. The polar eco-friendly extract was prepared by an ultrasonication-assisted technique utilizing aqueous isopropanol (80%), whereas the non-polar extract was obtained using petroleum ether (40-60). The antioxidant efficacy, total phenolic content, and flavonoid content of the extracts were all measured. The fatty acid profile was measured using GC equipment, and the influence on toxigenic fungus and mycotoxin release was also investigated. The antioxidant efficacy of the polar extract is reflected. The total phenolic values of the oil and polar extract were 15.5 and 267 mg of GAE/g, respectively. The total flavonoid content of the oil was 2.95 mg catechol/g, whereas the isopropyl extract of seeds contained 14.86 mg catechol/g. The polar extract inhibited the DPPH more effectively than oil. When compared to other seed oils, the fatty acid composition differed. The pathogens were distinguished by the MIC and MFC for the polar extract. Three sterols were found in the oil, with a high concentration of B-sitosterols. The oil's valuable -carotene content and tocopherol content were recorded. When compared to traditional antibiotics, the polar extract has shown promising antimicrobial activity against infections and toxigenic fungi. Bottle gourd extracts, as a non-traditional bioactive source, are viewed as a potentially promising alternative that might contribute to increased food safety, shelf-life, and security.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: